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Euler systems for Drinfeld modular varieties

Satoshi KONDO
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‘1l Introduction

A conjecture of Beilinson relates elements in the K-group of schemes with special
values of L-functions. Beilinson gave such elements in the K-group of modular
curves. Kato ([3]) constructs Euler systems, i.e., elements in K-groups that
satisfy certain property under norm maps, and show that they give rise to
special values, using Beilinson’s result. We follow the analogy between function
fields (resp. Drinfeld module of rank 2) and number fields (resp. elliptic curve)
to construct elements in the K-groups of Drinfeld modular curve, and show
that they are related, under a regulator map, to special values of L-functions
attached to automorphic forms in positive characteristic. For Drinfeld modular
varieties of higher dimensions, where the analogy is no longer applicable, we still
have a series of elements in K-groups, which is proved to be an Euler system.

2 Euler system

We give the construction of elements in higher K-groups of Drinfeld modular
varieties, and show that they form Euler systems. For more detail on the result
in this section, see [5]. Let p be a prime, ¢ =pf, fe N, A=F,[T], K = Fo(T),
O = Fy[[1/T]], and Ko = Fo((1/T)). A (resp. K, K) is the analog of
Z (resp. Q, R). We refer the reader to [1] for the definition and properties
of Drinfeld modules. For an ideal I of A and d € N, we write M§ for the
moduli space of rank d, level I Drinfeld modules, and E¢ for the universal
Drinfeld module. The construction is in three steps. First we construct theta
function 6 € O(E¢ \ {0})*, which is determined by the location of zeros and
norm invariance. Then we construct Siegel units g,,, .. o, € O(M}’)* where a;
are elements of I~1A/A, as the specialization of the theta function at division
points of the universal Drinfeld module. Lastly, we let

Kr:= {94},0,...,0,90,4},0,.‘.,0a .- 190,...,0,%} € Kﬁ"(K(Mf))

where i is a generator of I, K(M¢) is the function field of M#, and KM is the
Milnor K-group.

Theorem 2.1 (Norm property of Euler system). Let I C J C A be ide-
als, d € N.

d
Norm(r) = [ S_I(-1)*Np)“ T T (xs)
SFm k=0
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where Ty, p@ : KM(K(M$)) — KM (K(M$)) is induced by the Hecke corre-
spondence associated to

o \

g = A € GLy(A®4 K).

\ BRY
Here, m appears k times and 1 appears (d-,— k) times. Norm is the homomorphism

induced by the quotient map.

This theorem shows that the elements constructed above form an Euler
system.

Remark 2.2. When d = 2 and I = pJ, the above theorem reads .
Norm(kr) = [T&2) — T{) + (Np) T3 p)(54)-

One can see that it resembles the Euler factor at g of L-function of modular
forms.

3 Regulator

We define a homomorphism, which we call regulator map, from K-group to the
space of automorphic forms. The construction has been done in §7 of [4]; we
merely translate it into our context.

3.1 the source

We fix an ideal I. The moduli space M? is a 2-dimensional scheme over F,. We
denote by .#7 the compact model over F,. We let

HY (M}, ) =Ker | @ KM(k(z) » @ KEM(x(2)

z€(M7)2 z€(M?)1

where (M?), (resp. (M7?)1) denotes the set of points of codimension 2 (resp. 1),
and k(z) the residue field at z. This group is the source of our regulator map.

3.2 the target

The closed complement Y := .#7\ M? is a 1-dimensional scheme over F, whose
dual graph is the quotient graph of the tree associated to Drinfeld upper half
plane by the action of the congruence subgroup

(1) = {X € GLa(A) lX = <(1) (1’) (modI)}.

It is, in general, an infinite graph ([7]) but we simply ignore the half lines and
consider its finite subgraph. Let H1(M?) be the set of functions f : E — C
satisfying the following conditions:



* f(ve) = f(e) (ye€T(I), e € E).
e harmonic, i.e., Z f(XB)=0
BEGL2(0cs)/T

e alternating, i.e., f _(X (7:0 (l))) = — f(X).

* f has compact support modulo I'(I), i.e., there are only finitely many
elements X in I'(I)\GL2(Ko)/T oo K2, with f(X) = 0.

w
group of our regulator map. These functions are studied in [6] as automorphic
forms of Drinfeld type.

Here we let J = { (ﬁ y) € GLz(Ooo)’ z2 =0 (mod l/T)}. Thiis is the target

3.3 the map
We define the map:

reg : H'(M}, %) — H)(M?).

Let {f1, f2} € H'(M}, %), and choose lifts f], f; € K(M?). An oriented edge
e € FE corresponds to a singular point where two divisors with support in Y
meet. Let the curve corresponding to the source (resp. target) be C; (resp.
C32). Then we let

reg({fl,lfz})(e) ':= det (Otdclf{ Odezf{) .

0rdC1 fi.,’ 0rdCz fé

It can be verified that this map is well defined.

4 Value_s of L—fuhctions |

4.1 Definition

We use Fourier coefficients to define L-function. For details on Fourier analysis
over function fields, see [2], [8]. Take an element g of H'(M?). It has Fourier
expansion of the form : -

(5 1)- 3 e g ()

We let

L=¢ny(9,8) = c—,,
«@®9= . Txm)

Hga) = 32 A
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4.2 Eisenstein series

We compute the image under the regulator map of the special elements in K-
group. It turns out to be the product of two types of Eisenstein series, whose def-

inition will be given in this section. We define a function on GL2(K)/GL2(Oc)-

Let »
s % w\\ _ [ gqlk—de9)s o >k —dege
Pe,d 0 1 Tl g¥® w < k —dege.
where w = ordoo(cu + d). ' .

Definition 4.1. For s € C, we let

EBlio= D, | Pedr
. c=1(1),d=0(I)
Ejy = Z Pe,d-

c=0(1),d=1(I)

They converge absolutely for Re s > 0. They may be analytica.ily continued to
the whole complex plane. We are interested in the functions-at s = 0. We let

‘ d _, '
)’ Ey1/i = 5§E0,1/i

8=0

0
Biio = 5.E1/1.0 o
Let |
- % w\) _ [ —gF el o >k —degc
Pe.d 0 1 ] ¢k w < k—degec.

Definition 4.2. For more properties of the Eisenstein series below, see [2]. Let

Biio= ),  Ped
- e=l(d),d=0(1)
Eoi = > Bea

_ . e=0(I),d=1(I) -
Theorem 4.3.

reg(rkr) = C,[El/i,OEb,l/i - E1/i,dEo,1/i] -

where C' € R is a constant. o o

Remark 4.4. For the proof, we need an analog of Kronecker limit formula.

4.3 Special values

We introduce a pairing on the space of functions defined in §3.2 (see [6])

(91,92)=/ g91° G2
X ()W

where X (I)® = I'W(I)\GLy(Koo)/TooK2, TM(I) = SLy(A) NIT(I). Our
Beilinson type result is the following theorem.
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Theorem 4.5. There exists a computable constant C, which is independent of
g € HY(M?), such that

(g,reg(n;)) C- L(gvl) Z L‘&(I) g,s)

EGF‘ 8=0

holds.

Remark 4.6. The left hand side, upon substitution of Theorem 4.3, is

/ 9E1/i0E0,1/: — / 9E1/i0E0,1/i

up to a computable constant. Each term may be calculated since it is a Rankin-
Selberg integral.
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