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We propose in this paper a unified treatment of conventional boundary value problem, the Cauchy

problem, and under- or over-determined problems of the Laplace equation in two-dimensional

domain enclosed by the smooth curve. The Dirichlet data can be prescribed on any part of

the boundary, while the Neumann data can be prescribed on any other part of the boundary.

This problem is reformulated in terms of the variational problem with a least-square functional,

which is then recast into primary and adjoint boundary value problems of the Laplace equation.

A non-iterative numerical method of solution using the BEM is presented. Numerical examples

suggest that our treatment is effective.
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1. Introduction

Let © be a simply connected bounded domain with
its smooth boundary I" in R2. Let 1 be the exterior
normal to the boundary.

We consider the Laplace equation;

—Au(z)=0, =€ (1)
subject to Dirichlet and Neumann data;

ulr, =8 and —g% =gq|r, =4 (2)
given on respective non-zero measure parts of the bound-
ary I'y, and I'y. Here we notice that the components I,
and I'y can be taken arbitrarily to some extent. This
problem setting encompasses the conventional mixed
boundary value problem, the Cauchy problem, under-
and over-determined problems of the Laplace equation.
From this reason we call the problem the general or in-
verse boundary value problem.

If the solution of the problem eqns (1), (2) exists,
the solution u at internal points of the domain can be
expressed by Green’s formula; '

u(8) = / G(@; £)q(w)dI ()
oG
- [ Z@tpu@ire), tea @)
T

where G(; £) is the fundamental solution to the Lapla-
cian;

—AG(z;€) = é(z - &) (4)

with the Dirac measure § at the point £. In two dimen-
sions we know

1

Te=¢] ®)

G(x;€) = 2—1”-111

The boundary values u|r and g|r should satisfy the
boundary integral equation;

740 + [ S (@ &u@)ra)
= [c@en@are), cer. @

In preceding papers(l)’(z) the authors presented an
iterative method for numerical solution of the problem
eqns (1), (2). However, our problem is essentially lin-
ear. The authors feel that linear problems should be
solved in principle without iteration. In this paper an
attempt is presented at an approximate solution of the
problem using the boundary element method without
the iteration.

2. Variational Problem-

Let 'y and I'; be complement sets of I’y and T,
respectively. We recast the problem eqns (1), (2) into
the following variational problem: Find ulre = w that
minimizes the functional

J(w) = /F lg(; ) — a(2)[*dT (x)
n / lo(; w) 2T (x) @

subject to
~Au(w;w) =0, =€ (8)
ulp, =% and ulr; =w. 9)
The second term on the right hand side of eqn (7) is the
Tikhonov regularizer with the regularization parameter

17 > 0 in order to make the problem well-posed. Here
we assume J : H'/?(TS) 3 w — Ry = [0, 4+00).



We discuss some mathematical questions about the
existence and the uniqueness of the solution w of the
variational problem in which the functional J(w) attains
its minimum. The first theorem states that our under-
determined problem is quasi-controlable ®

Theorem 1 The convex set

{q(w) = 'g%

s.t.  ulr, =0, ulpg =w € HY2(12) }

/ bu=0 i @ u e H'*(I)

rs

is dense in H™'/2(T'%).

Proof  We consider a bounded linear operator I{ by
definition:

KB 5w Daiw) € HTA(TS) .

In order to prove that the range of I{ is dense in H-'/? T%),

it suffices us to show that the adjoint operator {* is an
injection (one-to-one map).

We will find K™ from the definition:
(Kw,p) = (w, K*p) for Vo€ Hé’z(PfL) .

For given ¢ € Hélz(f‘i), we consider the boundary
value problem:

AyY(z) =0, =€
subject to  ¢fr, =0, Wlrs = .

The solution () exists uniquely in H*/?(Q2). From
Green’s integral theorem, we have

=/(Au)1j}d§l
a
= %qbdl"—/ 8¢d1"+/ uApd§)
F . r »
du )
—/rc e edl” — I‘ﬁwa—ndI‘.

This implies that

a_u — a¢ 1/2 e
e angadr‘_/c andF for Vo € Hy/*(I'3) .

We know now that
K*: 1/2(I—wc)3¢H 81/J EL2(1-C)

We will show that K™ is injective. Let K*¢p = g—¢ =
n

0. To this end, we consider the boundary value problem:
AY(x)=0, =€
subject to  ¢|r, =0, %Irc =0.

on'" ¥

This problem is uniquely solvable with the solution ()
= 0in Q. Therefore we obtain ¢ =9 =0onI';. g

This theorem guarantees that our variational problem
is solvable for almost all u|r and q|r.
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Theorem 2  The Fréchet derivative J'(w) in L*(I'S)-
sense is given by

(@)l = 22 (a). (10)

Proof  We see
J(w + dw) — J(w)

{lg(z;w + 6w) — g()|* - |q(; w) — g(z)[* } dT

Tq

n /F {la(z;w + 6w)]* = lq(w; )} dT

A {g(z;w + dw) + g(=; w) — 2g(=)}

{g(=;w + bw) — g(w;w)} dT
+n/r {g(z;w + éw) + ¢(=; w)}
{9(z;w + bw) — g(m;w)} dT°
{g9(z;w + dw) — g(w; w)
+2 [9(z; w) — g(=)]} 6g(z; w)dl’
1 [ fawio+d0) - (i)
+2g(z; w)} dg(z; w)dl’
— [ latai) - a(e)a(esr + [ log(aiar

q

Tq

+n /F 2a(w;0)3a(i0)dr + 1 [ 16a(wiw)ar
= fr 2[(1 + m)a(@; w) — a(2))5q(w; w)dT

+ /  2ng(; )8 i w)dT

q

+/ (1+n)IJq(w;w)|2dF+/ nldg(e; w)|*dr".
rg

In the above, we put du(z; w) = u(x; w+dw)—u(we; w),
and accordingly d¢(z; w) = g(z;w + dw) — g(x;w). We
notice that A(du) =01in ©, du = 0 on I'y, and du = dw
on I';.

We now consider v € H?*(Q2) as a solution of the
Laplace equation

—Av(z;w) =0, zeN (11)
subject to the boundary conditions

vlr, = 2{(1 + n)g(=;w) — g(=)}
and vlrg = 2ng(e;w). (12)

From Green’s integral theorem;

/(Av)&udﬂ / —dudl’ — /v—a—Jng—f—/ vA(du)dQ,

we have

o= [ g”(s dr — / [(1 + n)a(@; w) — g(e)}dqdl

—/ 2ng(x; w)dqdl .
g



Consequently we obtain

J(w+ dw) — J(w)
v

+ [ @ nlsaiarar+ [ nisataiw)far
rg

Tq

ov
== Jw) +o(]] dw ||) -
(3” L2(rg)

Corollary  The second-order derivative J'(w) is given

by

J" (w)dwlre = 22—1:(93;5@ (13)

with w € H?(2) as a solution of the Laplace equation
—Aw(wx;dq) =0, =€ (14)
subject to the boundary conditions;

w|r, = (1+n)dg and wlre = ndg. (15)

Proof  We start with the expression

J(w +8w) = J(w) + (J' (@), 60) 1a(rs)
+ / (1 + n)lg(w; w)[dT

q

+ [ nbbaaiw)Par. (o)
rs
From Green’s integral theorem,;

/(Aw)éudﬂ = —6udl"
n a

w?—(s—t—‘dl"-}-/ wA(Su)dQ,
r Q
we have

0= gi“—awdr

FC n
- / (1 + n)ldql?dr — / nl6g|*dT .
r, re

Consequently we obtain
J(+6) = J() + (' (@), 80) e
+2 / 3:6 iy
= J(w) + (J'(w), 8w) L2(rg)
(7" ()60, 60) 25
The next theorem states the unique existence of the

minimizer of the functional J(w) (4.

Theorem 3  The functional J : H'/2(T5) 5 w —
R, is strictly convex.

Proof For wk (k =1,2), let u(®;ws) be the solution
of the boundary value problem:

Au=0 in Q, ulp, =%, ulre = wg.
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For any number 6 (0 < § < 1), we note that fu(w®;wi)+
(1—8)u(w; w2) is also the solution of the boundary value
problem with ujre = fw; +(1—8)w: due to the linearity
of the problem. Using the convexity of the parabola
{0n+ 1 -0} < 87 + (1 — §)72 for any 7, € R,
we see

J(fwr + (1 — 8)w?)

- /F 6g(2;w1) + (1 — 6)g(@; ws) — (=) PdT
+ n/ﬂ |V {8u(x;wi) + (1 — 0)u(z; ws)}|*d02

:/r [0{g(; w1) — G(x)}
+ (1= 6){g(z; w2) — g(=)}dT
+ nL [0Vu(z;wi) + (1 — 8)Vu(m; wr)|*d2

{6lg(z;w1) - g(=)I*
Tq
+ (1 - 8)lg(=; wz) — q()[*}dI"
n/{e[vu(m;w,)P + (1= 0)|Vu(w; wa)|?}d02
a
=0J(w1) + (1 — 0)J(w2).
This implies that J(w) is convex. To show that J(w) is
strictly convex, we can see that
%(J"(w)&w, 50) 12 (re)

ow
= e %6 wdl

/ (1 + n)[6g|2dT + / nldqPdr > 0
Ty rg

if and only if w # 0 in H'/3(T¢) . ' O

3. Boundary Element Method

We divide the whole boundary I' into the series of n
boundary elements as I' ~ ™ = U7=1 Ty for its approx-
imation, where h stands for some representative size
of the boundary elements. Here the boundary element
subdivision should be in accordance with the boundary
components I'y and I'y.

We approximate the boundary values u|r and g|r
by introducing the interpolation functions N;(x) in the
form;

ulr ~ u” ZN (®)uy, 17)

qlr ~ ¢"(x) ZN (®)g;, =€l (18)

with approximate nodal values u; and g; to the exact
nodal values u(z;) and g(;), respectively, at the nodes
z; (j = 1,2,--+,n) on the boundary I".  We approxi-

mate the boundary values v|r and r|r = g—t—)- also in the
‘ n



form;

vlr = v"(z) = ZNj(w)vj, (19)

r|p2rh(a:)=ZNj(m)rj, zel (20)

with approximate nodal values v; and r; to the exact
v(xz;) and r(x;), respectively, at @; on I'.

The exact boundary values u|r and g|r in the bound-
ary integral equation (6) are replaced by the approxi-
mations u”|r and ¢"|r of eqns (17), (18) respectively.
This yields

Tu(®) + Z / S (5 )Ny ()T ()

= Z/FG(m;ﬁ)Nj(fﬂ)dP(m)qj, £€el.(21)

We take those n nodes &; again as collocation points
in order to fully discretize the boundary integral equa-
tion (21). Put § =®; (i=1,2,---,n). Then we have

1 = [ 3G
Fui T ;/r‘ %(w,w.)N,(m)dF(:c)uj

=3 [ ey @@, (@)

which results in the system of linear equations in the
matrix form;

[H{u} =[G){q} (23)

with each entity
hi; = 5,,+ / 9C (g0 N;()dT(z),  (24)
95 = [ Glaiz)N;(@)dr(e), (25)

T

for 3,7 =1,2,--.,n. Here, §;; is the Kronecker symbol.

We apply the discretizing procedure again to the bound-
ary integral equation corresponding to the adjoint prob-
lem .eqns (11), (12) to obtain

[Hl{v} = [G}r} (26)

with the same n x n coefficient matrices [H] and [G] as
in eqn(23).

We denote by n; the number of nodes on I'y, and by
ny the number of nodes on I'y, respectively. Let nf =
n —n; and n; = n — na, being the respective numbers
of nodes on I'; and I';. According to the respective
boundary components I'y and I'y we write the column
vectors {u} and {q} in the form;

_ #w; on I 1

{u}_{ u2 on I‘,ﬁ} nf '

@={o o e
q;

on Iy n2

where n; nodal values u; on I'y are collected in {u,},
and the nf nodal values on I'{ in {u2}, whereas n; nodal
values ¢; on I'y are collected in {q,}, and the n§ nodal
values on I'g in {q,}.
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In the similar way we write

" on Iy ng
v} = { vz on I } ny '
_J 1 on T4 ny
{r}= { ro on I'§ } n{ ’ (28)

Then the systems eqns (23) and (26) can be written
respectively in the partitioned form;

c

n n
[ )3
U2
n§ no

feret](z} e

and
ne ng
] (2}
U2
n1  nj

=[G§2) Ggﬂ} { :; } : (30)

where numbers of rows and columns of the coefficient
matrices are indicated.

4. Direct Method of Solution

We insert boundary conditions of primary and adjoint
problems into the partitioned systems of eqns (29), (30):
From eqn (9) we have

{w1} ={u:},

From eqn (12) we have

{vi}=2n{q.}, {va}=2((1 +n){g.} - {2.}),
(32)

{uz} =A{w}. Q;

and from eqn (10) as the necessary condition that J(w)
is minimal we have

{rz} = {0}. (33)
Therefore the systems eqns (29), (30) reduce to the
form;
o g 2
[Hl H, ]{ w }
_[ g gw { 0 } a4
[ e i o (34)
and
2nq
H® g® { - }
[ ! 2 ] 2(1+n)(g, - @2)
=[a? &P | { i } : (35)
respectively.



We combine eqns (34) and (35). We take unknown
nodal values to the left of the equation to obtain

n, nq ny n2
q,
n | -G HY o -Gy w
n | 2qH? 0 -GP 20+nH? ™
q;
n) n2
_gW -
" St O { i } (36)
n (0} 2H, qd; :

We notice that the coefficient matrix on the left hand
side of the augmented new system of linear eqns (36) is
square of order 2n.

5. Numerical Examples

Suppose that the harmonic function
2 2 2
u(z1,22) = 21 — 23 = r° cos(29) 37)

with the polar coordinates z; = rcosd, z = rsin?d
serves as a solution of the inverse boundary value prob-
lem eqns (1), (2) in the unit circle;

Q={(rn9) | 0<r<1,0<9<2r} (39

as shown in Fig. 1

The collocation boundary element method with C°
linear elements is used. The boundary I' = 92 is uni-
formly divided into 48 and 96 boundary elements as
shown in Fig. 2. The double nodes are taken at the
edges of the boundary components I', and I'y, so that
discontinuity of ¢ and r at the edges is admitted in the
computation.
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Mixed Boundary
Value Problem

Cauchy Problem

Over—determined
problem problem

Under—determined

Fig. 1 Problem statement
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(a) 48 boundary nodes

(b) 96 boundary nodes

Fig. 2 Boundary elements

5.1 Mixed boundary value problem

The Dirichlet data @ = cos(29) on 'y = {(1,9) |
0 <9< r } and the Neumann data § = 2cos{29) on
Iy ={(1,9) | # <9< 2r } are given as shown in Fig.
1. i

Calculated profiles of u® and ¢" against the central
angle ¥ (0 < 9 < 2x) are depicted in Fig. 3 with
reference to the exact u along the boundary I". The
approximate u” is in good agreement with the exact u.

, ; Exactu |
- . — Exacf
30 n=0 [ . Pote::.l [

B & Normal Fiux

_30 \; - e - . P
(a) 48 boundary nodes

— Exact g
@ Potentiai

e & Normal Flux .-

° x/2 x axs2

(b) 96 boundary nodes

Fig. 3 Exact u and approximate u*, ¢® on T’



5.2 Cauchy problem

The Cauchy data @ = cos(29) and § = 2cos(29) on
F.=T¢={(1,9) | 0 <Y< 7} aregiven as shown in
Fig. 1.

Calculated profiles of u” and q" against the central
angle ¥ (0 < ¥ < 27) are depicted in Fig. 4 with refer-
ence to the exact u and q along the boundary I". Both
of the approximate u" and ¢" are in good agreement
respectively with the exact u and q.

[ —exmetu
30 r a | ——Exact q

7l
o Potential
< —- a8 Normnl Flux
()
LIPS
L

0 x/2 x 3xs2 x

Fig. 4 Exact u, ¢ and approximate u*, ¢* on T

We add uniformly distributed random errors with the
magnitude of 10% to the Cauchy data. Figure 6 shows
Hansen’s L-curve diagram ®) for 0 < n < 1. The opti-
mum value is n = 0.37.

Calculated profiles of approximate u” and ¢" against
the central angle 9 (0 < ¥ < 2r) are depicted in Fig. 5
with reference to the exact u and ¢ along the boundary
I for 7 = 0 and 0.37. Both of u” and ¢" for n = 0 are
in fairly good agreement respectively with the exact u
and q. The optimum 7 = 0.37 is seen to over-regularize
the solutions u” and ¢*.

l —Exsctu
30 - |  —Exactg
n =0 I © Patential :
.. 8 Normal Flux _j--—

20 my——10% error — TR

-30 L- - S .-
L] x/2 x Ixr2 2x
Eractu |
30 ~—Exact q !
n =031 o Potonti l
20 ——-- 10% error —— —fo~;-—__ 0 Normal Flux _ f—

] /2 x 3x/2 x

(b) 7 =10.37

Fig. 5 DExact u, ¢ and approximate u”, ¢" on T
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Fig. 6 IHansen’s L-curve

5.3 Under-determined problem

The Dirichlet data @ = cos(29) on I'y = {(1,9) |
0 < 9 < #/2} and the Neumann data § = 2 cos(29) on
Iy = {(1,9) | # < 9 < 3x/2} are given as shown in
Fig. 1.

Calculated profiles of u” and ¢" against the central
angle ¥ (0 < 9 < 27) are depicted in Fig. 7 with refer-
ence to the exact u and q along the boundary I". The
approximate u” is in fairly good agreement on I'y, and
the approximate ¢” is in fairly good agreement on I's,.

M exctu !
30 S eaeta
n=0 © Potential

~ 0% error 7‘&\\ & Normal Flux |2
"
3

20

1.0

00 aoouh
_1 0 ——
=20
_3.0 Lo e e e . T
0 xr2 x ans2 2
(a) 48 boundary nodes
| —Exactu
30 r _ | —Exactq
n= i e Potentisi ' A
20 — - 0% error i

4 Normal Flux

W70

o x/2 x axs2 . x

(b) 96 boundary nodes

Fig. 7 Exact u, ¢ and approximate u”, ¢" on T'



5.4 Over-determined problem

The Dirichlet data @ = cos(29) on I'u = {(1,9) |
0 < 9 < n} and the Neumann data § = 2cos(2J) on
Ty = {(1,9) | #/2 < ¥ < 3m/2} are given as shown in
Fig. 1. .

Calculated profiles of u* and ¢" against the central
angle ¥ (0 < 9 < 2n) are depicted in Fig. 8 with refer-
ence to the exact u and g along the boundary I'. The
approximate u" is in good agreement on I'y \ Ty, and
the approximate g" is in good agreement on I'y \ T'g.

@ Potantial

n =0
"~ 0% error

v —1

‘ |

30 ¢ l[ ——Exact q ;
|

| a NormalFlux |

o /2 x 3n/2 n

(a) 48 boundary nodes

30

——Exact q i a

n=0

[ —eacty |
| @ Potential
1

—| & NormalFlwx |

° x/2 x axsz FE

(b) 96 boundary nodes

Fig. 8 Exact u, ¢ and approximate ut ¢"on T

6. Conclusions

A boundary inverse problem is considered for the
Laplace equation in two dimensions. By introducing
a convex functional to be minimized, the solution of the
inverse problem is understood as the minimizer of the
functional. The necessary condition for the functional
to attain the minimum is paraphrased by the primary
and adjoint boundary value problems of the Laplace
equation. The boundary element method is applied to
obtain numerical solution of the problems, yielding an
augumented system of linear algebraic equations. The
linear system of equations can be solved directly. Four
test examples suggest the validity of this direct method
for the inverse boundary value problem.
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