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1 Introduction and main results

Let A be a principally polarized abelian variety of dimension n over an
algebraic number field K. For a prime [ let A; be the group of I-division
points of A, which is a vector space of dimension 2n over F;. Let u; be
the group of I-th roots of unity in the algebraic closure K of K, and let
€ ¢ G”K = Gal(K/K) — F;* = Aut(y) be the cyclotomic character.
As A is principally polarized, the Weil pairing W : A; x A, — w,
written additively, defines a symplectic form with 2n variables, satisfying
W(o(P), o(Q)) = e(a)W(P, Q) for (P, Q) € A, x A, and ¢ € Gk.

Hence a Galois representation p; : Gg — GSp2,(F)) is obtained, where



GSpan(F)) is the group of symplectic similitudes of dimension 2n with
entries in F;.

Serre [1] proved that when n = 2, 6 or odd, and Endz(A) = Z, p; is
surjective for sufficiently large . The proof uses Faltings’ theorem and
standard theorems of algebraic groups. Though the result is general, it
does not give an effective lower bound of /; such that p; is surjective for
> 1.

Le Duff [2] gives a sufficient condition for the surjectivity of p, when n =
2 under some assumption on the reduction of abelian varieties. He also
suggested that the explicit calculation of the constants in the refinement
of Faltings’ theorem by Masser and Wiistholz [3] should enable one to
evaluate [y effectively. But no details are given.

The purpose of this paper is to supply an “elementary” proof of the sur-
jectivity for n = 1 or 2, which also gives an effective evaluation of l;. The
proof uses Masser-Wiistholz theorem [3] and Kleidman and Liebeck’s [4]
detailed results about the classification of the maximal subgroups of the
finite classical groups, especially of GSp2(F;) = GLo(F,) and GSp,(F).

Main Theorem 1. Let E be an elliptic curve over an algebraic number
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field K of degree d with Endz(E) = Z. For a prime [ let E; be the group
of I-division points of E, and let G be the image of the representation p; of
Gx = Gal(K/K) on E;. If | > max(49, |D(K)|, C(1)[max{2d, h(E)}]"™"),
then G; = GL,(F;), where D(K) is the discriminant of K, h(E) is the
Faltings height of E, C(1) is a constant C(n) in Theorem 2 of Section 2
when n = 1, and 7(1) is the constant 7 given in Theorem 1 of Masser and
Wiistholz [3] when n = 1. Explicitly 7(1) = 2277 3*. 5% . 136! x (227 - 3%

5-136! + 1)7 + 21086 . 3.7.17.19- 31 - 528! x (2191 .17 . 31 - 528! + 1)'°.

Main Theorem 2. Let A be a two-dimensional principally polar-
ized abelian variety over an algebraic number field K of degree d with
Endz(A) = Z; If [ > max(3841, |D(K)|, C(2)[max{2d, h(E)}|"@), then
G, = GSp4(F;), where C(2) is a constant C(n) in Theorem 2 of Section 2
when n = 2, and 7(2) is the constant 7 given in Theorem 1 of Masser and
Wiistholz [3] when n = 2. Explicitly 7(2) = 21064 .17 - 312 - 528! x (210! .

17-31-528!+1)154-24176.36.73.11.19-2080! x (24166.33.7.11.2080! +1)3".



2 Proof of Main Theorems

Masser and Wiistholz [5, Theorem II] (see also the note at the end of
[5]) estimated the degree of an isogeny between abelian varieties over a
number field effectively.

Theorem 1. Given positive integers n and d, there are constants x(n)
and C(n) depending only on n with the following property. Let A and
A’ be abelian varieties of dimension n defined over a number field K of
degree d. Then if they are isogenous over K, there is an isogeny over K
from A to A’ of degree at most C(n)[max{d, h(A)}}*™, where h(A) is
the Faltingé height of A, which is invariant under extension of the ground

field.

Using Theorem 1, they [3, Theorem 1] (see also the note at the end of
[3]) refined Faltings’ theorem in the following effective way.

Theorem 2. Given positive integers n and d, there are constants 7(n)
and C(n) depending only on n with the following property. Let A be an
abelian variéty of dimension n defined over a number field K of degree d.
then there is a positive integer M < C(n)[max{d, h(A4)}]"™ such that

for any positive integer m the natural map Endg (A) — Endg, (An) has
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cokernel killed by M.

Corollary. Suppose M as in Theorem 2. Then for any prime [ not
dividing M the natural map Endg(A) ®7z F; — Endg, (4;) is an isomor-

phism.

Explicitly 7(n) = n?A(8n) + 3x(2n) by [3, Section 6], where A(n) =
4rankg {Endg (A)}n(2n — 1)k(n){2nk(n) 4+ 1}~ by [6, Section 5], k(n)
being (2n2+n—1)4"2"+){n(2n41)}!, and k(n) = 10n3A(8n)+32n>u(8n)
by [5, Section 7], u(n) being [rankyz{Endk (A)}]~'nA(n) by [6, Section 6].

Let us recall another material. Aschbacher (7] obtained the classifi-
cation theorem of the maximal subgroups of the finite classical groups.
Kleidman and Liebeck [4] decided the structure of the maximal subgroups
more precisely. After that thé Main Theorem and Table 3.75.C of [4, Ch.

3, pp. 57, 70 and 72] imply the following Propositions about the maximal

subgroups of GLy(F;) and GSp4(F,).

Proposition 1. When [ > 5, a maximal subgroup of GLy(F;) is

conjugate to one of the following five subgroups.
(1)SLy(F;) x (maximal subgroup of (d1)),

(2)maximal parabolic subgroup,
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(3)normalizer of the split Cartan subgroup = F;* x S, x (6,),
(4)normalizer of the nonsplit Cartan subgroup = Fp2* e Z,, and

(5)Qs @ Ds,

where 4, is the element expressed as diag(u, 1) with respect to a basis
of F}2, u being a generator of F;*. For groups G and H, G e H denotes
the extension of G by H. D, is the dihedral group of order n, Z, is the

cyclic group of order 2, and Qs is the quaternion group.

Proposition 2. When ! > 3, a maximal subgroup of GSp4(F)) is
conjugate to one of the following seven subgroups.
(1)Sps(F;) x (maximal subgroup of (d5)),
(2)maximal parabolic subgr(;up,
(3)SLy(Fy) x Sy x (6),
()GL(Fy) @ Zy % (53),
(5)SLa(Fiz) » (82),
(6)GU,(F2) x (83), and
(7)Dg o Qg ® O4~(F2),
where J; is the element expressed as diag(u, p, 1, 1) with respect to a

symplectic basis of Fy*. o denotes the central product, and O, is the



4-dimensional orthogonal group with defect 1.

Let ¢; be a primitive [-th root of unity. If K N Q({;) = Q, then ¢ is
surjective. The condition on [ is given by the following Lemma.

Lemma. If [ > |D(K)|, then K N Q({) = Q.

Proof. The discriminant of Q(¢;), D(Q({)),is "2 when I =2or =1
(mod 4), and —I'"2 when ! =3 (mod 4). The discriminant of K NQ(¢;)
divides the greatest common divisor of D(K') and D(Q(¢;)), which is 1 if

I > |D(K)|. By Minkowski’s theorem K N Q(¢{) = Q. q. e. d.

Proof of Main Theorem 1. We prove that G, is not contained in any
maximal subgroups of GL,(F)) in Proposition 1.

As | > |D(K)|, g is surjective by Lemma, so that G; ¢ SLy(F,) x
(maximal subgroup of (4;)).

The Borel subgroup stabilizes a one-dimensional subspace W; of V; :=
F;?. If G, is contained in it, there is a K-isogeny f : E — E/W; of
degree I. By Theorem 1 it should be a composition of isogenies of deg;;e
at most C(1)[max{d, h(E)}]*V), contradicting the fact that [ is a prime.

Next if G; C F;* xS x (4;), then there exists a surjective homomqr-

phism ¢ from G to S,. Let L be KXeI(#on) then [L : K] < 2, and

155



p(Gr := Gal(K /L)) C F;* x {61). Thus Endg, (E;) D Fi?. On the other
hand, as | > C(1)[max{2d, h(E)}]""?, Endg, (Ei) = End,(E)®7z F, = F,
by Corollary. This is a contradiction.

If G, C F2* @ Z,, then there exists a quadratic extension L' of K such
that p,(Gr := Gal(K/L')) C Fp*. Thus Endg,,(E;) D Fp2. On the other
hand, as | > C(1)[max{2d, h(E)}]"™, Endg,,(E;) = Endy(E) ®7 F; =
F, by Corollary. Hence a contradiction.

Lastly assume that G; C Qs ® Ds. As g is surjective by Lemma,
|Gi| > |F;*| =1 —1> 48 = |Qs ® Dg|. This is a contradiction.

When Endg(E) = Z, 7(1) = 2277 - 3¢ . 52. 136! x (226 .33 .5 136! +

1)7 +21066.3.7.17-19- 31 - 528! x (21961 .17 - 31 - 528! + 1)*3.

Proof of Main Theorem 2. We prove that G is not contained in any
maximal subgroups of GSp,(¥;) in Proposition 2.

G, ¢ Sps(F;) x (maximal subgroup of (42)), for g is surjective.

Maximal parabolic subgroups stabilize a one- or two-dimensional sub-
space of V, := F;* [4, p. 72, Table 3.5.C]. So G, is not contained in them
similarly as the case of the Borel subgroup in Main Theorem 1.

SLy(F;) xSy % (8,) stabilizes a two-dimensional subspace of V,. In fact,
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let {e;|1 < i < 4} be a symplectic basis of V. Let H := SLy(F;) x s,
4 3\
/ a 0|b O \

OaObiab

m
n
=

[
oo

b

and

\0010}.

Then H = Hy U Hyw. We consider the action of H on W, := F(e; &

62) &b Fl(eg b 64). For ]C] and k’g € Fl
(aObO\ (kl\ (ak1+bk2\

0 a|l0 b k)l ak1+bk2

c 0|d O kg Ck1+dk2

\OCOd)\kQ) \ck1+dk2/




/a()bO\ (0100 (kl\ /akl—I—bkz\

0 al0 b 1 0/0 O ky aky + bk

c 0|d O 0 010 1 kz Ck‘1+dk2

\ 0 c|0 d ) \0010] YRR Y

So HoW, C W, and HywW, C W,. Thus W, is a nontrivial invariant

subspace of V, under the action of H. As (d,) acts on F,(e; @ es) by
multiplication by scalars, and on F;(e3 & e4) trivially, W, is invariant
also under the action of H x (d2) = SLy(F;) x Sz x (&,). Thus G, ¢
SLy(F1) xSy x (d,) similarly as the case of maximal parabolic subgroups.

G1 ¢ GLa(F1) e Z, x (8,) similarly as the case of Fy* xS, x (5,) in Main
Theorem 1.

If G; C SLao(Fi2) x(ds) or G; C GU2(F2) x (8,), then G; commutes with
F2. On the other hand, as I > C(2)[max{d, h(4)}]"®, Endg, (4;) =
Endg(A) ®z F; = F; by Corollary. Hence a contradiction.

G1 ¢ DgoQge0O,~(F?) similarly as the case of DgoQg in Main Theorem
1, for |Dg 0 Qg @ O, (F3)| = 3840.

When Endg(A4) = Z, 7(2) = 2194.17. 312 528! x (21%1.17.31.528! +
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1)1° 2417636 73. 11 .19 - 2080! x (24166.3%.7-11-2080! + 1)3.

Remarks. (a) The effective dependence of C(n) on the dimension n
remains an interesting problem.

(b) When dim A = 3, the classification of maximal subgroups of G Sps(F;)
is also known [4, p. 72, Table 3.5.C]. When [ > 5, they are
(1)Spe(F;) x (maximal subgroup of (d3)),
(2)maximal parabolic subgroup,
(3)SLa(F1) x Spa(F1) x (3),
(4)SLy(F)) x S5 % (d3),
(5)GL3(F;) @ Zy x (d3),
(6)SLa(Fiz) x (ds),
(7)GU3(Fy2) x (d3), and
(8)SLa(F:) 0 O3(F1) » (d3),
where d3 is the element expressed as diag(u, i, i, 1,1,1) with respect to
a symplectic basis of F;®. The first seven are handled similarly as the
2-dimensional case, for (3) is also reducible. Only the case (8) seems to

be difficult to treat.
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