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Abstract We derive an easier to calculate algorithm for a cubic spline approximation
of an offset curve of a given planar cubic spline and a sufficient condition on an offset
length for its existence. We show that the cubic offset approximation is C- (or S-)
shaped if the original cubic is C- (or S-) shaped.

1 Introduction and description of the method

The construction of offset-curves and offset surfaces plays an important role in the
automobile industry. For example, if we are given the inner surface of a part of a car
body we can reach the outer surface by an offset with material thickness. Klass has
proposed an algorithm$\cdot$ for a cubic spline approximation of an offset curve of a planar
cubic spline ([2]).

The object of this paper is to obtain an easier to calculate algorithm for the cubic
approximation method and a sufficient condition on an offset length for its existence.
A planar cubic spline segment $z(t),$ $0\leq t\leq 1$ is defined by the equation:

$Z(t)=P_{0(1}-t(23-2t))+T0(1-t)2-tT_{1}(1-t)t^{2}+P_{1}t^{2}(3-2t)$ (1.1)

where $T_{0}$ and $T_{1}$ are the tangent vectors at endpoints $P_{0}$ and $P_{1}$ . For simplicity of
analysis, we assume that the tangent directions (the counterclockwise angles from the
$x$-axis to the tangent vectors) $\pi-\theta,$ $\pi+\psi$ at the end points $(1, 0)$ , $(-1,0)$ , i.e.,

$P_{0}=(1,0),$ $P_{1}=(-1,0),$ $T_{0}=r_{0}(-\cos\theta, \sin\theta),$ $T_{1}=r_{1}(-\cos\psi, -\sin\psi)$ (1.2)

with $r_{i}>0,$ $i=0,1;0<\theta,$ $|\psi|<\pi/2,$ $\theta+\psi>0$ . Its signed curvature $\kappa(t)$ is given by

$\kappa(t)=(z’\mathrm{x}z’)’(t)/||z’(t)||^{3}$ , $0\leq t\leq 1$ (1.3)
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where $”\cross$ ” means the cross product of two vectors. Now we want to construct the
offset cubic spline approximation $\tilde{z}$ with an offset length $d$ to the original cubic spline
$z$ . Since offset curves of splines are themselves not splines, Klass ([2]) has considered
an offset cubic spline approximation $\tilde{z}$ of the form (1.1) with an offset of $d$ to $z$ as

$\tilde{P}_{j}=P_{j}+dN_{j}$ , $\tilde{T}_{j}=c_{j}T_{j}$ , $c_{j}>0,j=0,1$ (1.4)

where the unit normal vectors $N_{j}$ to the corresponding to the tangent vectors $T_{j}$ at
$P_{j},$ $j=0,1$ are given by

$N_{0=}(\sin\theta, \cos\theta)$ , $N_{1}=(-\sin\psi, \cos\psi)$ (1.5)

Letting the curvature of $\tilde{z}$ be $\tilde{\kappa}$ , then the unknown positive parameters $c_{j},j=0,1$ are
determined for the given offset length $d$ as

$\frac{1}{\tilde{\kappa}(t)}=\frac{1}{\kappa(t)}+d,$ $t=0,1$ (1.6)

For later use, we define the following four quantities $D_{i},$ $i=0,1$ and $p,$ $q$ :

$D_{0}= \frac{r_{0^{\sin}(+}\theta\psi)}{6\sin\psi}$ , $D_{1}= \frac{r_{1}\sin(\theta+\psi)}{6\sin\theta}$ ; $p= \frac{D_{0}^{2}}{1-D_{1}}$ , $q= \frac{D_{1}^{2}}{1-D_{0}}$ (1.7)

By a simple but long calculation (if necessary, with help of Mathematica), eqs (1.6)
give a quadratic system of equations in $C_{0}(=r_{0}c_{0)}, C_{1}(=r_{1}c_{1})$ :

$C^{2}=b-a0C001$ , $C_{1}^{2}=b_{1}-a1C0$ (1.8)

where

$w_{0}=\mathit{2}d+r_{0}^{2}/\{6(1-D_{1})\sin\theta\}$ , $w_{1}=2d+r_{1}^{2}/\{6(1-D0)\sin\psi\}$

$a_{0=}w_{0}\sin(\theta+\psi)$ , $a_{1}=w_{1}\sin(\theta+\psi)$

$b_{0}=6w_{0\{}\sin\theta+d\sin^{2}\{(\theta+\psi)/\mathit{2}\}\}$ , $b_{1}=6w_{1}\{\sin\psi+d\sin^{2}\{(\theta+\psi)/2\}\}$

The above system of equations (1.8) in $(C_{0}, C_{1})$ is easier to treat than the one given
in [2]. The solubility of the above system has been studied as follows ([1]). Letting
$(\rho_{0}, \rho_{1})=(a_{1}c_{0}/b_{1}, a_{0}c_{1}/b_{0})$ , then (1.8) is reduced to the system:

$\rho_{0}=1-R_{1}\rho_{1}^{2}$ , $\rho_{1}=1-R0\rho_{0}2$ (1.9)

with

$(R_{0}, R_{1})=(b_{1}^{2}/(b0a)21’ b_{0}^{2}/(b_{1}a^{2})0)$

Fig. 1 gives the number of the solutions of the system of (1.9) with respect to the
positive $R_{i},$ $i=0,1$ where the curve through (3/4, 3/4) is given by 256$R_{0}R_{1}\{R0R_{1}-$

$(R_{0}+R_{1})+\mathit{2}88\}=27$ . Here, we consider the case when $(R_{0}-1)(R1-1)>0,$ $R_{0},$ $R_{1}>0$ .
Then, note that the system (1.8) has at least one positive solution $(C_{0}, C_{1})$ , as is to be
proved.

231



Fig. 1. Number of solutions of quadratic system (1.9) with respect to $(R_{0}, R_{1})([1])$ .

Positive offset length $d$ : First we derive a sufficient condition for the system (1.8)
to have a positive solution $(C_{0}, C_{1})$ for on the positive offset length $d$ . Depending on
the sign of $\psi$ , we consider the following two cases.

$C$-shaped data $(\theta>0, \psi>0)$ : Delete $C_{1}$ from the system (1.8) to obtain a quartic
equation $\phi(C_{0})=0$ as

$\phi(C_{0})=c4-2bc_{0}^{2}00+a_{0}^{2}a_{1}C_{0}+b_{0}^{2}-a_{0}b_{1}2$ (1.10)

Since $C_{1}>0$ requires $0<C_{0}<\sqrt{b_{0}}$ , we seek a sufficient condition that $\phi(C_{0})=0$

has a root in $(0, \sqrt{b_{0}})$ . Since $\phi(0)=b_{0^{-}}^{2}b_{1}a_{0}2$ and $\phi(\sqrt{b_{0}})=a_{0}^{2}(a_{1}\sqrt{b_{0}}-b_{1})$ , we have
sufficient ones on $z(=d\sin^{2}\{(\theta+\psi)/2\})$ .
Case 1 $(0<p, q<1;0<\theta+\psi<\pi/3)$ : Note a sufficient condition for (1.8) to have
positive root(s) as follows

(i) $\frac{b_{0}^{2}-b_{1}a_{0}^{2}}{1\mathit{2}w_{0}^{2}}=\{2\cos(\theta+\psi)-1\}z^{2}+\{\eta(\theta, \psi,p)\sin\psi\}Z+3(p-1)\sin\psi 2<0$

(1.11)

(ii) $\frac{b_{1}^{2}-b_{0}a^{2}1}{12w_{1}^{2}}=\{2\cos(\theta+\psi)-1\}_{Z^{2}}+\{\eta(\psi, \theta, q)\sin\theta\}z+3(q-1)\sin^{2}\theta<0$

with

$\eta(\theta, \psi,p)=\frac{3p\sin\psi}{\sin\theta}+\frac{2\sin\theta+\sin(2\theta+\psi)}{\sin\psi}-7$

Letting $u(\theta, \psi,p)$ be the $\mathrm{p}\mathrm{o}$.sitive root of 1.11(i) (where ”
$\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}.\mathrm{y}$

” is to be replaced
by ”

$\mathrm{e},\mathrm{q}\mathrm{u}.\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}.$”)
$..\cdot$

to ob.tain, :

$u( \theta, \psi,p)=\frac{6(1-p)\sin\psi}{\eta(\theta,\psi,p)+\sqrt{12(1-p)\{2\cos(\theta+\psi)-1\}+\eta^{2}(\theta,\psi,p)}}$
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Then, we obtain a sufficient condition from (1.11) as

$0<d<d_{0}={\rm Min}[ \frac{u(\theta,\psi,p)}{\sin^{2}\{(\theta+\psi)/2\}},$ $\frac{u(\psi,\theta,q)}{\sin^{2}\{(\theta+^{\psi})/2\}}]$ (1.12)

Case 2 $(p, q>1;\pi/3<\theta+\psi<\pi)$ : Note a sufficient condition for (1.8) to have
positive root(s) as follows

(i) $\frac{b_{0^{-}}^{2}b_{10}a^{2}}{12w_{0}^{2}}=\{2\cos(\theta+\psi)-1\}Z^{2}+\{\eta(\theta, \psi,p)\sin\psi\}z+3(p-1)\sin^{2}\psi>0$

(1.13)

(ii) $\frac{b_{1}^{2}-b_{0}a^{2}1}{12w_{1}^{2}}=\{2\cos(\theta+\psi)-1\}Z^{2}+\{\eta(\psi, \theta, q)\sin\theta\}_{Z}+3(q-1)\sin^{2}\theta>0$

Letting $v(\theta, \psi,p)$ be the positive root of $13(\mathrm{i})$ in $z$ (where ”inequality” is to be replaced
by ”equality”) to obtain :

$v( \theta, \psi,p)=\frac{6(p-1)\sin\psi}{-\eta(\theta,\psi,p)+\sqrt{12(1-p)\{\mathit{2}\cos(\theta+\psi)-1\}+\eta^{2}(\theta,\psi,p)}}$

Then, two inequalities (1.13) require

$0<d< \overline{d}_{0}={\rm Min}[\frac{v(\theta,\psi,p)}{\sin^{2}\{(\theta+\psi)/2\}},$ $\frac{v(\psi,\theta,q)}{\sin^{2}\{(\theta+\psi)/2\}}]$ (1.14)

Note that two inequalities in (1.11) (or (1.13)) are equivalent to $R_{0},$ $R_{1}>1$ (or
$R_{0},$ $R_{1}<1)$ ; refer to Fig. 1. To study the shape of the cubic spline curve $z$ , we
consider the linear system of equations in $\lambda,$

$\mu$ :

$\triangle z(=Z(1)-Z(\mathrm{O}))=\lambda_{Z}’(\mathrm{O})+\mu z’(1)$ (1.15)

Then we obtain the distribution of inflections and singularities with respect to $(\lambda, \mu)$

where regions $N_{i},$ $0\leq i\leq 2$ mean $i$-inflection points, and the curve $C$ (or $L$ ) means
the cusp (or loop) where $A$ (or $B$ ) is $\mu^{2}=\lambda(3\mu-1)$ (or $\lambda^{2}=\mu(3\lambda-1)$ ) and $C$ is
denoted by $(\lambda-1/3)(\mu-1/3)=1/36,$ $\lambda,$ $\mu<1/3(\lceil 3\rceil)$ .

Fig. 2. Inflections and singularities with respect to $(\lambda, \mu)([3])$ .
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Theorem 1.1 ($C$ -shaped data): If $0<p,$ $q<1$ , then there exists a fair (without

inflection points and singularities) spline approximation $\tilde{z}$ to a fair cubic $z$ with an
offset length $d\in(0, d_{0})$ for $0<\theta+\psi<\pi/3$ where for $\pi/3<\theta+\psi<\pi,$ $p,$ $q>1$ and
$d\in(0,\overline{d}_{0})$ .

Proof. First, note that the original $C$-shaped cubic segment $z$ of the form (1.1) has
neither inflection points nor singularities (loop, cusp) since the linear system (1.15)
has the solutions $\lambda(=1/(3D_{0})),$ $\mu(=1/(3D_{1}))(\geq 1/3)$ since $0<D_{0},$ $D_{1}<1$ from
$p,$ $q>0$ and (1.7); refer to Figure 2. Next, to show that the approximation $\tilde{z}$ has
neither inflection points nor singularities, we have only to check that the solutions of
the following linear system satisfies the inequalities: $\overline{\lambda},\overline{\mu}\geq 1/3$ :

$\triangle\tilde{z}=\overline{\lambda}\tilde{Z}(\prime 0)+\overline{\mu}\tilde{z}’(1)$ (1.16)

from which we have

$\overline{\lambda}-\frac{1}{3}=\frac{C_{1}^{2}}{3C_{01}w\sin(\theta+\psi)}$ , $\overline{\mu}-\frac{1}{3}=\frac{C_{0}^{2}}{3C_{1}w_{0}\sin(\theta+\psi)}$ (1.17)

Since $w_{0},$ $w_{1}>0$ from $D_{0},$ $D_{1}<1,\overline{\lambda},\overline{\mu}>1/3$ .

This completes the proof of this theorem.
Here we remark the remaining cases for the $C$-shaped original cubic curve which are not
included in the above theorem since otherwise the theorem is a little too complicated;
only a numerical example (Example 2) is treated in the next section:

(i) $(0<p, q<1;\pi/3\leq\theta+\psi<\pi)$ : Only if $\eta(\theta, \psi,p)>0$ , then 1.11(i) requires
$z<u(\theta, \psi,p)$ when the real $u(\theta, \psi,p)$ does exist or is always valid when it does not
exist. If $\eta(\theta, \psi,p)<0$ , no restriction on $z$ is required from 1.11 (i). The same analysis
can be applicable to 1.11 (ii).

(ii) $(p, q>1;0<\theta+\psi\leq\pi/3)$ : Only if $\eta(\theta, \psi,p)<0$ , then $1.13(\mathrm{i})$ requires
$z<v(\theta, \psi,p)$ when the real $v(\theta, \psi,p)$ does exist or is always valid when it does not
exist. The same analysis can be applicable to $1.13(\mathrm{i}\mathrm{i})$ .

$S$-shaped data $(\theta>0, \psi<0)$ : Then note that the original $S$-shaped cubic
segment of the form (1.1) has just one inflection point without a singularity since
$D_{0}<0<D_{1}<1$ . Then, we require $b_{1}>0$ (a necessary condition for the solubility of
the system (1.8) $)$ to give $d\in(0, d_{1})$ where

$d_{1}={\rm Min}[ \frac{-\sin\psi}{\sin^{2}\{(\theta+\psi)/2\}},$ $\frac{-r_{1}^{2}}{12(1-D_{0)}\sin\psi}]$ (1.18)

Let

$d_{2}={\rm Min}[ \frac{u(\theta,\psi,p)}{\sin^{2}\{(\theta+\psi)/2\}},$ $\frac{v(\psi,\theta,q)}{\sin^{2}\{(\theta+\psi)/2\}}]$

(1.19)

$\overline{d}_{2}={\rm Min}[\frac{v(\theta,\psi,p)}{\sin^{2}\{(\theta+\psi)/2\}},$ $\frac{u(\psi,\theta,q)}{\sin^{2}\{(\theta+\psi)/2\}}]$

234



to obtain

Theorem 1.2 ($S$ -shaped data): If $0<p,$ $q<1$ and $d<d_{1}$ , there exists a cubic
spline approximation $\tilde{z}$ to the $S$ -shaped cubic spline $z$ with an offset of $d\in(0, d_{2})$ for
$\pi/3<\theta+\psi<\pi$ where for $\pi/3<\theta+\psi<\pi,$ $p,$ $q>1$ and $d\in(0,\overline{d}_{2})$ . Then, the cubic
segments $z$ and $\tilde{z}$ have just one infection point, respectively.

Proof. Since $w_{0}>0,$ $w_{1}<0$ , note $\overline{\lambda}<1/3,\overline{\mu}>1/3$ from (1.18) to prove that the cubic
segment $\tilde{z}$ have just one infection points. For the original cubic $z$ , the linear system
(1.15) has the solutions $\lambda(=1/(3D_{0})<0),$ $\mu(=1/(3D_{1}))(>1/3)$ where $q>0$ and
(1.7) give $0<D_{1}<1$ .

Here we remark the remaining cases for the $S$-shaped original cubic curve as for the
above $C$-shaped cubic one where note $\sin\theta>0,$ $\sin\psi<0$ in derivation of the condition
on $1.13(\mathrm{i}\mathrm{i})$ :

(i) $(0<p, q<1;\pi/3\leq\theta+\psi<\pi)$ : Only if $\eta(\theta, \psi,p)<0$ , then 1.11(i) requires
$z<v(\theta, \psi,p)$ when the real $v$ does exist or is always valid when it does not exist. If
$\eta(\theta, \psi,p)<0$ , no restriction on $z$ is required from 1.11(i). The same analysis can be
applicable to 1.11 (ii).

(ii) $(p, q>1;0<\theta+\psi\leq\pi/3)$ : Only if $\eta(\theta, \psi,p)>0$ , then $1.13(\mathrm{i})$ requires
$z<u(\theta, \psi, p)$ when the real $u$ does exist or is always valid when it does not exist. The
same analysis can be applicable to $1.13(\mathrm{i}\mathrm{i})$ .

Negative offset length $d$ : Next we derive a sufficient condition for the system
(1.8) to have a positive solution $(C_{0}, C_{1})$ for the negative offset length $d$ . First, we
define the following quantities $d_{3}$ (or $d_{4}$ ) for the $C$ (or $S$)-shaped original cubic curve:

$d_{3}={\rm Max}[ \frac{-\sin\psi}{\sin^{2}\{(\theta+\psi)/2\}},$ $\frac{-\sin\theta}{\sin^{2}\{(\theta+\psi)/2\}},$ $\frac{-r_{0}^{2}}{12(1-D1)\sin\theta}$

$\frac{-r_{1}^{2}}{12(1-D_{0})\sin\psi,(1}].20)$

$d_{4}={\rm Max}[ \frac{-\sin\theta}{\sin^{2}\{(\theta+\psi)/2\}},$ $\frac{-r_{0}^{2}}{12(1-D1)\sin\theta}]$ (1.21)

Then, the same analysis for the case positive offset $d$ gives the following theorems where
in the definition of $d_{i},\overline{d}_{i},$ $i=0,2,$ ” ${\rm Min}$

” should be be replaced by ” ${\rm Max}$”

Theorem 1.3 ($C$ -shaped data): If $0<p,$ $q<1$ and $d>d_{3}$ , then there exists a fair
(without inflection points and singularities) spline approximation $\tilde{z}$ to a fair cubic $z$

with an offset length $d\in(\overline{d}_{0},0)$ for $0<\theta+\psi<\pi/3$ where for $\pi/3<\theta+\psi<\pi$ ,
$p,$ $q>1$ and $d\in(d_{0},0)$ .

Here we remark the remaining cases for the $C$-shaped original cubic curve:
(i) $(0<p, q<1;\pi/3\leq\theta+\psi<\pi)$ : if $\eta(\theta, \psi,p)<0$ , then 1.11(i) requires

$z<v(\theta, \psi,p)$ when the real $v$ does exist or is always valid when it does not exist. If
$\eta(\theta, \psi,p)>0$ , no restriction on $z$ is required from 1.11(i). The same analysis can be
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applicable to 1.11 (ii) where note that $\sin\theta>0,$ $\sin\psi<0$ .
(ii) $(p, q>1;0<\theta+\psi\leq\pi/3)$ : if $\eta(\theta, \psi,p)>0$ , then $1.13(\mathrm{i})$ requires $z<u(\theta, \psi,p)$

when the real $u$ does exist or is always valid when it does not exist.

Theorem 1.4 ($S$ -shaped data): If $0<p,$ $q<1$ and $d>d_{4}$ , then there exists a
spline approximation $\tilde{z}$ to the $s$ -shaped cubic $z$ with an offset length $d\in(\overline{d}_{2},0)$ for
$0<\theta+\psi<\pi/3$ where for $\pi/3<\theta+\psi<\pi,$ $p,$ $q>1$ and $d\in(d_{2},0)$ . Then, the cubic
segments $z$ and $\tilde{z}$ have just one infection points, respectively.

Here we remark the remaining cases for the $S$-shaped original cubic curve:
(i) $(0<p, q<1;\pi/3\leq\theta+\psi<\pi)$ : Only if $\eta(\theta, \psi,p)>0$ , then 1.11(i) requires

$z<u(\theta, \psi,p)$ when the real $u(\theta, \psi,p)$ does exist or is always valid when it does not
exist. If $\eta(\theta, \psi,p)<0$ , no restriction on $z$ is required from 1.11(i). The same analysis
can be applicable to 1.11 (ii) note the different signs of $\sin\theta,$ $\sin\psi$ .

(ii) $(p, q>1;0<\theta+\psi\leq\pi/3)$ : Only if $\eta(\theta, \psi,p)<0$ , then $1.13(\mathrm{i})$ requires
$z<v(\theta, \psi,p)$ when the real $v(\theta, \psi,p)$ does exist or is always valid when it does not
exist. The same analysis can be applicable to $1.13(\mathrm{i}\mathrm{i})$ .

2 Numerical examples

Note that all the theorems given in Section 1 are sufficient (a little too restrictive)
ones. Hence, in practical calculation of the approximate offset curves, it would be
better and easier to obtain the region on $z(=d\sin^{2}\{(\theta+\psi)/2\})$ containing $0$ and
satisfying

$b_{0}>0$ , $b_{1}>0$

$[\{2\cos(\theta+\psi)-1\}Z^{2}+\{\mu(\theta, \psi,p)\sin\psi\}z+3(p-1)\sin^{2}\psi]$ (2.1)
$\cross[\{2\cos(\theta+\psi)-1\}z2+\{\mu(\psi, \theta, q)\sin\theta\}_{Z}+3(q-1)\sin^{2}\theta]>0$

Given $r_{0},$ $r_{1},$
$\theta,$ $\psi$ , first determine $R_{0},$ $R_{1},p,$ $q$ from (1.7), and then solve the above in-

equalities (2.1).
Example 1: For $(r_{0,1}r, \theta, \psi)=(1,2, \pi/8, \pi/6)$ : $\theta+\psi<\pi/3$ , we obtain $(p, q)\approx$

(0.226357, 0.649232) and

$(2d+0.\mathit{5}39451)(\mathrm{o}.391239d2d+0.7\mathit{6}\mathit{5}367)>0,$ $(\mathit{2}d+0.906353)(\mathrm{o}.391239d+1)>0$

$(0.\mathit{2}17523Z-1.325208Z-0.\mathit{5}80232)(0.217\mathit{5}23z^{2}-0.116872Z-0.1\mathit{5}4106)>0$

from which we get $-2.097\mathit{2}1<d<5.88991$ .
Example 2. For $(r_{0}, r_{1}, \theta, \psi)=(1,2;\pi/8, \pi/4)$ : $\theta+\psi>\pi/3$ , we obtain $(p, q)\approx$
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(0.242851, 0.827883) and in addition

$(2d+0.8535\mathit{5}3)(\mathrm{o}.617317d+0.7653\mathit{6}7)>0,$ $(2d+0.852254)(\mathrm{o}.\mathit{6}17317d+1.41421)>0$

$(-0.234633Z^{2}-2.3248Z-1.13572)(-\mathrm{o}.234\mathit{6}33_{Z^{2}}+0.17369z-\mathrm{o}.07\mathit{5}\mathit{6}177)>0$

from which $d>-0.426127$ since the second quadratic equation is negative for any $z$ .
Example 3: Next we choose an original $S$-shaped cubic spline with $(r_{0,1}r, \theta, \psi)=$

$(2, 4, \pi/3, -\pi/8)$ ; note that $\theta+\psi<\pi/3$ . For $d=0.2,$ $(C_{0}, c_{1})\approx$ (1.17097, 0.96644).

Figs 5-1 and 5-3 give the graphs of the original cubic curve, the exact offset and its cubic

approximate curves (which should be improved by use of the following Klass’s algo-

rithm) with $d=\pm 0.2$ where Klass has proposed the following numerical algorithm$([2])$ :

1. Calculate the offset segment.
2. Determine the distance between the original cubic spline and the offset one.
3. If the result is good enough, divide the original segment into two parts and start

again.
Fig. 5-2 gives the original segment and its improved cubic offset composed of three

segments for $t\in[0,0.3],$ $[0.3,0.7],$ $[0.7,1]$ where $(c_{0}, C_{1})\approx(0.48809, 0.43367)$ , (0.45913, 0.36613),

(0.25386, 0.27013), respectively. Figs 3-3 and 3-4 give the graphs for $d=-0.2$ where
$(C_{0}, C_{1})\approx(0.13277, 0.104168)$ .

Fig. 3. Cubic spline and its spline offset curves with $d=\pm 0.2$ (Ex.1).

Fig. 4. Cubic spline and its spline offset curves with $d=\pm 0.2$ (Ex.2).

Fig. 5-1. Cubic spline, its offset curve and spline offset curve with $d=0.2$ (Ex.3).

Fig. 5-2. Cubic spline and its spline offset curve of three parts with $d=0.2$ (Ex.3).
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Fig. 5-3. Cubic spline, its offset curve and spline offset curve with $d=-0.2$ (Ex.3).

Fig. 5-4. Cubic spline and its spline offset curve composed of three parts with
$d=-0.\mathit{2}$ (Ex.3).

Even when $0<\theta,$ $|\psi|<\pi$ , we note that our analysis could be applicable even to
the case, i.e., the nice cubic offset curve is obtained as Fig. 6-2.
Example 4. Consider the data: $(r_{0,1}r, \theta, \psi)=(2,4, \pi/3,3\pi/4)$ ; note that $\theta+\psi=$

$13\pi/1\mathit{2}>\pi$ . This case requires $d>$ -0.075 and so the offset curve with the negative
$d$ is of no practical use.

Fig. 6-1. Cubic spline and its spline offset curve composed of three parts with $d=0.2$

(Ex.4).

Fig. 6-2. Cubic spline and its spline offset curve composed of three parts with $d=0.\mathit{2}$

(Ex.4).
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