A SURVEY ON GENERALIZED HERMITE CONSTANTS

TAKAO WATANABE (渡部 隆夫) 阪大理

This is an expository note on Hermite's constant. We give an account of a recent development of some generalizations of Hermite's constant.

1. Hermite-Rankin's constant. Let \mathcal{L}^n be the set of all lattices of rank n in the Euclidean space \mathbb{R}^n . For $L \in \mathcal{L}^n$, d(L) stands for the volume of the fundamental parallelepiped of L. It was proved by Hermite that

$$\min_{0 \neq x \in L} {}^t xx \le \left(\frac{2}{\sqrt{3}}\right)^{n-1} d(L)^{2/n}$$

holds for all $L \in \mathcal{L}^n$. Thus $\min_{0 \neq x \in L} {}^t xx/d(L)^{2/n}$ is bounded and there exists the maximum

 $\gamma_n = \max_{L \in \mathcal{L}^n} \min_{0 \neq x \in L} \frac{{}^t xx}{d(L)^{2/n}}.$

The constant γ_n is called Hermite's constant. A well-known example of its appearance is the lattice sphere packing problem, namely the density of the densest lattice packing of spheres in \mathbb{R}^n equals

 $\delta_n = \gamma^{n/2} \frac{V(n)}{2^n} \,,$

where V(n) denotes the volume of the unit ball in \mathbb{R}^n , i.e., $V(n) = \pi^{n/2}/\Gamma(1 + n/2)$. Originally, γ_n arose from the reduction theory of positive definite quadratic forms initiated by Lagrange, Seeber and Gauss. In terms of quadratic forms, γ_n is represented as

(1)
$$\gamma_n = \max_{g \in GL_n(\mathbb{R})} \min_{0 \neq x \in \mathbb{Z}^n} \frac{t_x t_g g x}{(\det g)^{2/n}}.$$

The exact value of γ_n is known only for $n \leq 8$, i.e., $\gamma_2 = 2/\sqrt{3}$, $\gamma_3 = \sqrt[3]{2}$, $\gamma_4 = \sqrt[6]{2}$, $\gamma_5 = \sqrt[5]{8}$, $\gamma_6 = \sqrt[6]{64/3}$, $\gamma_7 = \sqrt[7]{64}$, $\gamma_8 = 2$. One has the estimate

(2)
$$\left(\frac{2\zeta(n)}{V(n)}\right)^{2/n} \leq \gamma_n \leq 4 \left(\frac{1}{V(n)}\right)^{2/n} .$$

This upper bound was given by Minkowski and follows from $\delta_n \leq 1$. The lower bound was first stated by Minkowski and was proved by Hlawka.

The next step of Hermite's constant is the following extension due to Rankin. For every $1 \le d \le n-1$, define

(3)
$$\gamma_{n,d} = \max_{L \in \mathcal{L}^n} \min_{\substack{x_1, \dots, x_d \in L \\ x_1 \wedge \dots \wedge x_d \neq 0}} \frac{\det({}^t x_i x_j)_{1 \leq i, j \leq d}}{d(L)^{2d/n}}.$$

Obviously, $\gamma_{n,1}$ equals γ_n . Rankin ([R]) proved $\gamma_{n,d}$ satisfies the inequality

$$\gamma_{n,d} \leq \gamma_{m,d} (\gamma_{n,m})^{d/m}$$

for $1 \le d < m \le n-1$, and he showed $\gamma_{4,2} = 3/2$. Rankin's inequality and the duality $\gamma_{n,d} = \gamma_{n,n-d}$ yield Mordell's inequality $\gamma_n^{n-2} \le \gamma_{n-1}^{n-1}$.

2. Icaza-Thunder's generalization. As a generalization of Hermite-Rankin constant, Thunder defined the constant $\gamma_{n,d}(k)$ for any algebraic number field k of finite degree r over \mathbb{Q} in 1997. At first, we recall a definition of twisted heights. Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be a standard basis of k^n . For any extension field L over k, $W_{n,d}(L)$ stands for the d-th exterior product of L^n . A basis of $W_{n,d}(k)$ is formed by the elements $\mathbf{e}_I = \mathbf{e}_{i_1} \wedge \cdots \wedge \mathbf{e}_{i_d}$ with $I = \{1 \leq i_1 < i_2 < \cdots < i_d \leq n\}$. For each place v of k, let k_v be the completion of k at v and $|\cdot|_v$ the usual normalized absolute value of k_v . We define the local height on $W_{n,d}(k_v)$ by

$$H_v(\sum_I a_I \mathbf{e}_I) = \left\{ egin{array}{ll} \left(\sum_I |a_I|_v^{[\mathbb{C}:k_v]}
ight)^{1/([\mathbb{C}:k_v]r)} & ext{ (if v is infinite)} \ \left(\sup_I |a_I|_v
ight)^{1/r} & ext{ (if v is finite)} \end{array}
ight.$$

Then the global height H on $W_{n,d}(k)$ is defined to be the product of H_v :

$$H(x) = \prod_v H_v(x) \qquad (x \in W_{n,d}(k)).$$

Let A be the adele ring of k and $|\cdot|_A$ the idele norm on A^{\times} . Since $H(\alpha x) = |\alpha|_A^{1/r}H(x) = H(x)$ for $\alpha \in k^{\times}$, H defines a height on the projective space $PW_{n,d}(k)$. By the Plücker embedding, H is regarded as a height on the Grassmanian $Gr_{n,d}(k)$ of all d-dimensional subspaces of k^n . For $X \in Gr_{n,d}(k)$, H(X) is precisely given by $H(x_1 \wedge \cdots \wedge x_d)$, where x_1, \cdots, x_d is an arbitrary k-basis of X. More generally, for each $g = (g_v)$ in $GL_n(A)$, the twisted height H_g on $Gr_{n,d}(k)$ is defined as

$$H_g(X) = \prod_v H_v(g_v x_1 \wedge \cdots \wedge g_v x_d)$$
.

Now the constant $\gamma_{n,d}(k)$ is defined to be

(4)
$$\gamma_{n,d}(k) = \max_{g \in GL_n(\mathbb{A})} \min_{X \in Gr_{n,d}(k)} \frac{H_g(X)^2}{|\det g|_{\mathbb{A}}^{2d/(nr)}}.$$

In the case of $k = \mathbb{Q}$, this definition is identical with (1) and (3), so that one has $\gamma_{n,d}(\mathbb{Q}) = \gamma_{n,d}$. As generalizations of Minkowski – Hlawka bound and Rankin's inequality, Thunder showed

Theorem. ([T]) One has

(5)
$$\left(\frac{n|D_{k}|^{d(n-d)/2}}{\operatorname{Res}_{s=1}\zeta_{k}(s)} \frac{\prod_{j=n-d+1}^{n} Z_{k}(j)}{\prod_{j=2}^{d} Z_{k}(j)}\right)^{2/(nr)} \leq \gamma_{n,d}(k) \leq \left(\frac{2^{r_{1}+r_{2}}|D_{k}|^{1/2}}{V(n)^{r_{1}/n}V(2n)^{r_{2}/n}}\right)^{2d/r}$$

and

$$\gamma_{n,d}(k) \leq \gamma_{m,d}(k)(\gamma_{n,m}(k))^{d/m} \qquad (1 \leq d < m \leq n-1).$$

Here $Z_k(s) = (\pi^{-s/2}\Gamma(s/2))^{r_1}((2\pi)^{1-s}\Gamma(s))^{r_2}\zeta_k(s)$ denotes the zeta function of k, D_k the discriminant of k and r_1 (resp. r_2) the number of real (resp. imaginary) places of k.

We particularly write $\gamma_n(k)$ for $\gamma_{n,1}(k)$. Newman ([N, XI]) and Icaza ([I]) also considered $\gamma_n(k)$ based on Humbert's reduction theory. Newman gave exact values of $\gamma_2(k)$ for some Eucledean imaginary quadratic fields. To be precise, one has $\gamma_2(\mathbb{Q}(\sqrt{-1})) = \sqrt{2}, \gamma_2(\mathbb{Q}(\sqrt{-2})) = 2, \gamma_2(\mathbb{Q}(\sqrt{-3})) = \sqrt{6}/2, \gamma_2(\mathbb{Q}(\sqrt{-7})) = \sqrt{21}/3$ and $\gamma_2(\mathbb{Q}(\sqrt{-11})) = \sqrt{22}/2$. As for $\gamma_2(k)$ of real quadratic fields, some numerical examples and conjectures were given by Cohn [C]. Recently, Coulangeon proved a part of Cohn's conjecture, i.e., $\gamma_2(\mathbb{Q}(\sqrt{2})) = 2/\sqrt{2\sqrt{6}-3}, \gamma_2(\mathbb{Q}(\sqrt{3})) = 4$ and $\gamma_2(\mathbb{Q}(\sqrt{5})) = 2/\sqrt[4]{5}$, by using the Voronoi reduction. In a general k, Ohno and the author obtained an upper bound of $\gamma_n(k)$ better than (5).

Theorem. ([O-W]) One has

$$\gamma_n(k) \leq |D_k|^{1/r} \frac{\gamma_{nr}(\mathbb{Q})}{r}$$
.

Combining this with (5), one obtains

(6)
$$\frac{r}{\pi} \left\{ \frac{nw_k \Gamma(n/2)^{r_1} \Gamma(n)^{r_2} \zeta_k(n)}{2^{r_1 + nr_2} h_k R_k} \right\}^{2/(nr)} \leq \gamma_{nr}(\mathbb{Q})$$

for any algebraic number field k of degree r. Here h_k , R_k and w_k denote the class number of k, the regulator of k and the number of the roots of unity in k, respectively.

If a small n is fixed, there are some numerical examples that (6) for a suitable k is better than the Minkowski-Hlawka bound of $\gamma_{nr}(\mathbb{Q})$.

3. Generalized Hermite constants of flag varieties. Thunder's definition of Hermite's constant can be extended to flag varieties. In order to do this, we use a theory of linear algebraic groups. Let G be a connected reductive linear algebraic group defined over k and $\pi \colon G \to GL(V_{\pi})$ a k-rational absolutely irreducible representation. We denote by D_{π} the highest weight line in V_{π} with respect to a fixed Borel subgroup of G. The stabilizer Q_{π} of D_{π} in G is a parabolic subgroup of G. The representation π is said to be strongly k-rational if Q_{π} is defined over k. Then the flag variety G/Q_{π} is defined over k and is embedded in the projective space PV_{π} . Let G(A) be the adele group of G and $G(A)^1$ the group consisting of $g \in G(A)$ such that $|\chi(g)|_{A} = 1$ for any k-rational character χ of G. For each $g \in GL(V_{\pi}(A))$, a twisted height H_g on $PV_{\pi}(k)$ is defined similarly to §2. Then we can prove that the following maximum exists for any strongly k-rational π ([W, Proposition 2]):

$$\gamma_{\pi}^G = \max_{g \in G(\mathbb{A})^1} \min_{\gamma \in G(k)} H_{\pi(g\gamma)}(D_{\pi})^2$$
,

where we regard D_{π} as a k-rational point in $\mathbf{P}V_{\pi}$. If $G = GL_n$ and π is a d-th exterior representation π_d of G, then one sees $\gamma_{\pi_d}^{GL_n} = \gamma_{n,d}(k)$. A mean value argument used to prove Minkowski-Hlawka bound works well in this general setting (cf. [M-W, §3.3]).

Theorem. ([W]) If $Q = Q_{\pi}$ is a maximal parabolic subgroup of G, we have a lower estimate of the form

(7)
$$\left(\frac{C_Q d_G e_Q \tau(G)}{C_G d_Q \tau(Q)}\right)^{2e_{\pi}/(e_Q r)} \leq \gamma_{\pi}^G.$$

Here $\tau(G)$ and $\tau(Q)$ denote the Tamagawa numbers of G and Q, respectively, d_G , d_Q , e_Q and e_π are some elementary positive rational numbers depending on G, Q and π , and furthermore C_G and C_Q are the volumes of some maximal compact subgroups of G(A) and Q(A), respectively.

If G is split over k, both constants C_G and C_Q are described by special values of the Dedekind zeta function. Particularly, the estimate (7) in the case of $G = GL_n$ and $\pi = \pi_d$ coincides with the lower bound of (5). An upper bound of γ_{π}^G is not yet known in general.

4. Some examples. We show two examples. First, let $F: k^n \times k^n \to k$ be a nondegenerate symmetric bilinear form of Witt index $q \geq 1$ and $G = SO_F$ be the special orthogonal group of F. For $1 \leq d \leq q$, the d-th exterior representation $\pi_d: G(k) \to GL(W_{n,d}(k))$ yields a strongly k-rational representation of G. (The case q = n/2 = d is exceptional since π_q is not irreducible.) We write γ_d^F for the generalized Hermite constant $\gamma_{\pi_d}^G$. As an analogue of (4), γ_d^F has the following geometrical representation:

$$\gamma_d^F = \max_{g \in G(A)} \min_{X \in Gr_{n,d}(k,F)} H_g(X)^2,$$

where $Gr_{n,d}(k,F)$ denotes a subset of $Gr_{n,d}(k)$ consisting of d-dimensional totally isotropic subspaces of k^n with respect to F. In particular, γ_1^F is related to an existence of a nontrivial small integral solution of the homogeneous quadratic equation F(x,x)=0. If 2q=n or 2q+1=n, (7) gives

$$\gamma_{1}^{F} \geq \begin{cases} \left(\frac{|D_{k}|^{q-1}(2q-2)}{\operatorname{Res}_{s=1}\zeta_{k}(s)} \frac{Z_{k}(2(q-1))Z_{k}(q)}{Z_{k}(q-1)}\right)^{1/((q-1)r)} & (2q=n) \\ \left(\frac{|D_{k}|^{q-1/2}(2q-1)}{\operatorname{Res}_{s=1}\zeta_{k}(s)} Z_{k}(2q)\right)^{2/((2q-1)r)} & (2q+1=n) \end{cases}$$

Moreover, we can show the following estimate and an analogue of Rankin's inequality.

Theorem. ([O-W],[W2]) For any nondegenerate F, one has

$$\gamma_d^F \le \gamma_{n-d}(k)^{n-d} (2H(F))^{n-d} \qquad (1 \le d \le q)$$
$$\gamma_d^F \le \gamma_{m,d}(k) (\gamma_m^F)^{d/m} \qquad (1 \le d < m \le q).$$

Here H(F) denotes a height of the symmetric matrix corresponding to F.

Second, let \mathcal{D} be a central simple division algebra of dimension q^2 over k and G be an inner k-form of GL_{qn} whose group of k-rational points equals $GL_n(\mathcal{D})$. If a cyclic extension L of degree q over k contained in D is fixed, then $GL_n(\mathcal{D})$ is realized as a subgroup of $GL_{qn}(L)$. Since the qd-th exterior representation of $GL_{qn}(L)$ gives rise to a fundamental k-rational representation π_d of G for $1 \leq d \leq n-1$, one has the generalized Hermite constant $\gamma_{\pi_d}^G$. We write $\gamma_{n,d}(\mathcal{D})$ for $\gamma_{\pi_d}^G$. Geometrically, $\gamma_{n,d}(\mathcal{D})$ has the following representation similar to (4):

$$\gamma_{n,d}(\mathcal{D}) = \max_{g \in G(\mathbb{A}_k)} \min_{X \in \mathrm{BS}_{n,d}(\mathcal{D})} rac{H_g(X)^2}{|\mathrm{Nr}(g)|^{2d/(nr)}} \,,$$

where $\mathrm{BS}_{n,d}(\mathcal{D})$ denotes the set of d-dimensional \mathcal{D} -subspace in \mathcal{D}^n and Nr the reduced norm on $M_n(\mathcal{D})$. The set $\mathrm{BS}_{n,d}(\mathcal{D})$ is called the generalized Brauer–Severi variety and is realized as a subset of the Grassmanian $\mathrm{Gr}_{qn,qd}(L)$. The twisted height H_g on $\mathrm{BS}_{n,d}(\mathcal{D})$ is defined as the restriction of that on $\mathrm{Gr}_{qn,qd}(L)$. By using this expression, we can prove the following.

Theorem. ([W3]) One has

$$\gamma_{n,d}(\mathcal{D}) \le \epsilon_{\mathcal{D}} \left(\frac{2^{r_1(L) + r_2(L)} |D_L|^{1/2}}{V(qn)^{r_1(L)/(qn)} V(2qn)^{r_2(L)/(qn)}} \right)^{2d/r}$$

and

$$\gamma_{n,d}(\mathcal{D}) \le \gamma_{m,d}(\mathcal{D})(\gamma_{n,m}(\mathcal{D}))^{d/m} \qquad (1 \le d < m \le n-1).$$

Here D_L denotes the discriminant of L and $r_1(L)$ (resp. $r_2(L)$) the number of real (resp. imaginary) places of L. The constant ϵ_D is given by

$$\epsilon_{\mathcal{D}} = \left(\prod_{w} \max(1,|a|_{w})\right)^{2(q-1)n/(qr)}$$
 (w runs over all places of L)

if we realize \mathcal{D} as a cyclic algebra $[L/k, \sigma, a]$ by a generator σ of the Galois group of L/k and an element $a \in k^{\times}$.

REFERENCES

- [C] H. Cohn, A numerical survey of the floors of various Hilbert fundamental domains, Math. Comp. 21 (1965), 594 605.
- [C-S] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer Verlag, 1999.
- [G-L] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland, 1987.
- [I] M. I. Icaza, Hermite constant and extreme forms for algebraic number fields, J. London Math. Soc. 55 (1997), 11 22.
- [M-W] M. Morishita and T. Watanabe, Adele geometry of numbers, Class Field Theory -Its Centenary and Prospect, Advanced Studies in Pure Math. (to appear).
- [N] M. Newman, Integral Matrices, Academic Press, 1972.
- [O-W] S. Ohno and T. Watanabe, Estimates of Hermite constants for algebraic number fields, (preprint).
- [R] R. A. Rankin, On positive definite quadratic forms, J. London Math. Soc. 28 (1953), 309 314.
- [T] J. L. Thunder, Higher-dimensional analogs of Hermite's constant, Michigan Math. J. 45 (1998), 301 314.
- [W] T. Watanabe, On an analog of Hermite's constant, J. Lie Theory 10 (2000), 33 52.
- [W2] T. Watanabe, Upper bounds of Hermite constants for orthogonal groups, Comm. Math. Univ. Sancti Pauli 48 (1999), 25 33.
- [W3] T. Watanabe, Hermite constants of division algebras, preprint.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA, 560-0043 JAPAN

E-mail address: watanabe@math.wani.osaka-u.ac.jp