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1 Introduction
Let us consider initial value problems for delay differential equations (DDEs) of the
form
(1.1) $\frac{dx}{dt}=f(t, X(t),$ $X(t-\tau))$ , $t\geq 0$ ,

(1.2) $x(t)=\varphi(t)$ , $-\mathcal{T}\leq t\leq 0$ ,

where $\tau>0$ is a constant delay, $x(t)\in lR^{d},$ alld $\varphi\in(^{\gamma}([-\tau, 0], lR^{d})$ . For simplicity,
we assume that $f$ is a continuous function defined on the whole space $[0, \infty)\cross lR^{d}\cross$

$JR^{d}$ and satisfies a global Lipschitz condition, i.e. there is a constant $\gamma$ such that

(1.3) $|f(t, x, y)-f(t,\hat{x}, y)\wedge|\leq\gamma(|x-\hat{X}|+|y-y\wedge|)$

for all $t\geq 0$ and $x,$ $y,\hat{x},$ $y\wedge\in lR^{d}$ . Here, $|$ $|$ denotes the Euclidean norm on $R^{d}$ .
Under this assumption, the problem $(1.1)-(1.\underline{9})$ has a unique solution $x(t)$ which is
defined for all $t\geq-\mathcal{T}$ . Moreover, if $\varphi(t)\in C^{1}([-\tau, 0], R^{d})$ and

(1.4) $\varphi’(0)=f(0, \varphi(0),$ $\varphi(-\tau))$ ,

the solution $x(t)$ belongs to $C^{1},([-\mathcal{T}, \infty),$ $R^{d})$ .
When $x(t)\in C^{1}([-\tau, \infty),$ $Rd)$ , the function $u(t, \theta)$ given by

(1.5) $u(t, \theta)=x(t+\theta)$ , $t\geq 0$ , $-\mathcal{T}\leq\theta\leq 0$ ,

satisfies the initial-boundary value problem for the convection equation

(1.6) $\frac{\partial u}{\partial t}=\frac{\partial u}{\partial\theta}$ , $t\geq 0$ , $-\tau\leq\theta\leq 0$ ,

(1.7) $u(0, \theta)=\varphi(\theta)$ , $-\tau\leq\theta\leq 0$ ,

(1.8) $\frac{\partial u}{\partial t}(t, 0)=f(t, u(t, 0), u(t, -\tau))$ , $t\geq 0$ .

Moreover, since every $C^{1}$ -function which satisfies (1.6) is represented in the form
(1.5), the function $u(t, \theta)$ defined by (1.5) with the solution to $(1.1)-(1.\underline{9})$ gives
a unique solution to $(1.6)-(1.8)$ . Therefore, for an initial function which satisfies
(1.4), we can obtain an approximate solution to the problem $(1.1)-(1.2)$ by solving
the initial-boundary value problem $(1.6)-(1.8)$ with a suitable numerical method.

Such approach for solving DDEs, called semigroup method in some literatures,
has been studied by many authors [1, 2, 3, 4, 5, 13, 20, 21], especially with the inten-
sion of constructing numerical methods which preserve some mathematical struc-
tures of DDEs. For example, in a series of papers, Guglielmi and Hairer $[9, 10]$ ,
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Guglielmi [8] (see also [22]) have clarified that an asymptotic property of DDEs is
not preserved by the usual methods. To overcome the defect, Bellen and Maset
[3, 20, 21] have introduced a semigroup method and shown some results which sug-
gest the efficiency of the method in this direction.

In this paper, we try to make a framework for advancing their approach. Specifi-
cally, we consider a family of method of lines (MOL) approximations to the problem
$(1.6)-(1.8)$ , which is derived from RK methods, and study their convergence as
solutions to DDEs.

We may regard (1.6) as an ordinary differential equation (ODE) with the inde-
pendent variable $\theta$ on a function space. Hence, applying an RK method to (1.6) with
respect to $\theta$ , we can get an MOL approximation of arbitrary high order in the sence
of consistency. However, as is suggested by the Trotter-Kato theorem $[25, 15, 16](\mathrm{s}\mathrm{e}\mathrm{e}$ ,
also $[14, 26])$ , a kind of stability condition is needed for convergence of the MOL
approximation. The main purpose of this paper is to show that $A$-stability of RK
methods plays such a role, that is, $A$-stability guarantees convergence of the MOL
approximation.

2 Method of lines approximations

2.1 Space discretization by RK metllods
We denote the parameters of an $s$ -stage RK method by

$A=[a_{ij}]_{1\leq i,j\leq s}$ , $b=[b_{1}, b_{\underline{?}}, \ldots , b_{s}]^{T}$ ,

and assume that $0\leq c_{i}\leq 1,$ $i=1,2$ , ... , $s$ , for $c_{i}= \sum_{j=1}^{s}aij$ . Moreover, let us
consider a mesh of the form

$-\tau=\theta_{N}<$ ... $<\theta_{n}<$ ... $<\theta_{1}<\theta_{0}=0$ , $\theta_{n}=-nh$ , $h=\tau/N$ .

Applying the RK method to (1.6) with respect to $\theta$ , we obtain a system of ODEs,

(2.1) $U_{n+1}(t)=1 \otimes u_{n}(t)-h(A\otimes I_{d})\frac{dU_{n+1}}{dt}$ ,

(2.2) $u_{n+1}(t)=u_{n}(t)-h(bT \otimes I_{d})\frac{dU_{n+1}}{dt}$ ,

for $7?=0,1,$ $\ldots,$ $N-1$ . Here, $u_{n}(t)$ is an approximate value of $u(t, \theta_{n})$ ,

$U_{n}(t)=[U_{n,1}(t)^{\tau}, U_{n,2}(t)^{T}, ... , U_{n,s}(t)^{T}]^{\tau}\in(R^{d})^{s}$

are intermediate variables, $1=[1,1, \ldots, 1]^{T}\in JR^{s},$ $\mathrm{a}\mathrm{n}\mathrm{d}\otimes \mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{S}$ the Kronecker
product. Note that $u_{n}(t),$ $n=0,1,$ $\ldots$ , $N$ , are aligned in the minus direction with
respect to $\theta$ . This order is, in a sense, natural since the convection equation (1.6)
represents a movement in the direction. $\cdot$ We also replace the boundary condition
(1.8) with

(2.3) $\frac{du_{0}}{dt}=f(t, u_{0}(t),$ $uN(t))$ .
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In general, the total system $(2.1)-(2.3)\mathrm{b}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{l}\mathrm{e}\mathrm{s}$ a differential-algebraic equation
(a singular system of ODEs), which causes some difficulty in the analysis of the MOL
approximations. We assume the following conditions $(\mathrm{C}_{1})$ and $(\mathrm{C}_{2})$ , or $(\mathrm{C}_{1})$ and $(\hat{\mathrm{C}}_{2})$

to consider cases where the system $(2.1)-(2.3)$ contains no algebraic canstraint.

$(\mathrm{C}_{1})$ $a_{sj}=b_{j}$ , for $j=1,\underline{9},$
$\ldots$ , $s$ .

$(\mathrm{C}_{2})$ The matrix $A$ is invertible.

$(\hat{\mathrm{C}}_{2})$ $a_{1j}=0$ , for $j=1,2,$ $\ldots$ , $s$ , and the matrix $\hat{A}=[a_{ij}]_{2\leq i,j\leq s}$ is invertible.

The condition $(\mathrm{C}_{1})$ implies that $u_{n}(t)=U_{n,s}(t)$ for $n=1,\underline{9},$
$\ldots,$

$N$ , and the last
row of (2.1) coincides with (2.2). We put $U_{0,S}(t)=u_{0}(t)$ for consistency.

In the case of $(\mathrm{C}_{2})$ , the system $(2.1)-(2.3)$ is rewritten as

(2.4) $\frac{du_{0}}{dt}=f(t, u_{0}(t),$ $U_{N_{S}},(t))$ ,

(2.5) $\frac{dU_{n+1}}{dt}=\frac{1}{l_{l}}(A^{-1}\otimes I_{d})[1\otimes U_{n,s}(t)-U_{n+1}(t)]$.

In the case of $(\hat{\mathrm{C}}_{2})$ , it follows from $a_{1j}=0$ that $U_{n+1,1}(t)=u_{n}(t)$ , and hence
$U_{n+1,1}(t)=U_{n,s}(t)$ . The equation (2.1) is rewritten in the form

$\frac{d\hat{U}_{n+1}}{dt}=\frac{1}{h}(\hat{A}^{-1}\otimes I_{d})[1\wedge\otimes U_{n,s}(t)-\hat{U}_{n+1}(t)-h(a @ I_{d})\frac{dU_{n,s}}{dt}]$ ,

where

$\hat{U}_{n+1}(t)=[U_{n+1,2}(t)\tau,$ $[T_{n+1},3(t)^{\tau}, ... , U_{n+1,s}(t)^{T}]^{\tau}\in(lR^{d})^{s-1}$ ,
$\wedge 1=[1,1, ... , 1]^{T}\in R^{s-1}$ , $a=[a_{21}, a_{31}, ... , a_{s1}]^{T}\in ffl^{s-1}$ .

Hence, each $d\hat{U}_{n}/dt$ is represented by a function of $u_{0}(t),\hat{U}_{1}(t),$
$\ldots$ , $\hat{U}_{n}(t)$ and

$U_{N,s}(t)$ .
In both cases, a vector-valued function

$u_{N}=[u_{0}^{T}, U_{1}^{T}, U_{2}^{T}, \ldots , U_{N}^{T}]^{T}$ : $[0, \infty)arrow X_{N}$ ,

$X_{N}=R^{d} \mathrm{X}\prod_{n=1}^{N}X_{n}$ , $X_{n}\simeq(R^{d})^{S}$ ,

is determined from a given initial condition corresponding to (1.7), for example,

(2.6) $u_{0}(0)=\varphi(0)$ , $U_{n,i}(0)=\varphi(\theta_{n}-c_{i}h)$ .

2.2 Convergence
Some numerical experiments suggest a kind of stability condition is necessary for
convergece of the MOL approximations (Sect. 3). We consider the following assump-
tion for the RK method.
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$(\mathrm{C}_{3})$ There exists a symmetric matrix $Q\geq 0$ such that

$\mathcal{M}^{\mathrm{d}\mathrm{e}\mathrm{f}}=QA+A^{T}Q-bb^{T}\geq 0$, $Q1=b$.

Here, the $\mathrm{s}\mathrm{y}\mathrm{n}\mathrm{l}\mathrm{b}_{\mathrm{o}1}"\geq 0$

” denotes that a symmetric matrix is nonnegative definite.
We also use $”>0$ ” to indicate that a symmetric matrix is positive definite.

This condition is kn\={o}wn as an algebraic characterization of $A$-stability. An alge-
braically stable method (see, e.g. [11]) satisfies $(\mathrm{C}_{3})$ with $Q=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}[b_{1}, b_{2}, \ldots , b_{s}]$ .
By the same computation as is used for proving algebraic stability implies B-
stability, it is verified that $(\mathrm{C}_{3})$ is sufficient for the method to be $A$-stable, i.e.
the stability function
(2.7) $r(z)=1+\approx b\tau(I_{s}-zA)-11$

satisfies
(2.8) $|r(Z)|\leq 1$ for ${\rm Re} z\leq 0$ .

Moreover, Scherer and Mitller [23] has proved that in a wide class of RK methods the
condition $(\mathrm{C}_{3})$ is also necessary for $A$-stability (see also $[1\overline{(}]$ on examples of $Q$ ). For
example, under the assumption that $\det[A]\neq 0$ and the numerator $\det[I_{s}-\approx A+\approx 1bT]$

and the denominator $\det[I_{s}-\approx_{A}4]$ of $r(\approx)$ have no common zero, $(\mathrm{C}_{3})$ is a necessary
and sufficient condition for $A$-stability. The Radau IIA and Lobatto IIIC methods
satisfy $(\mathrm{C}_{1}),$ $(\mathrm{C}_{2})$ , (C3). The Lobatto IIIA methods satisfy $(\mathrm{C}_{1}),$

$(\hat{\mathrm{C}}_{2}),$
$(\mathrm{C}_{3})$ (see [24]

on the condition $(\mathrm{C}_{3})$ for the methods).
Using the matrix $Q$ in the condition $(\mathrm{C}_{3})$ , we define a symmetric (nonnegative

definite) bilinear form on $X_{N}$ by

(2.9) $\langle u_{N}, v_{N}\rangle_{N}=u_{0^{v}0}^{T}+h\sum_{n=1}^{N}\mathrm{L}\Gamma_{n}^{T}(Q\Theta I_{d})Vn$
’ $u_{N},$ $v_{N}\in X_{N}$ .

We also write the corresponding seminorm as $||u_{N}||_{N}=\sqrt{\langle u_{N},u_{N}\rangle_{N}}$ . Recall that
the Cauchy-Schwarz inequality is still valid for a nonnegative definite bilinear form.

Let $p$ be the order of consistency of the RK method, and assume that

(2.10) $\sum_{j=1}^{s}a_{ij}Cjk-1=\frac{c_{i}^{k}}{k^{\wedge}}$ , $k\leq q$ ,

i.e. the stage order is $q$ . In the remainder of this section, we assume that the
exact solution $x(t)$ to the problem $(1.1)-(1^{\underline{\eta}}.)$ belongs to $C^{p+1}([-\mathcal{T}, T],$ $ffl^{d}\mathrm{I}$ for some
constant $T>0$ . If $\varphi\in C_{\text{ノ}}([-\tau, 0], lR^{d})$ and $.f$ is sufficiently smooth, the solution
$x(t)$ is $C^{k+1}$ on $t\geq k\tau$ . Hence, the assumption is not necessarily impractical, for
example, in the case where the study of the. asymptotic behavior of the solution is
the main purpose of the numerical computation.

Put

(2.11) $\alpha_{i}^{(k)}=\frac{1}{(h-1)!}(\sum_{j=1}^{S}a_{ij}C_{j}k-1-\frac{c_{i}^{k}}{k})$ , $1\leq i\leq s$ , $q+1\leq k\leq p$ ,
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and define $\beta_{i}^{(k)},$ $1\leq i\leq s$ , inductively by

(2.12) $\beta_{i}(q+1)=\alpha_{i}(q+1)$ , $\beta_{i}^{(k)}=\alpha_{i}(k)+,\cdot\sum_{=1}^{s}a_{i_{J}}\cdot\beta_{j}\mathrm{t}k-1)$, $q+2\leq k\leq p$ .

Using these $\beta_{i}^{(k)}$ we define the function $\xi_{n+1}(t)$ by

(2.13) $\xi_{n+1,i}(t)=x(t+\theta_{n}-c_{i}h)+k=q\sum_{+1}^{p}\beta ix^{(}(t(k)k)+\theta_{n})(-h)^{k}$,

(2.14) $\xi_{n+1}(t)=[\xi_{n+1,1}(t)^{\tau}, \xi_{n+1,2}(t)^{\tau}, \ldots , \xi_{n+1,s}(t)\tau]^{T}$ ,

and put

$e_{n}(t)=’.r(t+\theta_{n})-u_{n}(t)$ , $E_{n}(t)=\xi n(t)-U_{n}(t)$ ,
$e_{N}(t)=[e_{0}(t)^{T}, E_{1}(t)^{T}, E_{2}(t)^{T}, ... , E_{N}(t\mathrm{I}^{\tau}]^{T}$.

Under the notation above we have the following theoren] [18]. For the initial
condition (2.6), the MOL approximation converges at a rate of $O(h^{\Pi}\dot{\mathrm{u}}\mathrm{n}\{q+1,p\})$ . By
replacing the second condition of (2.6) with

(2.15) $[ \mathrm{r}_{n.i(0)}=\varphi(\theta_{n}-cih)+\sum_{k=q+1}^{p}\beta_{i\varphi^{\mathrm{t}}()}^{\{k)}k)\theta_{n}(-h*)^{k}$ , $q+1\leq p_{*}\leq p$ ,

the rate is raised up to $O(h^{\min}\{p_{*}+1,p\})$ .

Theorem 2.1 Assume that $(\mathrm{C}_{1}),$ $(\mathrm{C}_{2}),$ $(\mathrm{C}_{3})$ , or $(\mathrm{C}_{1}),$
$(\hat{\mathrm{C}}_{2}),$ $(\mathrm{C}_{3})a\uparrow’ esati_{S}fi\epsilon d$. In

addition, assume that the exact solution $x(t)$ belongs to $C_{\text{ノ}^{}p+}1([-\tau, T], Rd)$ for $T>0$ .
Then, there is a constant $C$ depending on $T$ such that

(2.16) $0\leq t\leq T\mathrm{m}\mathrm{a}\wedge \mathrm{x}||e_{N}(t)||_{N}\leq C(||e_{N(0)}||_{N}+h^{P})$

holds for any $N\geq 1$ .

3 Numerical examples
We present numerical results which confirm the results of Sect. 2. All experiments
were carried out by an 80-bit long double floating-point arithmetic (the number of
bits in the mantissa is 64). We used the (4-stage 4th-order) classical RK method
with a constant stepsize for time integration of the MOL approximations, which
seem stiff ODE systems. In fact, rather small stepsizes, determined experimentally,
are used to avoid numerical instability with respect to the time integration. Since the
aim of this experiment was to test the MOL approximations, we used the classical
RK method which is easy to implement. For practical applications, however, the
use of a suitable integrator for stiff equations should be investigated.

We first show numerical results which suggest necessity of $A$-stability for con-
vergence of the MOL approximations.
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The 2-stage method

(3.1)

is of order 2 and has the stability function

(3.2) $r( \sim\sim)=\frac{1+_{\tilde{F}}}{1-\approx^{2}/2}$ .

The nlethod is $I$-stable but not 14-stable; $r(z)$ has a pole at $z=-\sqrt{\underline{)}}$ .
The 3-stage method

(3.3)

is the adjoint method of the well-known third-order method

(3.4)

by W. Kutta. The stability function is

(3.5) $r( \mathcal{Z})=\frac{1}{1-z+z^{2}/2-z^{3}/6}$ ,

which has no pole in $\mathrm{t}T_{-}$ , but the method is not $I$-stable; $|r(\mathrm{i}y)|>1$ holds for
$0<|y|<\sqrt{3}$ .

$\mathrm{W}^{7}\mathrm{e}$ consider MOL appoximations by these methods to the following problem,
whose exact solution is given by $x(t)=\cos[(\pi/2)t]$ .

Problem 1 : $\frac{dx}{dt}=-(.\frac{\pi}{2})x(t-1)$ , $t\geq 0$ , $x(t)= \cos(\frac{\pi}{\underline{9}}t)$ , $-1\leq t\leq 0$ .

Fig. 1 shows the functions

(3.6) $\log_{2}|u_{0}(t)-x(t)|$

in the case of the $\underline{9}$-stage method (3.1), which were obtained by solving the ODE
system (2.4), (2.5) with the initial condition (2.6) and the stepsize $\triangle t=10^{-3}$ . The
approximate solution $u_{0}(t)$ rapidly apparts from the exact solution.
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Fig. 2. $\mathrm{A}\mathrm{p}\mathrm{p}_{\mathrm{l}\mathrm{u}\mathrm{X}1}111\mathrm{d}\iota \mathrm{e}\mathrm{b}\mathrm{u}\mathrm{l}\mathrm{U}\iota 1\mathrm{u}\iota\iota 1\mathrm{A}\iota 1\iota \mathrm{e}\mathrm{t}\mathrm{e}\iota \mathrm{b}\mathrm{c}\mathrm{u}1\iota 11\mathrm{C}$ Q-b $\iota C\iota \mathrm{g}\mathrm{e}$ Ille $\iota\downarrow 1\mathrm{U}\mathrm{U}(D.\mathrm{Q})1\mathrm{u}\iota\wedge(1^{\Gamma}=200$

Fig. 2 shows the approximate solution $u_{0}(t)$ in the case of the 3-stage method
(3.3) for $N=200$ . Similar high-frequency oscillations appear for larger $N$ , and $u_{0}(t)$

does not approach $x(t)$ even if a lager $N$ is taken.
Put

(3.7) $\varphi(t)=\exp[^{\underline{9}}+\cos(2t)]$ ,

and consider a problem whose exact solution is $x(t)=\varphi(t)$ .

Problem 2: $\frac{dx}{dt}=-x(t-1)[1+x(t)^{2}]+\varphi(t-1)[1+\varphi(t)^{2}]+\varphi’(t)$ , $0\leq t\leq 2$ ,

$x(t)=\varphi(t)$ , $-1\leq t\leq 0$ .

Tables 1, 2, 3 list observed accuracy of various methods for Problem 2. Each
number in a column for $‘ {}^{\mathrm{t}}\mathrm{d}\mathrm{i}\mathrm{g}.$

” denotes the value

(3.8) $- \log_{2}(\max_{0\leq t\leq 2}|u_{0}(t)-\varphi(t\mathrm{I}|)$ ,

the number of correct bits of the approximate solution $u_{0}(t)$ for the partition nume-
ber $N$ , and “diff.” stands for the difference between the bit nulnber for $N$ and that
for $N/2$ . We used the initial condition (2.6) and the stepsize $\triangle t=10^{-5}$ .
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Convergence rates of $O(h^{\min\{1,p}q+\})$ are observed for the 1-stage and 2-stage
Radau IIA methods, the 2-stage Lobatto IIIC method, and the 2-stage and 3-stage
Lobatto IIIA methods. For the other methods the rates seem a little higher.

Table 1. Numerical results by the Radau IIA methods
$s=1$ $s=2$ $s=3$

$N$ dig. diff. dig. diff. dig. diff.
2 $-0.45$ –2.96 –6.80
40.24 0.705.682.72 10.78 3.98
8 1.03 0.79 8.60 2.92 15.00 4.22

16 1.86 0.83 11.56 2.95 19.24 4.23
32 2.66 0.81 14.54 2.98 23.50 4.26
64 3.56 0.90 17.52 2.98 27.87 4.37

128 4.51 0.95 20.51 2.99 32.40 4.53

Table 2. Numerical results by the Lobatto IIIC methods
$s=2$ $s=3$ $s=4$

$N$ dig. diff. dig. diff. dig. diff.
20..33 –4.82 –6.79
4 1.74 1.41 8.19 3.38 11.00 4.21
8 3.69 1.96 11.97 3.78 15.32 4.31

16 5.53 1.83 15.80 3.83 19.64 4.33
32 7.46 1.93 19.12 3.32 24.05 4.41
64 9.43 1.97 22.45 3.34 28.74 4.69

128 11.42 1.99 25.89 3.44 33.49 4.75

Table 3. Numerical results by the Lobatto IIIA methods
$s=2$ $s=3$ $s=4$

$N$ dig. diff. dig. diff. dig. diff.
2 0.73 – 4.81 – 8.61
42.88 2.158.653.83 13.24 4.63
8 4.90 2.02 12.71 4.07 18.28 5.04

16 6.89 2.00 16.68 3.97 23.32 5.04
32 8.89 1.99 20.70 4.03 28.23 4.91
64 10.89 2.00 24.70 4.00 33.65 5.42

128 12.89 2.00 28.71 4.01 39.34 5.68

Table 4 shows results by the 4-stage Lobatto IIIC method, obtained by replacing
the second condition of (2.6) with

(3.9) $[T_{n,i}(0)= \varphi(\theta-c_{i}h)n+\sum_{4k=}^{p*}\beta i\varphi^{\{}(k)\theta_{n})(k)(-h)k$ .

The use of these initial conditions indeed reduces the error in the MOL approxima-
tion.
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Table 4. Numerical results by the 4-stage Lobatto IIIC method.

$p_{*}=4$ $p_{*}=5$ $p_{*}=6$

$N$ dig. diff. dig. diff. dig. diff.
2 8.05 – 6.73 – 8.79
4 12.66 4.61 13.70 6.98 14.37 5.58
8 17.30 4.63 20.04 6.34 20.21 5.84

16 22.27 4.97 25.94 5.90 26.09 5.88
32 27.57 5..30 31.90 5.96 32.03 5.94
64 33.18 5.61 37.88 5.98 38.01 5.97

128 39.04 5.86 43.87 5.99 43.99 5.99
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