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ON THE UNIFICATION OF KUMMER AND ARTIN-SCHREIER-WITT
THEORIES

TSUTOMU SEKIGUCHI*

1. MOTIVATION

Our aim of this report is to give an explanation of the final version of our theory which
unifies the Kummer theory and Artin-Schreier-Witt theory. The details of this report can
be seen in the Bordeaux preprint [15].

First, we review the Kummer theory.

Let n be an integer with n > 2, and K be a field of charcteristic ¢ with ¢ /n and

Kom={C|¢"=1}.
Theorem 1.1 (Kummer Theory).

L/K: n-cyclic Galois extension
<= Jda€ K*s.t. L =K({/a)

L=K®xxy KX, X! — K[XX X"

T T T

<= da € K* s.t. 1
K «— KX, X' X
a —1 X

SpecL — Gpk

<= df :Spec K — G, k s.t. ! [:] 16n
Spec K 7 G,k

where 0, : G g — Gk ; £ — 2™

Namely, the Kummer theory implies that the following exact sequence (so-called the
Kummer exact sequence)of sheaves on the fppf (or étale) site on Spec K is essential
in the world of cyclic coverings of K:

1— I‘n,K - G‘m,K i) Gm:K —1
t — "
In fact, from the exact sequence, for any K-scheme X we can deduce the exact sequence:
Grm, ik (X) = G xe(X) 2 HY(X, p ) = HY(X, G ) = HY(X, G ic).

*) Partially supported by Grant-in-Aid for Scientific Research #11640045 and TAO unit “Security
System Project for Electronic Society” '
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Here

HY(X, I, ) = the set of isomorphism classes of unramified p,, coverings of X
H'(X, G, k) = 0 for suitable X’s by Hilbert Theorem 90

Next we review the Artin-Schreier-Witt theory.
Let k be a field of positive characteristic p.
Wiy i : the group scheme of Witt vectors of length n

p:Wor = Wop; x— P —x

Theorem 1.2 (Artin-Schreier-Witt Theory).

K/k: p™-cyclic Galois extension
<= Ja € W,(k) s.t. K =k(p~(a))
K =k@x k[X] «— kX

T Te*
<= da = (ag,01,-..,an1) € W,(k) s.t.

ko— KX

a «—1 X;

SpecK — Wy

<= 3f :Speck — W, s.t. ! I:‘ le
Speck 7 Wk

’

where X = (Xo, Xl, ce aXn—l)-

Namely, the Artin-Schreier-Witt theory implies that the following exact sequence (so-
called the Artin-Schreier-Witt exact sequence) of sheaves on the fppf (or étale) site
on the Speck is essential:

0> Z/p"Z - Wpp LN War —0.

» z +— z® g
In fact, from the exact sequence, for any k-scheme X we can deduce the exact sequence:
Wai(X) £ Wor(X) 2 H(X, Z/p") — HY(X, Wo ) = H (X, Wap).
Here

H'(X,Z/p"™) = the set of isomorphism classes of unramified Z/p"Z coverings of X
HY(X,W,1) =0 for affine schemes X

Therefore, the Kummer theory implies that in the world of unramified p"-cyclic cov-
erings in characteristic 0, the Kummer exact sequence is the Buddha, and any such
coverings is deduced from the sequence. On the other hand, the Artin-Schreier-Witt
theory imples that in the world of unramified p™-cyclic coverings in characteristic p, the
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Artin-Schreier-Witt exact sequence is the Buddha, and any such covering is de-
duced from the sequence. But our religion asserts that every Buddha should be deduced
from the unique eseential Buddha (Mahavairocanah). Hence, behind the two Bud-
dhas, there should exist a more essential Buddha unifying them.

So we arrive at the following problems:

e Search for the Buddha unifying the Kummer and ASW sequences.

e Construct the deformations of the group schemes of Witt vectors of finite length
to tori.

e Such deformations should keep the filtarations of the group schemes of Witt vec-
tors. ‘

2. 1 DIMENSIONAL CASE

Let (A,m) be a DVR with f.f. A= K and A/m =k, and A € m\ {0}. Now we look at
the plane curve over A:

C: Y?Z-AXYZ-X3=0CP?

whose generic fibre is a nodal curve and the special fibre is a cuspidal curve. Therefore the
Picard scheme of the curve gives a deformation of an additive group scheme to a torus:

Pic’(C/A) = Spec A[X,1/(1 + A X)],
with group law z - y = Azy + = + y. Hereafter we denote this group scheme by g*): -
G™ := Spec A[X,1/(1 + A X)].

The important fact is that any deformations of G, to G,, over A are only the type of
GA’s. In fact, we have the following.

Theorem 2.1 ([17, Th. 2.5]). Let G be a flat group scheme over Spec A with gereric fibre
Gy, and special fibre G,. Then there ezists a non-zero element A of m, uniquely up to unit
factors, such that

G=gw.

3. HIGHER DIMENSIONAL CASE

If we obtain a deformation W,_; of W,,_; to (G;}, then since the Witt vectors has the
filtaration |
0— Z/p — Z/p" — Z/p"" —0
N N n .
0— Gox — Wor — Wipoip —0,

we can expect the next one fits into an extension

0—GW - 1 — Wy — 0 € Eth(Wm g()‘))'
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Definition 3.1. Let (A,m) be a DVR, and A, g, ... , A\ € m\ {0}. If W, is given by
the extensions

0 — G — W, — g™ — 0 € Ext'(G™,G*)

0— G("a) W3 =W, —>0¢€ Extl(Wz,g(Aa))

0— ™) W, = W,_; — 0 € Ext!(W,_1,G%),
we call it a group scheme of type (A1, A2y... ,A,).

To compute the group Ext! (W, G*¢+1) for a group scheme W of type (A1, Ag, ... , Ae),

the following exact sequence of sheaves on each the small Zariski, fppf or étale site on
Spec A is essential:

0— g()‘) f‘_(:l Gm,A ﬁ) Le
zr - 14X
t — tmod A\

where ¢ : Spec(A/)\) — Spec A is the canonical inclusion.
By an explicit computation of cocycles, we have
Proposition 3.1.

Gm,Ax — 0.

Ext! (g()‘), Gm,A) =0.

Therefore inductively we have

Ext! (Wg, Gm,A) =0,
for any group scheme of type (A1, Az, --- , Ae).

Hence, by using the above exact sequence we obtain the following.

Theorem 3.2. Let W, be a group scheme of type (A1, Ag, .- - , An), and XA € m\ {0}. Then

we have

Ext}(&,G™) = Hom(E, L*Gm,A/,\)/(p(")),. (Hom(&, G 4)) -
From this theorem, we can deduce the following.

Theorem 3.3. Let W, be a group scheme of type (A1, A2,... ,An)

. Then there exists a
homomorphism

Dy : Wy = 1.Gpm /5,0,
for each £ (2 <€ <n—1), and each W, is given by
1
= Xo, - .- ], —————
W, = Spec A Xo, . .. , X BT Xy
1 1 ]
Di(Xo) + X2 X1’ " De—1(Xoy .- -, Xe—2) + XXy
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Moreover, the group law of W, is the one which makes the morphism

a(’"’) : We - (Gm,A)e
(14 MXo, D1(Xo) + A2 X1,

Xo,. oo, Xeo1) —
(%o e-1) -y De_1(Xo, - -+, Xe—2) + XeXe-1)

a group-schematic homomorphism.

Definition 3.2. Suppose that A dominates Zy)[ppn], and put X = Aq). We call a group

s e,
scheme Wy, = GO Wy, ..., W, over A of type (M) = (M, A,...,A) a KASW group
scheme over A, if there erists an inclusion i, : Z/p* — W, for each £ satisfying a
commtative diagram

0— (Z/pa — (Z/pYa — (Z/p* a4 —0
la Lie lie—1
0— ¢» S W, 5 W, -0

Once we obtain a KASW group scheme, then it embodies the unified Kummer-Artin-
Schreier-Witt theory. .

Theorem 3.4 (KASW theory). Let W, be a KASW group scheme over A. Let B and
C are local flat A-algebras such that C is an unramified p™-cyclic covering over B. Then
there ezists an A-morphism f : Spec B — W, /(Z/p"), and the covering Spec C — Spec B
is given by the fibre product

SpecC — Wn
[

SpecB -1+ W,/(Z/p™).

By these argument, our work is concentrated upon the calculation of Ext!(W,, G™),
namely of Hom(W,, Gy, 4/2)-

4. DETERMINATION OF Ext!'(W,,G™)

We provide some notations.

(A m): DVR dommating Z(p), xem)\ {0}
®,(T) =T¢ +pTF +---+p"T, : Witt polynomial
- a:=(a,0,0,...) e W(A)for Ac A
[p] : Wa — Wy; [p]b:= (0,85,b%,...) for b= (b, bs,...)
V : W4 — Wy Verschiebung endomorphism
F : W4 — Wy: the generalized Frobenius endomorphism
F® .= F — (W1~ : |
For a € W(A), we define T, : W(A) — W(A) by

1

D, (Tex) = af,’"fbn(m) +pa’1”"_ O, 1(x)+ - +p"aPo(x) (n=>0)
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for € W(A). Then we have T, = Y450 V* - dx
If A is a ring (not necessarily a Z,)-algebra),

W, (A) = { (ag,@1,... ,an-1) € Wy(A) ; a; is nilpotent for all }

and

a; is nilpotent for all 7 and
a; = 0 for all but a finite number of %

W(A) = {(ao,al,ag,...) € Wo(A) ;

Moreover we need to deform the Artin-Hasse exponential series

xXr  xP
B() = exp (X + 5+ Xy )

=eXe¥ e € Zy[IX])

The well-known formula lima_o(1 + Az)** = €°® can be seen that (1 + Az)*/* is a
deformation of e**. From this point of view, we obtain the deformations of Artin-Hasse
exponential series:

B,(U, A X) == (14+ AX)¥ [T (14t xrt)# B (07
k=1 .
€ Zw)[U, AJ[[X]}.

Moreover for a Witt vector @ € W(A), we define a formal power series as follows:
Ep(a, ) X) := [] E,(ax, )\”k;X"k)
k=0

=(1+ AX) A H (]_ + /\P XP )7‘1’1:—1(1"(*%)

k_
‘The boundary of this power series E,(a, A; X) is given by the following.

EP.(a‘v )‘; X)Ep(a') )‘; Y)
Ey(a, ;X +Y + \XY)

ﬁ (14 W XP) (14 Myety | oo P
1+ M (X +Y +AXY)? ‘

(aEp(a, )‘; )) (X1 Y) =

(Ma)

Now replacing FMa with a Witt vector b = (b, by, ...) in the right hand side of this
equation, we define a cocyle as follows. '

P~ yp* Py g ®k-1(b)
Fb X Y) =] ((H'\,,k X+ vy ,,2) "
i1 \1+ X (X +Y +)XY)

€ Zg[b, N[ X, Y]].

Using these deformed Artin-Hasse exponential series, we can obtain the following.
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Theorem 4.1 (Explicit Formula in 1 Dimensional Case).

£l : Ker (VT/(A/AZ)EQLW(A/AZ)) 2 Hom(GM, LG, a/,),
—

a Ep(a, Ay; X)
£ : Coker( (A/Xg) — FOD, A(A/)\g)> = HAHG™, 1,Goang)-
b — F,(b,\; X,Y)
Therefore
. Ker( (A/Xg) 225 FO W(A/)\z)) -~ Hom(g(h) tuGmoa/ng) ~ ~ Ex tl(g(’\l) g(,\z))
<A > Hom(G*1), Gy 4)

In higher dimentional case, we need more notations. For a vector U = (Uy, Uy, ... ), we
define

[P, (U, A; X) := By([plU, A; X),
[p]FP(U’ A; Xa Y) = FP([p]U, Aa X7 Y)

Moreover .
H(X,Y):= " {F,(U,A;; X,Y) — 1},
De-—1(A)
1+ (E -1 )_7
G A,A ,E = —_— ‘ ,
) =11 ( PIE
Dp-1(A)
1+(F-1) W
CylA, Agi F) = (._______)
’ U\ prr
U .
€ Zy) (A, A Ay, Al[[X, Y]]
For a series of variables Aj, Ag, ..., and a series of vectors Aj. = (A 10: 11’ L)(A<i1<
j < 1), we denote
A1 (A
i i At2 ‘ A2
A = (A;)lslSt = . a.nd (Ag)lses,i :; .
Al O\
We define vectors B} (1 < j < ) inductively by
1
B% = EF(AI)A},

and for k > 2,

{B?+1 = ks (FODAR -5k, ThAl)  1<j<k-—1
k+1 . _ 1 A k ’
BEH .= mF( KAF
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Using these symboles, we define triangle matrices U™’s by

( F(A) —Tng —Tng oo —Tpn \
0 F(A2) —Tng oo —Tgn
ut:=| 0 0
0 o . . =Tgs,
\ O 0 0 F(A») /

We define inductively a series of formal power series Di(Xp, Xi,--. , Xx-1)’s by
Do = 1,
Dy(Xo) = Ey(A}, Ay; Xo),
and for k£ > 1,
Dry1(Xo, X1, - -, Xi) = Ep(A*, (Ar)1cecin; Xo, X1, - . , Xk)

k+1E ki1 Xi—-l
o ;I:I]_ p(A' ’Ai’ Di-—l(XO’ v 7Xi—l)).

Hereafter, we put X = (Xp, X1,...), Y= (¥, Y;,...) and X := X+Y € W. We define

P = o(Dy()) = 252
Hi(X,Y) := ﬁ(F"“’ -1)

FP(Vh Ay X, Y) = Fp(vh Ay XO; Yb)
Fp((Vi)1<icns (Ai)1<icmi X, Y)

i Xia1 Y
= F ViaA‘i; )
il.—-.Il »l D;_;(X) D,-_I(Y))

o Xi1 ; Yig
x || Fp(Vi, Ay; Hiq, +
¢=Hz ol P Disi(X) Dz‘—l(Y))

x T Gp(V:, Ag; FE~)1,
=2

Then the important thing is the following result.

Theorem 4.2. For each n > 1, we have

D (X)Dn(Y)

(n) —
F Du(®)

= F,(UA™, (Ai)1<i<n; X, Y).

By using this theorem, we can obtain the explicit determination of Ext!(W,,G™). in
fact, let (A, m) be a DVR dominating Z), and A, A;, Az, ... be non-zero elements of m.
We choose Witt vectors

@ = (@)igjsi € Ker (U : W(A/ Dia)' — W(A/Xipr)')
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inductively by the following recursive conditions:
Ut =F™),
a! =a; € Ker (Ul W(A/Ag) — W(A/)\z)) ,

1 F™) _T
2 _ 1 2 _ b
bi = 5,00 U= ( 0 F('\;))’

and for k > 2, we choose
= (@)1<i<k € Ker (U* : W(A/Mi1)* — W(A/Mer1)F)
and we define

{bk+1 Ak - (F(A )a - E§=j+1 Tbga,f) 1<j<k-1

bt = _L_FOwgk,
k+1
FO1) —Tbg _Tb"{ e =Ty +1)
0 FA2) —Tag e —Tb'; 1
Uk+l = 0 0 . . ’
0 0 . . — b"+1
\ 0 0 e 0 F(MH)}

@t = (@) 1cick € Ker (U W(A/ Aer2)*H! — W(A/ Mer2)¥H).
We define formal power series Di(X) = Di(Xo,. .. , Xk-1) (k> 1) by
Do =1,
D1(Xo) = Ep(a1, M; Xo),

and for k > 1,
Di1(Xo, X1, ..., Xi) = Ep(a*™, (Ae)1<e<i+1; Xo, X1, - -+ Xk)
— kf‘:[lE k+1 z Xi—l )
’ D1-1(Xo, Xi-1)
We put
1 1 1

W, := Spec A[Xo, ... ,Xn

BT NXo' Di(Xo) + MeX1' ' Daa(X) + A X __1]'
Theorem 4.3 (Explicit Formula in General Case). Let B = A/). Then we have
¢r Ker(W(B)" L5 W(B)™) = Hom(Whn,5,Gm,5);
" = (TP)1<i<n — Bp(T", (Mi)1gizn; Xo, X1, -+, Xn1)
¢r :Coker(W(B)" L5 W(B)") = HE(Wh,5,Gm,5)-
W = (W] )1<izn = Fp(@", (M) 1<i<n; X, Y)
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Theorem 4.4.
Ker(U™: W(B)» — W(B/W)™)
' <d,cl,...,c*1>

& = Ext!(Wa 5,69,

where < ¢, ¢!, ... ,c"! > is the subgroup generated by the vectors c® = (1,0, ... ,0),ct
= (a!,23,0,...,0),..., c!=(af, X41,0,...,0),... ,c* L = (a1, \,).
5. REDUCTIONS OF EXTENSIONS

The special fibres of the group schemes of type (A, Az, . .. , Ap) can be decided as follows.

Theorem 5.1. Let
1 1 1 ]
T4 MXe Di(Xo) + XXy Do1(X) + AaXns

be the group scheme of type (A1, Ag, ... , An—1) defined by

Wn = SpecA[Xo,Xl, ce ,Xn

Dy (Xo) = Ey(ag, M; Xo)
and for1<k<n-2,
Di1(X) = Ey(@*, (A)1<e<h+; Xo, X1, - - -, Xi),
and _ '
@* € Ker(U* : W(A/Mer1)* = W(A/N)F).
Here ’ |
b ="*(bi,bs,... b)) = ;;Ui‘lai‘l (i=2,...,n).

Ifb? =0 (mod m) f0T3 < k Sn, 1 < eS k_2; andbz—l = (170”"') (mOd m): then
we have
Wn.,k =W,®uk= Wn,k-

6. ConDITIONS FOR KRSW GROUP SCHEMES

Let

W, = Spec A[Xo, . .. , Xn_1,
1 1 1 ]
14+ A Xo’ D1(Xo) + Ay X1 " Dpoa(Xoy - -+, Xne2) + A1) Xn—1

be a KASW group scheme over a DVR (A, m), and A be an element of m\ {0}. Here D;’s
are given by

Dy(X) = Ep(a’, O™ X)
with
@' € Ker(U' : W(A/\w) = W(A/\w))-
We look at the exact sequence

0= (Z/p")a D Wa B8 W,/(Z/p™)4 — 0.
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Then we have
in : ExtaWa,GV)  — Exty((Z/p™)a,6V)
[ [
Ker(W(f(l)/A)"—ZW(A/r\)) — (1+)A) / (14 AA)P"

<elel,..

. P n
a” = H'r>0 (Ep(a‘l ] )‘(l)’ l)p P(a’z I A(1)’ (#,;(1))) )p )

Under these notations, we have the following.

Theorem 6.1. Let W,,; € Ext'(W,,G™) be the extension corresponding to a vector
= (aP)1<i<n by the isomorphism
Ker(U™ : W(A/\)"™ = W(A/0)")

~ 1 A
(ct,e?,...,c" 1) = Bxt (Wn, G).

Then there ezists an inclusion (Z/p™"*1) 4 C W, fitting into a commutative diagram

0 — (Z/p)a — (Z/p"*)a — (Z/p™)a — 0

| el

0 — g()‘) — n+1 E— Wh — 0,
if and only if
Ep(@™ (A, .., A);in(1))" =G

Using these results, we construct explicitly the KASW group schemes.

Theorem 6.2 (Main Theorem). For each positive integer n, we construct explicitly a
standard KASW group scheme W, over Z|pipn].

Finally, we remark that for a KASW group scheme W, the quotient V,, := W,,/(Z/p")
is a group scheme of type ()\(1))”, and which is given explicitly.
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