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A SURVEY ON GENERALIZED HERMITE CONSTANTS

TAKAO WATANABE (JE# f&X) BRKH

This is an expository note on Hermite’s constant. We give an account of a recent
development of some generalizations of Hermite’s constant.

1. Hermite—Rankin’s constant. Let L™ be the set of all lattices of rank n in the
Euclidean space R*. For L € L®, d(L) stands for the volume of the fundamental
parallelepiped of L. It was proved by Hermite that

2 n—1 2/
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holds for all L € £*. Thus minger tzz/d(L)?/™ is bounded and there exists the
maximum
_ . tzzx
= Lebn ogserL d(L)2/m
The constant v, is called Hermite’s constant. A well-known example of its appearance
is the lattice sphere packing problem, namely the density of the densest lattice packing

of spheres in R" equals

Vin
611 = ,Yn/2__2_(’_‘_)_ ’

where V(n) denotes the volume of the unit ball in R™, ie., V(n) = «™/2/T(1 +
n/2). Originally, v, arose from the reduction theory of positive definite quadratic
forms initiated by Lagrange, Seeber and Gauss. In terms of quadratic forms, v, is
represented as

t :l:t g g:z:
1 = in —— 39~
(1) M= TEX oD et g)?/m

The exact value of 4, is known only for n < 8, ie., v2 = 2/\/5, Y3 = V2,74 =
V2, Y5 = V8,7 = % 64/3,v; = v/64,vs = 2. One has the estimate
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This upper bound was given by Minkowski and follows from 6, < 1. The lower bound
was first stated by Minkowski and was proved by Hlawka.
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The next step of Hermite’s constant is the following extension due to Rankin. For
every 1 <d <mn-—1, define

det(*Tiz;)1<i,j<d

3 = max min SIS

®) Tr.d LeL" g,,...,z4€L d(L)2d/n
T1A---Azg7#0

Obviously, v,,1 equals 7,. Rankin ([R]) proved 1, 4 satisfies the inequality

Tn,d < 'Ym,d('Yn,m)d/m
for1 <d <m <n-1, and he showed 742 = 3/2. Rankin’s inequality and the duality
Tn,d = Yn,n-d yield Mordell’s inequality 7,,‘2 < 'y::%

2. Icaza—Thunder’s generalization. As a generalization of Hermite-Rankin con-
stant, Thunder defined the constant v, 4(k) for any algebraic number field k of finite
degree r over Q in 1997. At first, we recall a definition of twisted heights. Let
1, - ,e, be a standard basis of k". For any extension field L over k, W, 4(L)
stands for the d-th exterior product of L. A basis of W, 4(k) is formed by the ele-
ments e; = e;; A---Ae;, with I = {1 <4; <i3 <--- <ig <n}. For each place v of
k, let k, be the completion of k at v and |- |, the usual normalized absolute value of
k,. We define the local height on W, 4(k,) by

1/([C:ky)r)
> |a,|£,c='=~1) (if v is infinite)

Hu(ZI: arer) = ( I l/r

(sup Ia.;l,,) (if v is finite)

Then the global height H on W,:d(k) is defined to be the product of H,:
H(z)=[[Ho(z) (z € Wna(k)).

Let A be the adele ring of k and | - |5 the idele norm on A*X. Since H(az) =

|a|1/ "H(z) = H(z) for a € k*, H defines a height on the projective space PW,, d(k).
By the Pliicker embedding, H is regarded as a height on the Grassmanian Gr, (k)
of all d-dimensional subspaces of k*. For X € Gr, 4(k), H(X) is precisely given by

H(zy A---Azq), where zy,--- ,z4 is an arbitrary k-basis of X. More generally, for
each g = (g,,) in GL,(A), the twisted height Hy on Gr, 4(k) is defined as

Hy(X) = [ Ho(gvz1 A+ A goza).
v
Now the constant v, 4(k) is defined to be
LX)’
In the case of k£ = Q, this definition is identical with (1) and (3), so that one has

T,d(Q) = Ynd. As generalizations of Minkowski ~ Hlawka bound and Rankin’s
inequality, Thunder showed
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Theorem. ([T]) One has

n 2/(nr)
Zx(3)
(5) 77,|D]‘,|ﬂl("_d)/2 j=nl:[d+1 < F) < ori+ra |Dk|1/2 )24/"
Res=1(k(s) ¢ = T S\ Vv 2nyr/s
H Zx(9)
j=2
and

Yn,a(k) < 7m,d(k)(7n,m(k))‘d/m (l<d<m<n-1).

Here Zy(s) = (7=%/2T'(s/2))™ ((27)1~*T'(s))"2(x (s) denotes the zeta function of k, D
the discriminant of k and v, (resp. ro ) the number of real (resp. imaginary ) places
of k.

We particularly write 4,(k) for v,,1(k). Newman ([N, XI]) and Icaza ([I]) also
considered v,(k) based on Humbert’s reduction theory. Newman gave exact val-
ues of y3(k) for some Eucledean imaginary quadratic fields. To be precise, one has

72Q(=1) = v2,%QW~-2) = 2,%2Q(V-3)) = v6/2,72(QV-T)) = v21/3
and 72(Q(v—=11)) = v/22/2. As for ~3(k) of real quadratic fields, some numeri-
cal examples and conjectures were given by Cohn [C]. Recently, Coulangeon proved

a part of Cohn’s conjecture, i.e., 72(Q(v2) = 2/v2v6 —3,7(Q(v/3)) = 4 and
72(Q(v5)) = 2/V5, by using the Voronoi reduction. In a general k, Ohno and
the author obtained an upper bound of v, (k) better than (5).

Theorem. ([O-W]) One has
k) < Dy 2

Combining this with (5), one obtains

T wipl'(n/2) T (n)™2((n 2/(nr)
(6) _{n kP( /2) F( ) Ck( )} S'an(Q)

e 2ritnrap, Ry

for any algebraic number field k of degree r. Here hy, Ry and wy denote the class
number of k, the regulator of k and the number of the roots of unity in k, respectively.

If a small n is fixed, there are some numerical examples that (6) for a suitable k is
better than the Minkowski-Hlawka bound of +,,,(Q).
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3. Generalized Hermite constants of flag varieties. Thunder’s definition of
Hermite’s constant can be extended to flag varieties. In order to do this, we use a
theory of linear algebraic groups. Let G be a connected reductive linear algebraic
group defined over k and w: G — GL(V,) a k-rational absolutely irreducible repre-
sentation. We denote by D, the highest weight line in V, with respect to a fixed
Borel subgroup of G. The stabilizer Q, of D, in G is a parabolic subgroup of G. The
representation 7 is said to be strongly k-rational if Q, is defined over k. Then the
flag variety G/Qx is defined over k and is embedded in the projective space PV,. Let
G(A) be the adele group of G and G(A)! the group consisting of g € G(A) such that
Ix(9)|a = 1 for any k-rational character x of G. For each g € GL(V,(A)), a twisted
height Hy on PV (k) is defined similarly to §2. Then we can prove that the following
maximum exists for any strongly k-rational 7 ([W, Proposition 2)):

G _ ; 2
T Ry el e (Dn)

where we regard D, as a k-rational point in PV,. If G = GL,, and 7 is a d-th exterior
representation 74 of G, then one sees 'yf,;;l'" = n,d(k). A mean value argument used to
prove Minkowski-Hlawka bound works well in this general setting (cf. [M-W, §3.3]).

Theorem. ([W]) If Q = Qx is a mazimal parabolic subgroup of G, we have a lower
estimate of the form

G
< Yr -

) (CQdGeQT (G) ) 2ex/(ear)

CadqT(Q)

Here 7(G) and 7(Q) denote the Tamagawa numbers of G and Q, respectively, dg, dg,
eqQ and ey are some elementary positive rational numbers depending on G, Q and T,
and furthermore Cg and Cq are the volumes of some mazimal compact subgroups of
G(A) and Q(A), respectively.

If G is split over k, both constants Cg and Cg are described by special values of
the Dedekind zeta function. Particularly, the estimate (7) in the case of G = GL,,
and 7 = mq coincides with the lower bound of (5). An upper bound of € is not yet
known in general.

4. Some examples. We show two examples. First, let F': k* X k® — k be a
nondegenerate symmetric bilinear form of Witt index ¢ > 1 and G = SOp be the
special orthogonal group of F. For 1 < d < ¢, the d-th exterior representation
ma: G(k) = GL(Wy, 4(k)) yields a strongly k-rational representation of G. (The case
g = n/2 = d is exceptional since 7, is not irreducible.) We write v for the general-
ized Hermite constant 'yg. As an analogue of (4), 7} has the following geometrical
representation:

F . 2
= max min  H (X
Ta = EER) XeGr o(k,F) o(X)%
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where Gry, 4(k, F') denotes a subset of Gry, 4(k) consisting of d-dimensional totally
isotropic subspaces of k™ with respect to F. In particular, 7f is related to an exis-
tence of a nontrivial small integral solution of the homogeneous quadratic equation
F(z,z) =0. If 2¢g =n or 2¢+ 1 = n, (7) gives

[Del*~*(2q - 2) Zx(2(g — 1)) Zu(g) ) S
7{"‘ > ( Res;=1(x(s) Zi(g—1) (29 =n)
- a-1/2(94 _ 2/((2a-1)r) |
(ID’;?I“’SEI(C?:S) : Zk(zq)) (2 +1=n)

Moreover, we can show the following estimate and an analogue of Rankin’s inequality.

Theorem. ([O-W],[W2]) For any nondegenerate F, one has

78 < m-a(B)"RH(F)"® (1<d<gq)
74 < Yma(k)(vm)¥™  (1<d<m<yq).

Here H(F) denotes a height of the symmetric matriz corresponding to F.

Second, let D be a central simple division algebra of dimension ¢2 over k and G be
an inner k-form of GLg4, whose group of k-rational points equals GL, (D). If a cyclic
extension L of degree q over k contained in D is fixed, then GL, (D) is realized as a
subgroup of GLgn(L). Since the gd-th exterior representation of GLgy, (L) gives rise
to a fundamental k-rational representation w4 of G for 1 < d < n — 1, one has the
generalized Hermite constant v&,. We write v, 4(D) for 7E,. Geometrically, v, 4(D)
has the following representation similar to (4):

, Hy(X)?
7P = 0 xeBhio) Ne(g) P/

where BS,, 4(D) denotes the set of d-dimensional D-subspace in D™ and Nr the reduced
norm on M, (D). The set BS, 4(D) is called the generalized Brauer-Severi variety
and is realized as a subset of the Grassmanian Grg, g¢(L). The twisted height Hy on
BS,, 4(D) is defined as the restriction of that on Grgp ¢q(L). By using this expression,
we can prove the following.

Theorem. ([W3]) One has

ori(L)+ra(L) | D |1/2 2/
Yn,d(D) < ep (V(qn)rl(L)/(qn)V(2qn)f2(L)/(qﬂ))

and
'Yn,d(D) < 7m,d(D)(7n,m(D))d/m (1 <d<m<n- 1).



70

Here Dy, denotes the discriminant of L and r1(L) (resp. r2(L) ) the number of real
(resp. imaginary ) places of L. The constant ep is given by

(w runs over all places of L)

) 2(g—1)n/(qr)

ep = (1'[ max(1, |al,)

if we realize D as a cyclic algebra [L/k,0,a] by a generator o of the Galois group of
L/k and an element a € k.
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