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Introduction.
Most of the ingredients of this article is based on ajoint work with Yoshihiro
Shibata of Waseda University.

Let $\Omega$ be an exterior domain in $\mathbb{R}^{n}$ for $n\geq 3$ with smooth boundary
an. We are concerned with the stationary Navier-Stokes equation with the
Dirichlet boundary condition in $\Omega$ as follows:

$-\Delta_{x}w(x)+(w\cdot\nabla)w(x)+\nabla\pi(x)=f(x)$ in $\Omega$ , (0.1)
$\nabla\cdot w(x)--0$ in $\Omega$ , (0.1)

$w(x)=0$ on an, (0.3)
$w(x)arrow u_{\infty}$ as $|x|arrow\infty$ , (0.4)

where $u_{\infty}$ is asmall constant vector. We are particularly interested in the
behavior of the solution $w(x)$ as $u_{\infty}arrow \mathrm{O}$ with fixed $f(x)$ .

We are also concerned, either in the case $n=3$ or in the case $n\geq 4$ and
$u_{\infty}=0$ , with the non-stationary Navier-Stokes equation with the Dirichlet
boundary condition in $\Omega$ on the whole time interval $\mathbb{R}^{n}$ as follows:

$\frac{\partial v}{\partial t}(t, x)-\Delta_{x}v(x)+(v\cdot\nabla)v(x)+\nabla p(x)=f(t, x)$ in $\mathbb{R}\cross\Omega$ , (0.3)

$\nabla\cdot v(t, x)=0$ in $\mathbb{R}\cross\Omega$ , (0.6)
$v(t, x)=0$ on $\mathbb{R}\cross\partial\Omega$ , (0.7)
$v(t, x)arrow u_{\infty}$ as $|x|arrow\infty$ , (0.1)
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and the Cauchy problem of the above non-stationary problem for the above
system as follows:

$\frac{\partial v}{\partial t}(t, x)-\Delta_{x}v(x)+(v\cdot\nabla)v(x)+\nabla p(x)=f(t, x)$ in $(0, \infty)$ $\cross\Omega$ , (0.9)
$\nabla\cdot$ $v(t, x)=0$ in $(0, \infty)$ $\cross\Omega$ , (0.10)

$v(t, x)=0$ on $(0, \infty)$ $\cross\partial\Omega$ , (0.11)
$v(t, x)arrow u_{\infty}$ as $|x|arrow\infty$ , (0.12)
$v(0, x)=v_{0}(x)$ on 0. (0.13)

Here we assume that the external force $f(t, x)$ depends on the time variable
$t$ and does not decay as $tarrow\infty$ in general. For example, we consider time-
periodic functions or almost periodic functions as $f(t, x)$ . If the external force
$f(t, x)$ is independent of $t$ , the problem (0.5)-(0.8) reduces to the stationary
problem (0.1)-(0.4) above, and the problem (0.9)-(0.13) with $a(x)$ near $u(x)$

above concerns the stability of the stationary solution $u(x)$ .
We first review previous results on (0.1)-(0.4). Shibata [37] considered

the stationary problem (0.1)-(0.4) with small $u_{\infty}\neq 0$ in the case $n=3$ , and
showed that, if $f(x)$ is small enough in an appropriate function space, then
there uniquely exists asmall solution $w(x)\in L^{3}(\Omega)$ of the problem above.
However, if the vector $u_{\infty}$ tends to 0, the assumption on the smallness of
the external force $f(x)$ becomes stronger, and hence one cannot tell the
asymptotic behavior of the solution $w(x)$ of (0.1)-(0.4) in $L^{3}(\Omega)$ as $u_{\infty}arrow \mathrm{O}$

for $f(x)\not\equiv \mathrm{O}$ .
Recently, Galdi and Rabier [12] considered, among others, the same prob-

lem for $u_{\infty}\neq 0$ by using anisotropic spaces of Sobolev type. However, the
vector $u_{\infty}$ is fixed in their argument, and hence one cannot derive the asymp-
totic behavior as $u_{\infty}arrow \mathrm{O}$ .

The difficulty above naturally arises from the fact that, in the case $n=3$ ,
the solution $w(x)$ of the problem (0.1)-(0.4) with $u_{\infty}=0$ , even if it is small
enough, does not belong to the space $L^{3}(\Omega)$ in general, contrary to the case
$u_{\infty}\neq 0$ . In fact, Borchers and Miyakawa [6, Theorem 2.4], Kozono and
Sohr [22, Theorem $\mathrm{C}$] and Kozono, Sohr and Yamazaki [23, Theorem 2, (1)]
showed that the solution $w(x)$ of (0.1)-(0.4) belongs to $L^{3}(\Omega)$ only in very
restricted situations. More detailed references are found in $[25, 26]$ . It follows
that one cannot find the limit of the solution $w(x)$ in the space $L^{3}(\Omega)$ in
general as $u_{\infty}arrow \mathrm{O}$ .

On the other hand, in the case $u_{\infty}=0$ , the problem (0.1)-(0.4) is consid-
ered by many authors. Novotny and Padula [35], Galdi and Simader [13] and
Borchers and Miyakawa [6] proved the following: If the external force enjoys
the condition $|f(x)|\leq c|x|^{-m}$ with sufficiently small $c$ for $m\in[3, n]$ , then
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there exists aunique solution $w(x)$ of (0.1)-(0.4) such that $|w(x)|\leq C|x|^{2-m}$

and that $|\nabla w(x)|\leq C|x|^{1-m}$ . Estimates of this type involving higher or-
der terms are recently obtained by Sverak and Tsai [42]. In other words,
for three-dimensional exterior domains, they proved the unique existence of
physically reasonable solutions in the sense of Finn [7], and obtained sharp
estimates of the solutions and their derivatives. Furthermore, Nazarov and
Pileckas $[33, 34]$ obtained the asymptotic expansion of the solution, the prin-
cipal term in which is homogeneous of order -1. Hence the solution $w(x)$

does not belong to the standard $L^{3}$ space $L^{3}(\Omega)$ in general, but belongs to
the weak-L space $L^{3,\infty}(\Omega)$ , which is slightly larger than $L^{3}(\Omega)$ . Similarly,
the derivative $\nabla w(x)$ belongs to $L^{3/2,\infty}(\Omega)$ but not to $L^{3/2}(\Omega)$ in general.

Later on, by introducing the weak-IS spaces and modifying the $IP$ the re
of Kozono and Sohr [21] for $n\geq 4$ accordingly, Kozono and Yamazaki [25]
showed that, for $f(x)$ of the form $\nabla\cdot F(x)$ such that $F(x)$ is sufficiently small
in $L^{n/2,\infty}(\Omega)$ , the unique existence of the solution $w(x)$ of the problem (0.1)-
(0.4) such that $w(x)\in L^{n,\infty}(\Omega)$ and that $\nabla w(x)\in L^{n/2,\infty}(\Omega)$ with norms
bounded by adefinite constant. The assumption on the external force in this
result generalizes the assumption of [35, 13, 6].

Hence this result implies that, in the case $n=3$ , the class $L^{3,\infty}$ is a
natural generalization of the class of physically reasonable solutions satisfying
$w(x)arrow 0$ as $|x|arrow\infty$ . However, the argument employed in [35, 13, 6, 25]
is essentially different from that of [37] and hence the relationship between
these works still remains unclear. Hence it is very difficult to obtain the
pointwise estimate of the difference of the solution for small $u_{\infty}$ and the
solution for $u_{\infty}=0$ . This difficulty is partly due to the fact that, in the case
$u_{\infty}=\lambda a$ with some vector $a\neq 0$ , the decay rate of the fundamental solution
of the stationary Oseen equation remain unchanged when Atends $\mathrm{t}\mathrm{o}+\mathrm{O}$ .

In order to consider this problem, we give aunified approach for the case
$u_{\infty}\neq 0$ and for the case $u_{\infty}=0$ based on functional analysis and the Lorentz
spaces in this paper. Then we show that, $\mathrm{i}\mathrm{f}|u_{\infty}|$ is sufficiently small and $F(x)$

is sufficiently small in $L^{n/2,\infty}(\Omega)$ , then there uniquely exists asolution $w(x)$

of (0.1)-(0.4) such that $w(x)$ is small in $L^{n,\infty}(\Omega)$ and that $\nabla w(x)$ and $\pi(x)-c$

are small in $L^{n/2,\infty}(\Omega)$ with some constant $c$ . The smallness imposed on $F(x)$

is uniform as $u_{\infty}arrow \mathrm{O}$ . Namely, we generalize the results of [35, 13, 6, 25]
to the case $u_{\infty}\neq 0$ , and at the same time we generalize the result of [37]
to general dimension $n\geq 3$ and relax the conditions on the smallness and
the regularity of $f(x)$ . As aconsequence, we show that the solution $w(x)$

converges to the solution given by [25] in the $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-*\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$ of the space
$L^{n,\infty}(\Omega)$ , and $\nabla w(x)$ and $\pi(x)$ converges in the same way in the $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-*$

topology of the space $L^{n/2,\infty}(\Omega)$ as $u_{\infty}arrow \mathrm{O}$ .
In this paper we assume that the external force $f(x)$ is of potential type

113



namely, $f(x)$ is represented as

$f(x)=(f_{j}(x))_{j=1,\ldots,n}= \nabla\cdot F(x)=(\sum_{k=1}^{n}\frac{\partial F_{jk}}{\partial x_{k}}(x))_{j=1,\ldots,n}$

with atensor function $(F_{jk}(x))_{j,k=1,\ldots,n}$ , and we put $v(x)=w(x)-u_{\infty}$ . As we
shall see in Remark 1.3, many external forces enjoy this assumption. Then
the system (0.1)-(0.4) is transformed into the following system for $v(x)$ ;

$-\Delta_{x}v(x)+(u_{\infty}\cdot\nabla)v(x)+(v(x)\cdot\nabla)v(x)+\nabla\pi(x)=\nabla\cdot F(x)$ in $\Omega$ ,
(0.14)

$\nabla\cdot v(x)=0$ in $\Omega$ ,
(0.15)

$v(x)=-u_{\infty}$ on an,
(0.16)

$v(x)arrow 0$ as $|x|arrow\infty$ .
(0.17)

In order to solve (0.14)-(0.17), we consider the linearization of this system
with the homogeneous boundary condition, which is called the stationary
Oseen equation, as follows:

$-\Delta_{x}u(x)+(u_{\infty}\cdot\nabla)u(x)+\nabla\pi(x)=f(x)$ in $\Omega$ , (0.18)
$\nabla\cdot u(x)=0$ in $\Omega$ , (0.19)

$u(x)=0$ on an, (0.20)
$u(x)arrow 0$ as $|x|arrow\infty$ , (0.21)

and we make afunctional analytic treatment of the system above in the
framework of the Lorentz spaces. In the case $u_{\infty}=0$ , Kozono and Ya-
mazaki [25] made such atreatment by modifying the duality argument em-
ployed in Kozono and Sohr [21]. This argument is based on the homogeneity
of the Stokes operator, and hence is not applicable to our situation. In-
stead we construct the parametrix of the stationary Oseen equation from
the fundamental solution on the whole space by way of the standard cut-0ff
procedure. Our argument is also useful to the study of the situation where
the well-posedness of the stationary Oseen equation fails. (See Section 2.)

We next review previous results on (0.5)-(0.8) and (0.9)-(0.13). Kozono
and Nakao [19] considered the problem (0.5)-(0.8) on $\Omega$ , where 0is the
whole space $\mathbb{R}^{n}$ or the half space $\mathbb{R}_{+}^{n}$ for $n\geq 3$ or an exterior domain in $\mathbb{R}^{n}$
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for $n\geq 4$ , and constructed time-periodic solutions for time-periodic $f(t, x)$

satisfying the assumption

$f(t, \cdot)$ is small in $L^{\infty}(\mathbb{R}:L^{r}(\Omega)\cap\dot{H}_{p}^{-1}(\Omega))$ (0.22)

with some $p<n/2$ and $r>n/3$ . Although in the previously men-
tioned works on the stationary problem (0.1)-(0.4), the conditions on the
smallness of $f(x)$ are given in terms of norms invariant under the scal-
ing $(u, \pi, f)arrow(u_{\lambda}, \pi_{\lambda}, f_{\lambda})$ such that $u_{\lambda}(t, x)=$ Au $(\lambda^{2}t, \lambda x)$ , $\pi_{\lambda}(t, x)=$

$\lambda^{2}\pi(\lambda^{2}t, \lambda x)$ , $f_{\lambda}(t, x)=\lambda^{3}f(\lambda^{2}t, \lambda x)$ , the condition (0.22) is not in the form
above and’much stronger than those for the stationary solutions.

Then Taniuchi [43] proved the stability of the periodic solutions con-
structed in [19] in the space $L^{n}(\Omega)$ . These works treated solutions belonging
to suitable $L^{p}$ spaces. Yamazaki [46] considered the problem on $\mathbb{R}^{n}$ for $n\geq 3$ ,
and generalized the results of $[19, 43]$ for Morrey spaces.

On the other hand, Salvi [36] considered the problem (0.5)-(0.8) on three-
dimensional exterior domains $\Omega$ , and proved the existence of atime-periodic
weak solution with period $T$ for time-periodic $f(t, x)$ with period $T$ satisfying
the assumption

$f(t, \cdot)\in L^{2}([0, T];L^{2}(\Omega)\cap\dot{H}_{2}^{-1}(\Omega))$ . (0.23)

He also showed the existence of atime-periodic strong solution with period
$T$ under the assumption that $f(t, x)$ is small in the class above. Actually he
considered amore general situation; he solved the problem above on three-
dimensional exterior domains with boundary moving periodically with period
$T$ . However, the uniqueness of the periodic solution is not known.

For the existence of weak solutions of the problem (0.1)-(0.4) in the sense
of Leray [28], it suffices to assume $f(x)=\nabla_{x}F(x)$ with some $F(x)\in L^{2}(\Omega)$ ,
and no smallness is necessary. The condition in Salvi [36] seems to be the
composition of this one (condition for the existence of stationary weak s0-

lution) and the condition for the existence of non-stationary weak solution.
(See Leray [28, 29].)F0r the stationary problem (0.1)-(0.4), Galdi [11, Chap-

$\mathrm{t}\mathrm{e}\mathrm{r}9$ , Theorem 9.4] and Miyakawa [31] showed that, if $u(x)$ is aweak solution
and if $\sup_{x\in\Omega}(|x|+1)|u(x)|$ is sufficiently small, then $u(x)$ enjoys the energy
identity, and every weak solution enjoying the energy inequality coincides
with $u(x)$ above. Kozono and Yamazaki [27] proved the same result under
the more general assumption that $||u||_{n,\infty}$ is sufficiently small. In other words,

the uniqueness of weak solutions is proved only for small physically reasonable
solutions, or small solutions in the class generalizing physically reasonable s0-

lutions. Hence it seems to be very difficult to prove the uniqueness of the
solutions given by Salvi [36] without assuming conditions as above.
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More detailed references, including results for bounded domains, the
whole spaces and the half spaces, are given in [45, 19, 36].

We next describe the idea to treat (0.5)-(0.8) and (0.9)-(0.13). Let $w(x)$

denote the solution of the stationary problem (0.1)-(0.4) with the external
force $f(x)$ replaced by $f_{0}(x)$ , and put $u(t, x)=v(t, x)-w(x)$ . Then the
systems (0.5)-(0.8) and (0.9)-(0.13) are rewritten into the following systems
respectively:

$\frac{\partial u}{\partial t}(t, x)-\Delta_{x}u(t,x)+(u_{\infty}\cdot\nabla)u(t, x)$

$+(w(x)\cdot\nabla)u(t, x)+(u(t, x)\cdot\nabla)w(x)$

$+$ $(u(t, x)\cdot$ $\nabla$ ) $u(t, x)+\nabla q(t, x)=g(t, x)$ in $\mathbb{R}\cross\Omega$ , (0.24)
$\nabla\cdot$ $u(t, x)=0$ in $\mathbb{R}\cross\Omega$ , (0.25)

$u(t, x)=0$ on $\mathbb{R}$ $\cross\partial\Omega$ , (0.26)
$u(t, x)arrow 0$ as $|x|arrow\infty$ , (0.27)

and

$\frac{\partial u}{\partial t}(t, x)-\Delta_{x}u(t, x)+(u_{\infty}\cdot\nabla)u(t, x)$

$+(w(x)\cdot\nabla)u(t, x)+(u(t, x)\cdot\nabla)w(x)$

$+(u(t,x)\cdot\nabla)u(t, x)+\nabla q(t, x)=g(t, x)$ in $(0, \infty)$ $\cross\Omega$ , (0.28)
$\nabla\cdot$ $u(t, x)=0$ in $(0, \infty)$ $\cross\Omega$ , (0.29)

$u(t, x)=0$ on $(0, \infty)$ $\cross\partial\Omega$ , (0.30)
$u(t, x)arrow 0$ as $|x|arrow\infty$ , (0.31)
$u(0, x)=u_{0}(x)$ on 0(0.30)

respectively, where $g(t, x)=f(t, x)-f_{0}(x)$ and $u_{0}(x)=v_{0}(x)-w(x)$ .
Throughout this paper we assume that $g(t, x)$ is represented as

$g(t,x)=(g_{j}(t, x))_{j=1,\ldots,n}= \nabla\cdot G(t, x)=(\sum_{k=1}^{n}\frac{\partial G_{jk}}{\partial x_{k}}(t, x))$ .

As amodification of the method of Fujita and Kato [8], Kozono and
Nakao [19] rewrote the system of differential equations (0.24)-(0.27) above
into the integral equation on the interval $(-\infty, t)$ for every $t\in \mathbb{R}$ , and showed
the unique solvability of this integral equation under appropriate assumptions
by successive approximation method which will be discussed later. If $f(x)$ is
independent of $t$ , it suffices to consider the linearization of this system around
the stationary solution $u(x)$ . However, if $f(t, x)$ depends on $t$ , the lineariza-
tion of this system around the solution of (0.24)-(0.27) depends on $t$ , and
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hence the linearization as above becomes difficult to handle. Instead, they
solved the integral equation by regarding the Stokes operator as the principal
part and everything else as the perturbation. However, for the integral on
the infinite interval should converge so that the iteration scheme associated
with the viewpoint above should work, the external force must enjoy decay
property and regularity stronger than those in the case (0.1)-(0.4). Namely,
under our weaker assumption, the convergence is difficult to prove.

Moreover for th$\mathrm{r}\mathrm{e}\mathrm{e}$-dimensional exterior domains, the integral in question
does not converge in $L^{3}(\Omega)$ in general even under the stronger condition in
[19], as is understood from the results of [6, 22, 23]. Hence we must work on
the space $L^{3,\infty}(\Omega)$ instead, as is stated in $[6, 27]$ . But the weak-IP spaces
contain nontrivial homogeneous functions, and the integral in question fails
to converge in the strong topology in any of the weak-L spaces when the
integrand contains such homogeneous functions.

In fact, [19] employed the iteration scheme

$\frac{\partial u_{j+1}}{\partial t}(t, x)-\Delta_{x}u_{j+1}(t, x)+(u_{\infty}\cdot\nabla)u_{j+1}(t, x)+(w(x)\cdot\nabla)u_{j}(t, x)$

$+(u_{j}(t, x)\cdot\nabla)w(x)+(u_{j}(t, x)\cdot\nabla)u_{j}(t, x)+\nabla q_{j+1}(t, x)=g(t, x)$ (0.33)

in order to solve (0.24)-(0.27). This scheme is also employed in Shibata [37]
in order to solve (0.28)-(0.32). On the other hand, in order to solve the
system above, Borchers and Miyakawa [6] and Kozono and Yamazaki [26]
employed asomewhat different iteration scheme

$\frac{\partial u_{j+1}}{\partial t}(t, x)-\Delta_{x}u_{j+1}(t, x)+(u_{\infty}\cdot\nabla)u_{j+1}(t, x)+(w(x)\cdot\nabla)u_{j+1}(t, x)$

$+(u_{j+1}(t, x)\cdot\nabla)w(x)+(u_{j}(t, x)\cdot\nabla)u_{j}(t, x)+\nabla q_{j+1}(t, x)=0$ . (0.34)

Namely, we regard the convection terms as part of the principal terms, and
apply the perturbation theory of linear operators. It is hard to apply the
scheme (0.34) to the case of [19] because of the dependence of $g(t, x)$ on $t$ ,
and to the case of [37] because the spectrum of the $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}-\Delta+(u_{\infty}\cdot\nabla)$

is tangent to the imaginary axis. On the other hand, it was thought that
strong decay conditions are necessary to employ the scheme (0.33). Indeed,
in the case of [37] the term $w(x)$ in the case $u_{\infty}\neq 0$ decays faster than in the
case $u_{\infty}=0$ outside the wake region, and in the case of [19] stronger decay
conditions are imposed on $g(t, x)$ .

Our method is similar to the one in [19] in spirit, but in order to get around
the difficulty above, we show that the integral in question does converge in
the $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-*\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$ of certain weak-L spaces. By using this convergence we
can show that the iteration scheme (0.33) works in all of the cases above. For
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this purpose we employ duality argument, which leads naturally to the notion
of mild solutions. Roughly speaking, amild solution is afunction, bounded in
an appropriate function space, which solves the integral equation associated
with the Navier-Stokes equation in the sense of distributions. As in Kozono
and Yamazaki $[25, 26]$ , the duality between the Lorentz spaces $L_{\sigma}^{n/(n-1),1}(\Omega)$

and $L_{\sigma}^{n/2,\infty}(\Omega)$ plays the most important role. In order to employ in the
duality argument above, we prove asharp version of the II-L estimates of
the non-stationary Oseen semigroup formulated in the Lorentz spaces. This
estimate itself seems to be of interest.

As aresult, for three-dimensional exterior domains as well, we can con-
struct bounded solutions in the whole time, including time-periodic and al-
most periodic solutions under an appropriate assumptions on $f(t, x)$ , which
is unique in asmall ball in $L^{n,\infty}(\Omega)$ and depending continuously on $f(t, x)$ .
We can also show their stability under small initial perturbation in the same
class $L^{n,\infty}(\Omega)$ , which is exactly the same as the unique existence and the
stability class of stationary solutions. Our class of time-dependent solutions
is equipped with anorm invariant under the scaling above, and is anatural
generalization of the class of stationary solutions introduced in [25, 26, 27],
and hence of the class of reasonable stationary solutions satisfying $u(x)arrow 0$

as $|x|arrow\infty$ .
As is seen above, our assumption is more general than those in [19] pos-

sibly except the smallness. On the other hand, neither of our assumption or
the assumption of [36] implies the other. In particular, we need not assume
the square summability of $f(t, x)$ .

The outline of this article is as follows. In Section 1we state our main
results on the stationary problem (0.1)-(0.4). These results are derived from
the results on the linear stationary Oseen equation (0.18)-(0.21), which will
be stated in Section 2. Then we state our main results on the non-stationary
problems (0.24)-(0.27) and (0.28)-(0.32) in Section 3. These results are
derived from sharp estimates of U-L type for the Oseen semigroup in the
Lorentz spaces, which will be described in Section 4.

1Results on the stationary problem.

Before stating our results, we introduce some function spaces. For $1<p<\infty$

and $1\leq q\leq\infty$ , let $II^{q}’(\Omega)$ denote the Lorentz space on $\Omega$ defined by

$L^{p,q}(\Omega)=\{u(x)\in L_{1\mathrm{o}\mathrm{c}}^{1}(\Omega)|||u||_{p,q}<+\infty\}$ ,
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$||u||_{p,q}=( \int_{0}^{+\infty}(s\mu(\{x\in\Omega||u(x)|>s\})^{1/p})^{q}\frac{ds}{s})^{1/q}$

for $1\leq q<\infty$ and

$||u||_{p,q}= \sup_{s>0}s\mu(\{x\in\Omega||u(x)|>s\})^{1/p}$ .

Although the function $||u||_{p,q}$ above does not satisfy the triangle inequal-
ity, there exists anorm equivalent to $||u||_{p,q}$ , and with this norm the space
$L^{p,q}(\Omega)$ becomes aBanach space. Note that the space $U^{p},(\Omega)$ is equivalent
to the standard space $L^{p}(\Omega)$ . For these spaces, real interpolation yields the
equivalence $(U^{\mathrm{o}}(\Omega), L^{p1}(\Omega))_{\theta,q}=L^{p,q}(\Omega)$ , where $1<p_{0}<p<p_{1}<\infty$ and
$0<\theta<1$ satisfy $1/p=(1-\theta)/p_{0}+\theta/p_{1}$ and $1\leq q\leq\infty$ . Note that this
space is determined independently of the choice of $p_{0}$ and $p_{1}$ up to equivalent
norms. (See Bergh and Lofstrom [2] or Triebel [44] for example.) We remark
that, if $1\leq q<\infty$ , the dual of the space $L^{p,q}(\Omega)$ coincides with the space
$L^{p/(p-1),q/(q-1)}(\Omega)$ . Note furthermore that, for $1\leq q<\infty$ , the space $C_{0}^{\infty}(\Omega)$

is dense in $L^{p,q}(\Omega)$ , while it is not so for $If^{\infty},(\Omega)$ . Let $If^{\infty-},(\Omega)$ denote the
closure of $C_{0}^{\infty}(\Omega)$ in $U^{\infty},(\Omega)$ . Then the dual of $L^{p,\infty-}(\Omega)$ coincides with the
space $L^{p/(p-1),1}(\Omega)$ . For every $p\in(1, \infty)$ , we equip the space $IP^{\infty},(\Omega)$ with
the $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-*\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{y}$ as the dual of the space $L^{p/(p-1),1}(\Omega)$ .

Next, for $1<p<\infty$ , put

$\dot{H}_{p}^{1}(\Omega)=\{u(x)\in L_{1\mathrm{o}\mathrm{c}}^{p}(\Omega)|\nabla u\in L^{p}(\Omega)\}$ ,

and let this spece equip with the norm $||\nabla\cdot||_{p}$ , where $||\cdot||_{p}$ is the norm of the
usual $L_{p}$ space on Q. Then the set

$\{\varphi(x)|_{\Omega}|\varphi(x)\in C_{0}^{\infty}(\mathbb{R}^{n})\}$

is dense in $\dot{H}_{p}^{1}(\Omega)$ . Since $\Omega$ is an exterior domain, the space $\dot{H}_{p}^{1}(\Omega)$ is strictly
larger than the usual Sobolev space $H_{p}^{1}(\Omega)$ . It follows that

$\dot{H}_{p}^{1}(\Omega)\subset L^{np/(n-p)}(\Omega)$ for $p\in(1, n)$ . (1.1)

Furthermore, for $1<p<\infty$ and $1\leq q\leq\infty$ , we define the function spaces
$H_{p,q}^{1}(\Omega)$ and $\dot{H}_{p,q}^{1}(\Omega)$ respectively by way of real interpolation as follows:

$H_{p,q}^{1}(\Omega)=(H_{p0}^{1}(\Omega), H_{p_{1}}^{1}(\Omega))_{\theta,q}$ and $\dot{H}_{p,q}^{1}(\Omega)=(\dot{H}_{p0}^{1}(\Omega),\dot{H}_{p_{1}}^{1}(\Omega))_{\theta,q}$ ,

where $1<p_{0}<p<p_{1}<\infty$ and $0<\theta<1$ satisfy $1/p=(1-\theta)/p_{0}+\theta/p_{1}$ .
Note that these spaces are determined independently of the choice of $p_{0}$ and

119



$\mathrm{P}\ovalbox{\tt\small REJECT}$ up to equivalent norms. Note furthermore that, for 1 $\ovalbox{\tt\small REJECT}$ q $<\mathrm{o}\mathrm{o}$ , the spaces
$H_{\ovalbox{\tt\small REJECT}}\ovalbox{\tt\small REJECT}_{q},(*)$ and $H\ovalbox{\tt\small REJECT}_{q},(\mathrm{O})$ coincide with the completion of the space C70(0) with
respect to the norm $||\mathrm{V}\cdot||_{p,q}+||\cdot||_{p,q}$ and that with respect to the norm $||\mathrm{V}\cdot||_{p,q}$

respectively. Prom (1.1) and real interpolation we have the inclusion relation

$\dot{H}_{p,q}^{1}(\Omega)\subset L^{np/(n-p),q}(\Omega)$ for p $\in(1,$n) and q $\in[1, \infty]$ . (1.2)

Even in the case q $=p$ this relation improves (1.1). We moreover have

$\dot{H}_{n,1}^{1}(\Omega)\subset L^{\infty}(\Omega)$ (1.3)

We next define the notion of solutions of (0.14)-(0.17) employed in this paper.

Definition 1. Suppose that $v(x)=(v_{1}(x), \ldots, v_{n}(x))$ is avector-valued
function on $\Omega$ such that $v(x)\in(L_{1\mathrm{o}\mathrm{c}}^{2}(\overline{\Omega}))^{n}$ , Vtz(x) $\in(L_{1\mathrm{o}\mathrm{c}}^{2}(\overline{\Omega}))^{n^{2}}$ and $\pi(x)\in$

$L_{1\mathrm{o}\mathrm{c}}^{2}(\overline{\Omega})$ . We moreover assume that the functions $v_{1}(x)$ , $\ldots$ , $v_{n}(x)$ , $\pi(x)$ can
be extended to tempered distributions on $\mathbb{R}^{n}$ . Then we say that the pair
$(v(x), \pi(x))$ is asolution of (0.14)-(0.17) if they enjoy (0.14) in the sense
that the identity

$(v(x), \Delta\varphi(x))+(v(x), (u_{\infty}\cdot\nabla)\varphi(x))+(v(x)\otimes v(x), \nabla\varphi(x))+(\pi(x), \nabla\cdot\varphi(x))$

$=(F(x), \nabla\varphi(x))$ (1.4)

holds for every $\varphi(x)\in(C_{0}^{\infty}(\Omega))^{n}$ , and if $v(x)$ enjoys (0.15) in the sense of
distributions on $\Omega$ , (0.16) in the usual sense, and if (0.17) in the sense that

$\lim_{Rarrow\infty}R^{-n}\int_{R\leq|x|\leq 2R}|v(x)|^{r}dx=0$ (1.5)

holds for some r $\in(1, \infty)$ . Here $v(x)\otimes v(x)$ and $\nabla\varphi(x)$ denote the tensors
$(vj(x)v_{k}(x))_{j,k=1}^{n}$ and $(\partial\varphi_{k}(x)/\partial x_{j})_{j,k=1}^{n}$ respectively.

Remark 1.1. If (1.5) holds for some $r=r_{0}$ , then (1.5) holds for every $r\in$

$(1, r_{0}]$ . Indeed, H\"older’s inequality implies that

$R^{-n} \int_{R\leq|x|\leq 2R}|v(x)|’dx\leq R^{-n}(CR^{n})^{1-r/r_{0}}(\int_{R\leq|x|\leq 2R}|v(x)|^{r0}dx)^{r/r_{0}}$

$\leq C(R^{-n}\int_{R\leq|x|\leq 2R}|v(x)|^{r_{0}}dx)^{r/r_{0}}$

Then we have the following uniqueness theorem.
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Theorem 1.1. There exist positive constants $C_{0}$ and $e_{\mathit{1}}$ such that, for every
$u_{=}\mathrm{C}$

$\mathrm{R}^{\mathrm{n}}$ such that $|\ovalbox{\tt\small REJECT}_{-}|<\mathrm{E}_{1}$ and every $F\ovalbox{\tt\small REJECT} x$), the solution $(\ovalbox{\tt\small REJECT}(\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}), \ovalbox{\tt\small REJECT}(\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}))$ of
(0.14)-(0.17) such that $v(x)$ cE $L^{n_{?}}"(0)$ satisfying the inequality

$||v||_{n,\infty}\leq C_{0}$ (1.6)

is at most unique up to the constant difference of $\pi(x)$ .

On the other hand, we have the following existence theorem.

Theorem 1.2. There exist positive constants $\delta_{1}$ and $\epsilon_{2}\leq\epsilon_{1}$ such that,

for every $u_{\infty}\in \mathbb{R}^{n}$ such that $|u_{\infty}|<\epsilon_{2}$ and every $F(x)\in(L^{n/2,\infty}(\Omega))^{n^{2}}$

such that $||F||_{n/2,\infty}<\delta_{1}$ , there uniquely exists a solution $(v(x), \pi(x))\in$

$(\dot{H}_{n/2,\infty}^{1}(\Omega))^{n}\cross L^{n/2,\infty}(\Omega)$ of (0.14)-(0.17) satisfying the estimate (1.6).
Furthermore, this solution enjoys the stronger estimate

$||v||_{n,\infty}+||\nabla v||_{n/2,\infty}+||\pi||_{n/2,\infty}\leq C_{1}$ . (1.7)

Remark 1.2. Theorem 1.2 holds both for $u_{\infty}=0$ and $u_{\infty}\neq 0$ . Moreover, the
constants $\delta_{1}$ can be taken uniformly in $u_{\infty}$ as $|u_{\infty}|arrow \mathrm{O}$ .

In order to verify the assumptions of the theorems above, it is worth
finding conditions on $f(x)$ sufficient for the existence of $F(x)\in(U^{q},(\mathbb{R}^{n}))^{n^{2}}$

such that $f(x)=\nabla\cdot F(x)$ . If $f(x)\in L^{r,q}(\mathbb{R}^{n})$ holds with some $r\in(1, n)$ and
$q\in[1, \infty]$ , then we see by Young’s inequality and real interpolation that the
function $g(x)=(g_{1}(x), \ldots, g_{n}(x))$ defined by $g(x)=c_{n}(x/|x|^{n})*f$ satisfies
$\nabla\cdot g(x)=f(x)$ , and we have $g(x)\in(L^{nr/(n-r),q}(\mathbb{R}^{n}))^{n}$ In the same way,
if $f(x)\in L^{1}(\mathbb{R}^{n})$ we have $g(x)\in L^{n/(n-1),\infty}(\mathbb{R}^{n})$ , and if $f(x)\in L^{n,1}(\mathbb{R}^{n})$ we
have $g(x)\in L^{\infty}(\mathbb{R}^{n})$ . Hence we see the next remark.

Remark 1.3. We have the following assertions:

(1) If $f(x)$ $\in$ $(L^{1}(\Omega))^{n}$ , then there exists afunction $F(x)$ $\in$

$(L^{n/(n-1),\infty}(\Omega))^{n^{2}}$ such that $f(x)=\nabla\cdot F(x)$ .

(2) If $f(x)\in(L^{p,q}(\Omega))^{n}$ with some $p\in(1, n)$ and $q\in[1, \infty]$ , then there

exists afunction $F(x)\in(U^{n/(n-p),q}(\Omega))^{n^{2}}$ such that $f(x)=\nabla\cdot$ $F(x)$ .

(3) If $f(x)\in(L^{n,1}(\Omega))^{n}$ , then there exists afunction $F(x)\in(L^{\infty}(\Omega))^{n^{2}}$

such that $f(x)=\nabla\cdot F(x)$ .

If the external force $F(x)$ has better regularity, or decay property in the
case $n\geq 4$ , the solution $(v(x), \pi(x))$ has better regularity or decay property
accordingly. Namely, we have the following theorem.
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Theorem 1.3. Let $p$ and $q$ satisfy either one of the following conditions:

(1) p $=n/(n$ -1), q $=\infty$ .

(2) $n/(n-1)<p<n$ , $1\leq q\leq\infty$ .

(3) p $=n$, q $=1$ .
Then there exist positive constants $\delta_{2}\leq\delta_{1}$ and $\epsilon_{3}\leq\epsilon_{2}$ such that, if $|u_{\infty}|<$

$-_{2}$

$\epsilon_{3}$ and if the external force $F(x)$ enjoys $F(x)\in(L^{n/2,\infty}(\Omega)\cap L^{p,q}(\Omega))^{n}$

and $||F||_{n/2,\infty}<\delta_{2}$ , the solution $(v(x), \pi(x))$ given in Theorem 1.2 enjoys
$v(x)\in(\dot{H}_{p,q}^{1}(\Omega))^{n}$ and $\pi(x)\in L^{p,q}(\Omega)$ as well

Remark 1.4. Either in the case $p<n/2$ or in the case $p=n/2$ and $q<$
$\infty$ , Theorem 1.3 asserts that $v(x)$ decays better than in the conclusion of
Theorem 1.2, and either in the case $p>n/2$ or in the case $p=n/2$ and
$q<\infty$ , Theorem 1.3 asserts that $v(x)$ is more regular than in the conclusion
of Theorem 1.2. In the case $n=3$ , we must have $p\geq n/(n-1)=n/2$ , and
the equality holds only in the case $q=\infty$ . Hence we cannot expect better
decay result which holds uniformly in $u_{\infty}$ as $u_{\infty}arrow \mathrm{O}$ .
Remark 1.5. In particular, we can take $p=q=n/2$ in the case $n\geq 4$ ,
and in this case our results reads as follows: If $F(x)\in(L^{n/2}(\Omega))^{n^{2}}$ and
is sufficiently small in $(L^{n/2,\infty}(\Omega))^{n^{2}}$ , then there uniquely exists asolution
$(v(x), \pi(x))\in(\dot{H}_{n/2}^{1}(\Omega))^{n}\cross L^{n/2}(\Omega)$ of (0.14)-(0.17) which is sufficiently

small in $(\dot{H}_{n/2,\infty}^{1}(\Omega))^{n}\cross L^{n/2,\infty}(\Omega)$ . Putting $u_{\infty}=0$ as aparticular case
of this result, we obtain aslight improvement of the result of Kozono and
Sohr [21] on the smallness of external forces and solutions.

Either in the case $n\geq 4$ or in the case $n=3$ and $u_{\infty}\neq 0$ , we have the
following proposition, which is another slight improvement of Theorem 1.2,

Proposition 1.4. Suppose that either $n\geq 4$ , $|u_{\infty}|<\epsilon_{2}$ or $n=3$,
0 $<$ $|u_{\infty}|$ $<\epsilon_{2}$ . Suppose moreover that $F(x)\in$ $(L^{n/2,\infty-}(\Omega))^{n^{2}}$ and
$||F||_{n/2,\infty}<\delta_{1}$ , and let $(v(x), \pi(x))$ denote the solution of (0.14)-(0.17)
given in Theorem 1.2. Then we have $v(x)\in(L^{n,\infty-}(\Omega))^{n}$

Remark 1.6. We cannot generalize Proposition 1.4 to the case $n=3$ and
$u_{\infty}=0$ , as we shall see in Proposition 1.6.

As is stated in the Introduction, we can show the $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-*\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{u}\mathrm{o}\mathrm{u}\mathrm{s}$

dependence of the stationary solution on $u_{\infty}$ including the case $u_{\infty}=0$ .
Namely, we have the following theorem
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Theorem 1.5. Fix $F(x)\in(L^{n/2,\infty}(\Omega))^{n^{2}}$ and $a\in \mathbb{R}^{n}$ such that $||F||_{n/2,\infty}<$

$\delta_{1}$ and that $|a|<\epsilon_{2}$ . For $u_{\infty}\in \mathbb{R}^{n}$ such that $|u_{\infty}|<\epsilon_{2}$ , let $(v_{u_{\infty}}(x), \pi_{u_{\infty}}(x))$

denote the solution given in Theorem 1.2. Then the function $v_{u_{\infty}}(x)$ con-
verges to $v_{a}(x)$ in the $weak-*topology$ of $L^{n,\infty}(\Omega)$ , and the functions $\nabla v_{u_{\infty}}(x)$

and $\pi_{u_{\infty}}(x)$ converge to $\nabla v_{a}(x)$ and $\pi_{a}(x)$ respectively in the $weak-*topology$

of $L^{n/2,\infty}(\Omega)$ as $u_{\infty}arrow a$ . Moreover, for every $p<n$ , the function $v_{u}(\infty x)$

converges to $v_{a}(x)$ strongly in $L_{1\mathrm{o}\mathrm{c}}^{p}(\Omega)$ as $u_{\infty}arrow a$;namely, for every bounded
open set $U$ such that $\overline{U}\subset\Omega$ , the function $v_{u_{\infty}}(x)$ converges to $v_{a}(x)$ strongly
in $U(U)$ as $u_{\infty}arrow a$ .

It is natural to ask whether the $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}-*\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$can be replaced by the
strong convergence or the weak convergence in the conclusion of the theorem
above, but it seems to be impossible in the case $n=3$ and $a=0$ , as can
be seen from Proposition 1.4 and the next proposition, together with the
fact that astrongly closed subspace of aBanach space is also weakly closed,
which is adirect consequence of the Hahn-Banach theorem. This proposition
is aslight generalization of Theorem 2of Kozono, Sohr and Yamazaki [23].

Proposition 1.6. Suppose that $n=3$, $u_{\infty}=0$ and $F(x)\in(L^{2}(\Omega))^{3^{2}}$ ,
and let $(v(x), \pi(x))$ be a weak solution of (0.14)-(0.17); namely, the identity
(1.4) holds for every $\varphi(x)\in(C_{0}^{\infty}(\Omega))^{n}$ . Define $T(x)=\{T_{jk}(x)\}_{j,k=1}^{3}$ by the
formula

$T_{jk}(x)= \frac{\partial v_{k}}{\partial x_{j}}(x)+\frac{\partial v_{j}}{\partial x_{k}}(x)-\delta_{jk}\pi(x)$ .

Then we have the following assertions:

(1) The boundary integral

$S= \int_{\partial\Omega}(T(x)+F(x))\cdot\nu(x)dS(x)$

is well-defined in a generalized sense. Here $\nu(x)$ denotes the outer unit
normal vector to an at $x$ .

(2) If $F(x)$ belongs to the class $(L^{3/2,\infty-}(\Omega))^{3^{2}}$ as well and if $v(x)\in$

$(L^{3,\infty-}(\Omega))^{3}$ , then we have $S=0$ .

The results in this section are derived from the results on the linear sta-
tionary Oseen equation (0.18)-(0.21) on the exterior domain given in the
next section. Detailed methods of derivation, together with the proofs of the
results in the next section, are given in Shibata and Yamazaki [38]
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2 Solvability of the Oseen equation.
This section is devoted to the proof of the solvability and the uniqueness
of the Oseen system (0.18)-(0.21) in the exterior domain $\Omega$ in $\mathbb{R}^{n}$ . We first
prove the following uniqueness theorem for this system.

Theorem 2.1. Let $(u(x), \pi(x))$ be a solution of the system (0.18)-(0.20)
with $F(x)\equiv 0$ such that $u(x)\in(L_{1\mathrm{o}\mathrm{c}}^{r}(\Omega))^{n}$ , Vu(x) $\in(L_{1\mathrm{o}\mathrm{c}}^{r}(\Omega))^{n^{2}}$ and
$\pi(x)\in L_{1\mathrm{o}\mathrm{c}}^{r}(\Omega)$ hold with some $r>1$ , and that $u_{1}(x)$ , $\ldots$ , $\mathrm{u}\{\mathrm{x}$ ) $\mathrm{F}\{\mathrm{x}$ ) can
be extended to tempered distributions on $\mathbb{R}^{n}$ . Suppose moreover that (0.21)
holds in the sense that the condition (1.5) with $v(x)$ replaced by $u(x)$ ;namely,
the condition

$\lim_{Rarrow\infty}R^{-n}\int_{R\leq|x|\leq 2R}|u(x)|^{r}dx=0$ (2.1)

holds for some r $\in(1, \infty)$ . Then we have $u(x)\equiv 0$ and $\pi(x)\equiv c$ with some
constant c.

The next theorem is ageneral existence theorem.

Theorem 2.2. Suppose that $1<p<\infty$ and $1\leq q\leq\infty$ . Then there exist
positive numbers $C=C(n,p, q, \Omega)$ and $\epsilon_{0}$ such that, for every $u_{\infty}\in \mathbb{R}^{n}$

such that $|u_{\infty}|\leq\epsilon_{0}$ and for every $F(x)\in(L^{p,q}(\Omega))^{n^{2}}$ , there exists a solution
$(u(x), \pi(x))$ of (0.18)-(0.20) of the form $\mathrm{u}\{\mathrm{x}$ ) $=\mathrm{u}\{\mathrm{x}$ ) $+u_{2}(x)$ and $\pi(x)=$
$\pi_{1}(x)+\pi_{2}(x)$ satisfying the estimates

$||\nabla u_{1}||_{p,q}+||\pi_{1}||_{p,q}\leq C||F||_{p,q}$ (2.2)

and

$||\nabla u_{2}||_{n/(n-1),\infty}+||u_{2}||_{n/(n-2),\infty}+||\pi_{2}||_{n/(n-1),\infty}$

$+||\nabla^{2}u_{2}||_{p,q}+||\nabla\pi_{2}||_{p,q}\leq C||F||_{p,q}$ . (2.3)

Remark 2.1. The solution above is not uniquely determined without the
condition (0.21). However, for general $p$ and $q$ , none of the solutions of
(0.18)-(0.20) enjoy (0.21) in general. In other words, the problem above is
not well-posed, with or without the boundary condition at infinity, for all $p$

and $q$ .
Either in the case $1<p<n$ or the case $p=n$ and $q=1$ , the problem

above becomes well-posed if we add the condition (0.21) as the boundary
condition at infinity. Namely, we have the following theorem.
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Theorem 2.3. Suppose that either $1<p<n$ and $1\leq q\leq\infty$ , or $p=n$ and
$q=1$ . Then there exist positive numbers $C=C(n,p, q, \Omega)$ and $\epsilon_{0}$ such that,

for every $u_{\infty}\in \mathbb{R}^{n}$ such that $|u_{\infty}|\leq\epsilon_{0}$ and for every $F(x)\in(L^{p,q}(\Omega))^{n^{2}}$ ,
there uniquely exists a solution $(u(x), \pi(x))$ of (0.18)-(0.20) of the form
$u(x)=u_{1}(x)+u_{2}(x)$ and $\pi(x)=\pi_{1}(x)+\pi_{2}(x)$ satisfying the estimates

$||\nabla u_{1}||_{p,q}+||u_{1}||_{np/(n-p),q}+||\pi_{1}||_{p,q}\leq C||F||_{p,q}$ if $1<p<n$ ,
(2.4)

$||\nabla u_{1}||_{n,1}+||u_{1}||_{\infty}+||\pi_{1}||_{n,1}\leq C||F||_{n,1}$ if $p=n$, $q=1$

and (2.3). Moreover, the solution $u(x)$ enjoys (2.1) for every $r$ such that
$1<r<np/(n-p)$ provided $1<p<n$ , and for every $r$ such that $1<r<\infty$

if $p=n$ and $q=1$ .

If $p$ is not very near to 1, then we see that the functions $u_{2}(x)$ and $\pi_{2}(x)$

enjoy the same estimates as $u_{1}(x)$ and $\pi_{1}(x)$ . As aresult we have the following
corollary.

Corollary 2.4. Suppose that one of the following conditions holds:

(1) $p=n/(n-1)$ , $q=\infty$ .

(2) $n/(n-1)<p<n$ , $1\leq q\leq\infty$ .

(3) $p=n$ , $q=1$ .

Then there exists a positive number $C’=C’(n,p, q, \Omega)$ such that, for ev-
$eryu_{\infty}$ and every $F(x)$ as in Theorem 2.3, there uniquely exists a solution
$(u(x), \pi(x))$ of (0.18)-(0.20) satisfying the estimates

$||\nabla u||_{p,q}+||u||_{np/(n-p),q}+||\pi||_{p,q}\leq C’||F||_{p,q}$ in the case (1) or (2),
(2.5)

$||\nabla u||_{n,1}+||u||_{\infty}+||\pi||_{n,1}\leq C’||F||_{n,1}$ in the case (3).

and (2.3). Moreover, the solution $u(x)$ enjoys (2.1) for every $r$ as in TheO-
rem 2.3.

3Results on the non-stationary problems.

In this section we assume either $n=3$ , or $n\geq 4$ and $u_{\infty}=0$ . Before stating
our result, we introduce some notations. For every $1<p<\infty$ , we have the
Helmholtz decomposition $(L^{p}(\Omega))^{n}=U_{\sigma}(\Omega)\oplus G^{p}(\Omega)$ , where

$L_{\sigma}^{p}(\Omega)=$ { $u(x)\in(L^{p}(\Omega))^{n}|\mathrm{d}\mathrm{i}\mathrm{v}u(x)\equiv 0$ in $\Omega$ and $\nu\cdot$ $u(x)\equiv 0$ on $\partial\Omega$ }
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$G^{p}(\Omega)=$ { $u(x)=\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}f(x)\in(L^{p}(\Omega))^{n}$ for some $f(x)\in L_{1\mathrm{o}\mathrm{c}}^{p}(\Omega)$ }.
For the proof, see Fujiwara and Morimoto [9], Miyakawa [30] and Simader and
Sohr [39]. Let $P_{p}$ denote the projection operator from $(L^{p}(\Omega))^{n}$ onto $L_{\sigma}^{p}(\Omega)$

along $G^{p}(\Omega)$ . Then the dual of the operator $P_{p}$ coincides with $P_{p/(p-1)}$ . In
particular, the operator $P_{2}$ is an orthogonal projection in the Hilbert space
$(L^{2}(\Omega))^{n}$

We next generalize the Helmholtz decomposition to the Lorentz spaces fol-
lowing Miyakawa and Yamada [32]. We have $P_{p}=P_{q}$ on $(L^{p}(\Omega))^{n}\cap(L^{q}(\Omega))^{n}$

and hence we can extend $P_{p}$ as aprojection operator $P$ in $( \sum_{1<p<\infty}L^{p}(\Omega))^{n}$

It follows that $P$ is also aprojection in $(L^{p,q}(\Omega))^{n}$ . Let $(U^{q},(\Omega))^{n}=L_{\sigma}^{p,q}(\Omega)\oplus$

$G^{p,q}(\Omega)$ denote the associated direct sum decomposition. Then, for $u_{\infty}\in \mathbb{R}^{n}$ ,
we define the Oseen operator $A_{u_{\infty}}$ by the formula $A_{u_{\infty}}=P(-\Delta+(u_{\infty}\cdot\nabla))$ .
In particular, the operator $A_{0}$ is called the Stokes operator.

Note furthermore that, for $1\leq q<\infty$ , the space $C_{0,\sigma}^{\infty}(\Omega)$ consisting
of all the smooth solenoidal vector fields with compact support in $\Omega$ is
dense in $L_{\sigma}^{p,q}(\Omega)$ , and we can regard $L_{\sigma}^{p/(p-1),q/(q-1)}(\Omega)$ as the dual space
of $L_{\sigma}^{p,q}(\Omega)$ . The dual of the closure of $C_{0,\sigma}^{\infty}(\Omega)$ in $L^{p,\infty}(\Omega)$ coincides with
the space $L_{\sigma}^{p/(p-1),1}(\Omega)$ . In view of the duality above, the dual of the Oseen
operator $A_{u_{\infty}}$ coincides with $A_{-u_{\infty}}$ .

In order to introduce the notion of mild solution, we define some function
classes. Put $\mathcal{K}=BUC(\mathbb{R}, L_{\sigma}^{n,\infty}(\Omega))$ and $\mathcal{L}=BUC(\mathbb{R},$ $(L^{n/2,\infty}(\Omega))^{n^{2}})$ ,
where $BUC(\mathbb{R}, X)$ denotes the set of bounded and uniformly contin-
uous functions on $\mathbb{R}$ , equipped with the norm $||f|BUC(\mathbb{R}, X)||$ $=$

$\sup_{t\in \mathrm{R}}||f(t, \cdot)|X||$ . Next, put $\mathcal{K}_{+}$ $=$ $BC(\mathbb{R}_{+}, L_{\sigma}^{n,\infty}(\Omega))$ and $\mathcal{L}_{+}$ $=$

$BC$ ($\mathbb{R}_{+}$ , $(L^{n/2,\infty}(\Omega))^{n^{2}}$), where $BC(\mathbb{R}_{+}, X)$ denotes the set of bounded con-
tinuous functions on $\mathbb{R}_{+}$ with values in the Banach space $X$ , equipped with
the norm $||f|BC( \mathbb{R}_{+},X)||=\sup_{t\in \mathbb{R}}+||f(t, \cdot)|X||$ .
Definition 2. Afunction $u(t, x)\in \mathcal{K}$ is said to be amild solution of the
system (0.24)-(0.27) if the identity

$(u(t, \cdot)$ , $\varphi)=\sum_{j,k=1}^{n}\int_{0}^{+\infty}$

$(w_{j}(\cdot)u_{k}(t-\tau, \cdot)+u_{k}(t-\tau, \cdot)w_{k}(\cdot)+u_{j}(t-\tau, \cdot)u_{k}(t-\tau, \cdot)-G_{jk}(t-\tau, \cdot)$ ,

$\frac{\partial}{\partial x_{j}}(\exp(-\tau A_{-u_{\infty}})\varphi)_{k})d\tau$ (3.1
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holds for every $\varphi\in L_{\sigma}^{n/(n-1),1}(\Omega)$ and every $t\in \mathbb{R}$ .

Definition 3. Afunction $u(t, x)\in \mathcal{K}_{+}$ is said to be amild solution of the
system (0.28)-(0.32) if the identity

$(u(t, \cdot)$ , $\varphi)=(u_{0}, \exp(-tA_{-u_{\infty}})\varphi)+\sum_{j,k=1}^{n}\int_{0}^{t}$

$(w_{j}(\cdot)u_{k}(t-\tau, \cdot)+u_{k}(t-\tau, \cdot)w_{k}(\cdot)+u_{j}(t-\tau, \cdot)u_{k}(t-\tau, \cdot)-G_{jk}(t-\tau, \cdot)$ ,

$\frac{\partial}{\partial x_{j}}(\exp(-\tau A_{-u_{\infty}})\varphi)_{k})d\tau$ (3.2)

holds for every $\varphi\in L_{\sigma}^{n/(n-1),1}(\Omega)$ and every $t>0$ .

Remark 3.1. As is explained in the introduction, the relations (3.1) and (3.2)
are the weak form of the integral equations

$u(t)= \int_{0}^{+\infty}\exp(-\tau A_{u_{\infty}})[-P[(w\cdot\nabla)u(t-\tau, \cdot)+(u(t-\tau, \cdot)\cdot\nabla)w$

$+(u(t-\tau, \cdot)\cdot\nabla)u(t-\tau, \cdot)-\nabla F(t-\tau, \cdot)]d\tau$

(3.3)

and

$u(t)=\exp(-tA_{u_{\infty}})u_{0}+$

$\int_{0}^{t}\exp(-\tau A_{u_{\infty}})[-P[(w\cdot\nabla)u(t-\tau, \cdot)+(u(t-\tau, \cdot) \cdot\nabla)w$

$+(u(t-\tau, \cdot)\cdot\nabla)u(t-\tau, \cdot)-\nabla F(t-\tau, \cdot)]d\tau$

(3.4)

respectively, if we regard the terms $(w\cdot\nabla)u(t-\tau, \cdot)$ and so forth as an
element of the space above by way the duality pairing $((w\cdot\nabla)u(t-\tau, \cdot), \varphi)=$

$-$ $(w\otimes u(t-\tau, \cdot), \nabla\varphi)$ and so forth for $\varphi\in C_{0,\sigma}^{\infty}(\Omega)$ .

Then our main result is the following theorem.

Theorem 3.1. There exist positive numbers $A,$ $\epsilon$ and $C_{0}$ depending on
$n$ and $\Omega$ such that, if $w(x)$ is the stationary solution of (0.1)-(0.4) with
$f(x)$ replaced by $f_{0}(x)$ such that $w(x)-u_{\infty}\in L^{n,\infty}(\Omega)$ with the estimate
$||w-u_{\infty}||_{n,\infty}<\epsilon$ , then the following statements hold
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(1) For every $G(t, x)\in \mathcal{L}$ such that $||F|\mathcal{L}||<\epsilon$ , there exists one and only
one mild solution $u(t,x)\in \mathcal{K}$ of the system (0.24)-(0.27) with $g(t, x)=$
$\nabla G(t, x)$ such that $||u|\mathcal{K}||<A$ . Moreover, for every $\delta\in(0, \epsilon)$ , the
mapping $T$ from the closed ball in $\mathcal{L}$ centered at the origin with radius
6to 7( defined by $T(G)=u$ is uniformly continuous. Furthermore,
the function $u(t, x)$ is the only solution of (0.24)-(0.27) in the sense of
distributions in $\mathbb{R}\cross\Omega$ such that $u(t, x)\in \mathcal{K}$ with $||u|\mathcal{K}||<A$ . Namely,
the function $u(t, x)$ is the only one satisfying the estimate $||u|\mathcal{K}||<A$

and the identity

$\frac{d}{dt}$ $(u(t, \cdot)$ , $\varphi)=(u(t, \cdot),$ $\Delta\varphi)+$

$\sum_{j,k=1}^{n}$ ($w_{j}u_{k}(t, \cdot)+u_{j}(t, \cdot)w_{k}+u_{j}(t, \cdot)u_{k}(t, \cdot)-G_{jk}(t$ , $\cdot$ $)$ , $\frac{\partial\varphi_{k}}{\partial x_{j}}$) (3.5)

for every $\varphi(x)\in C_{0,\sigma}^{\infty}(\Omega)$ and every $t\in \mathbb{R}$ .

(2) For every $G(t,x)\in \mathcal{L}_{+}$ and every $u_{0}(x)\in L_{\sigma}^{n,\infty}$ such that $C_{0}||u_{0}||_{n,\infty}+$

$||G|\mathcal{L}_{+}||<\epsilon$ , there exists one and only one mild solution $u(t, x)\in$

$\mathcal{K}_{+}$ of the system (0.28)-(0.32) with $g(t, x)=\nabla G(t, x)$ such that
$||u|\mathcal{K}_{+}||<A$ . Moreover, for every $\delta\in(0, \epsilon)$ , the mapping $T_{+}$ from
the set $\{$ $(G(t, x)$ , $u_{0})|||G|\mathcal{L}_{+}||+C_{0}||u_{0}||_{n,\infty}\leq\delta\}$ to $\mathcal{K}_{+}$ defined by
$T_{+}(G, u_{0})=u$ is uniformly continuous. Furthermore, the function
$u(t, x)$ is the only solution of the (0.28)-(0.32) in the sense of distribu-
tions in $\mathbb{R}_{+}\cross\Omega$ such that $u(t, x)\in \mathcal{K}_{+}$ with $||u|\mathcal{K}_{+}||<A$ . Namely, the
function $u(t, x)$ is the only one satisfying the estimate $||u|\mathcal{K}_{+}||<A$ ,
the identity (3.5) for every $\varphi(x)\in C_{0,\sigma}^{\infty}(\Omega)$ and every $t>0$ , and

$(u(t, \cdot)$ , $\varphi)arrow(u_{0}, \varphi)$ as $tarrow+\mathrm{O}$ (3.6)

for every $\varphi(x)\in C_{0,\sigma}^{\infty}(\Omega)$ .
As an application to the unique existence of time periodic and almost

periodic solutions, we have the following result.

Corollary 3.2. Suppose that $u(t, x)\in \mathcal{K}$ is the unique mild solution such
that $||u|\mathcal{K}||<A$ . Then we have the following assertions:

(1) If $G(t$ , $\cdot$ $)$ is time-periodic with period $T$ , then the unique mild solution
$u(t, x)$ such that $||u|\mathcal{K}||<A$ is also time-periodic with period $T$ .

(2) If $G(t$, $\cdot$ $)$ is almost periodic with respect to $t\in \mathbb{R}$, then the unique
mild solution $u(t, x)$ such that $||u|\mathcal{K}||<A$ is also almost periodic with
respect to $t\in \mathbb{R}$ .
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Remark 3.2. For three-dimensional exterior domains, the best spatial decay
condition expected in general is $u(t, \cdot)\in L^{3,\infty}(\Omega)$ . On the other hand, if we
put $u(t, x)=U(x)$ with some homogeneous function $U(x)$ of degree -1 on
$\mathbb{R}^{3}$ such that $U(x)\in L^{3,\infty}(\mathbb{R}^{3})$ , the function $V(\tau, x)$ defined by the formula
$V(\tau, \cdot)=\exp(-\tau A)\nabla(U\otimes U)$ is forward self-similar; namely, it enjoys the
equality $V(\lambda^{2}\tau, \lambda x)=\lambda^{-3}V(\tau, x)$ for every $\lambda$ , $\tau>0$ and $x\in \mathbb{R}^{3}$ . It follows
that

$||V( \tau, \cdot)||_{q,\infty}=(\frac{1}{\sqrt{\tau}})^{3}||V(1,)\overline{\sqrt{\tau}}||_{q,\infty}=C\tau^{3/2q-3/2}$

for every $q\in(1, \infty)$ . We thus conclude that the right-hand side of (3.3) in
Remark 3.1 is not Bochner integrable in $L^{q,\infty}$ for any $q\in(1, \infty)$ .
Remark 3.3. Assertion (2) of Theorem 3.1 implies the Lyapunov stability of
the solution given in Assertion (1) of Theorem 3.1. In particular, if $G(t, x)$

is independent of $t$ , then by the same reasoning as in Corollary 3.2, the solu-
tion given in Assertion (1) becomes the stationary solution given in Kozono
and Yamazaki [25], and Assertion (2) implies the stability of this stationary
solution under small initial perturbation. This result removes the technical
assumption Vu(x) $\in L^{q,\infty}(\Omega)$ with some $q>n$ on the stationary solution
$u(x)$ posed in Kozono and Yamazaki [26].
Remark 3.4. Even in the trivial case $F(x)\equiv w(x)\equiv 0$ and $G(t, x)\underline{=}u(t, x)\equiv$

$0$ , we cannot expect the asymptotic stability in the space $L_{\sigma}^{n,\infty}$ itself. This
is observed in the following fact. Suppose that $\Omega=\mathbb{R}^{3}$ , and put $b(x)=$
$(0,0, \log|x|)$ and

$a(x)=c$ rot $b(x)=c( \frac{x_{2}}{|x|^{2}},$ $\frac{-x_{1}}{|x|^{2}},0)$ .

Then $a(x)\in L_{\sigma}^{3,\infty}(\mathbb{R}^{3})$ . Hence Kozono and Yamazaki [24] implies that, if $|c|$

is sufficiently small, there exists asolution $u(t, x)\in BC((0, +\infty),$ $L_{\sigma}^{3,\infty}(\mathbb{R}^{3}))$

of the evolution equation

$\frac{du}{dt}(t, x)=-A_{u_{\infty}}u(t, x)-P[(w\cdot\nabla)u(t, \cdot)](x)$

$-P[(u(t, \cdot)\cdot\nabla)w](x)-P[(u(t, \cdot)\cdot\nabla)u(t, \cdot)](x)+g(t, x)$ (3.3)

with $f(t, x)\equiv 0$ on $(0, +\infty)$ , satisfying akind of boundedness property and
the initial condition $u(0, x)=a$ in asuitable sense. Since the initial data $a(x)$

is homogeneous of $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}-1$ , it follows that the solution $u(t, x)$ is forward self-
similar; namely, $u(t,$ $x\rangle$ enjoys the scaling property $u(\lambda^{2}t, \lambda x)=\lambda^{-1}u(t, x)$ .
for every $\lambda$ , $t>0$ and $x\in \mathbb{R}\mathrm{n}$ . From this fact we see that $||u(\lambda^{2}t, \cdot)||_{3,\infty}=$

$||u(t, \cdot)||_{3,\infty}$ . It follows that $||u(t, \cdot)||_{3,\infty}$ is independent of $t>0$ . This implies
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that even the trivial solution 0is not asymptotically stable in the space
$L3^{\mathrm{o}\mathrm{o}},(\mathrm{I}1\langle^{3})$ , in contrast to the space $L3(1^{3})$ .

4Estimates of U-L type.
In this section we assume either $n\geq 4$ and $u_{\infty}=0$ , or $n=3$ and $|u_{\infty}|$ is
sufficiently small.

We first observe the following version in the Lorentz spaces of the $L^{p_{-}}L^{q}$

inequality for the Oseen semigroup.

Theorem 4.1. For every $p\in(1, \infty)$ , the operator $-A_{u_{\infty}}$ generates $a$

bounded analytic semigroup $T_{u_{\infty}}(t)=\exp(-tA_{u_{\infty}})$ on $L^{p,1}(\Omega)$ , and this semi-
group enjoys the following estimates for $p$ , $q$ such that $1<p\leq q<\infty$ :

(1) There exists a positive constant C such that the estimate

$||T_{u_{\infty}}(t)a||_{q,1}\leq Ct^{n/2q-n/2p}||a||_{p,1}$ (4.1)

holds for every a $\in L_{\sigma}^{p,1}(\Omega)$ and every t $>0$ .

(2) Suppose that $q\leq n$ . Then there exists a positive constant $C$ such that
the estimate

$||\nabla T(t)a||_{q,1}\leq Ct^{n/2q-n/2p-1/2}||a||_{p,1}$ (4.2)

holds for every $a\in L_{\sigma}^{p,1}(\Omega)$ and every $t>0$ .

Remark 4.1. For $q<n$ , the estimate (4.2) follows immediately from the
results of Iwashita [16] and Kobayashi and Shibata [18], together with real
interpolation. In order to include the case $q=n$ we need some more effort.

In the case $u_{\infty}=0$ , this theorem coincides with [45, Theorem 2.2], and
in the case $n=3$ and $u_{\infty}\neq 0$ , this theorem is an immediate consequence of
the following theorem.

Theorem 4.2. For every $p$, $q$ such that $1<p<\infty$ and that $p\leq q\leq\infty$

and every $r\in[1, \infty]$ and for sufficiently small $\epsilon_{0}>0$ , there exists a positive
constant $C$ such that the estimates

$||T_{u_{\infty}}(t)a||_{q,r}\leq Ct^{-3/2p+3/2q}||a||_{p,r}$ for every $t\in(0, \infty)$ , (4.3)

$||\nabla T_{u_{\infty}}(t)a||_{q,r}\leq Ct^{-3/2p+3/2q-1/2}||a||_{p,r}$ for evey $t\in(0,1]$ , (4.4)

and

$||\nabla T_{u_{\infty}}(t)a||_{q,r}\leq Ct^{-3/2p+\rho}||a||_{p,r}$ for every $t\in[1, \infty)$ (4.1)
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hold for every $u_{0}\in \mathbb{R}^{3}$ satisfying $|u_{0}|\leq\epsilon_{0}$ , where $\rho$ is defined as

$\rho=\{\begin{array}{l}\frac{3}{2q}-\frac{1}{2}for1<q\leq 3_{\prime}0for3\leq q\leq\infty\end{array}$

We prove this theorem by following the calculation in [18] and making
use of real interpolation.

For $q\in[p, \infty)$ , the estimates (4.3) for $t\in(0,1]$ and (4.4) are immediate
consequences of the fact that $T_{u_{\infty}}(t)$ is an analytic semigroup on $L_{\sigma}^{\mathrm{p}}(\Omega)$ ,
together with the fact that the inequality

$||\nabla u||_{q}\leq C(||A_{u_{\infty}}^{1/2}u||_{q}+||u||_{q})$ .

For $q=\infty$ , let $r\in(p, \infty)$ and $\epsilon\in(0,3/r)$ . Then we have

$||T_{u_{\infty}}(t)a||_{\infty}$

$\leq C||T_{u_{\infty}}(t)a|B_{r,1}^{n/r}||$

$\leq C||T_{u_{\infty}}(t)a|H_{r}^{n/r-}’||^{1/2}||T_{u_{\infty}}(t)a|H_{r}^{n/r+\epsilon}||^{1/2}$

$\leq C(||T_{u_{\infty}}(t)a||_{r}+||A_{u_{\infty}}^{3/2r-\epsilon/2}T_{u_{\infty}}(t)a||_{r})^{1/2}$

$(||T_{u_{\infty}}(t)a||_{r}+||A_{u_{\infty}}^{3/2r+\epsilon/2}T_{u_{\infty}}(t)a||_{r})^{1/2}$

$\leq Ct^{1/2\{-3/2(1/p-1/r)-(3/2r-\epsilon/2)\}}t^{1/2\{-3/2(1/p-1/r)-(3/2r+\epsilon/2)\}}||a||_{p}$

$\leq Ct^{-3/2p}||a||_{p}$

and

$||\nabla T_{u_{\infty}}(t)a||_{\infty}$

$\leq C||T_{u_{\infty}}(t)a|B_{r,1}^{n/r+1}||$

$\leq C||T_{u_{\infty}}(t)a|H_{r}^{n/r+1-\epsilon}||^{1/2}||T_{u_{\infty}}$

.
$(t)a|H_{r}^{n/r+1-\epsilon}||^{1/2}$

$\leq C(||T_{u_{\infty}}(t)a||_{r}+||A_{u_{\infty}}^{3/2r+1/2-\epsilon/2}T_{u_{\infty}}(t)a||_{r})^{1/2}$

$(||T_{u_{\infty}}(t)a||_{r}+||A_{u_{\infty}}^{3/2r+1/2+\epsilon/2}T_{u_{\infty}}(t)a||_{r})^{1/2}$

$\leq Ct^{1/2\{-3/2(1/p-1/r)-1/2-(3/2r-\epsilon/2)\}}t^{1/2\{-3/2(1/p-1/r)-1/2-(3/2r+\epsilon/2)\}}||a||_{p}$

$\leq Ct^{-3/2p-1/2}||a||_{p}$

for $t\in(0,1]$ .
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The estimates (4.3) and (4.4) holds also for $0<t\ovalbox{\tt\small REJECT}$ 2, possibly with
different constants. Hence the main problem is to prove (4.3) and (4.5) for
t $\ovalbox{\tt\small REJECT}$ 2. For this purpose we recall the following proposition, which is proved
in Kobayashi and Shibata [18, p. 37, (6.18), p. 39, (6.27) and Theorem 1.1].

Proposition 4.3. For every positive number $\epsilon_{0}$ , every non-negative integer
$m$ , every positive number $b$ and every $p\in(1, \infty)$ , there exists a positive
number $C$ such that, for every $u_{\infty}\in \mathbb{R}^{3}$ such that $|u_{\infty}|\leq\epsilon_{0}$ and every
$a(x)\in L_{\sigma}^{p}(\Omega)$ , the function $u(t,x)=T_{u_{\infty}}(t+1)a(x)$ and the associated
pressure function $\pi(t, x)$ normalized so as to satisfy the identity

$\int_{\Omega_{b}}\pi(t,x)dx=0$ ,

where $\Omega_{b}=\{x\in\Omega||x|<b\}$ , enjoy the estimate

$||u(t, \cdot)|W_{p}^{2m}(\Omega_{b})||+||\frac{\partial u}{\partial t}(t,\cdot)|W_{p}^{2m}(\Omega_{b})||+||\pi(t,\cdot)|W_{p}^{2m}(\Omega_{b})||\leq C(1+t)^{-3/2p}||a||_{p}(4.6)$

for every $t>0$ .
Moreover, if $a(x)$ satisfies $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}$

$\subset\Omega_{b}$ as well, then the following sharper
estimate

$||u(t,$.) $|W_{p}^{2m}( \Omega_{b})||+||\frac{\partial u}{\partial t}(t, \cdot)|W_{p}^{2m}(\Omega_{b})||+||\pi(t, \cdot)|W_{p}^{2m}(\Omega_{b})||$

$\leq C(1+t)^{-3/2}||a||_{p}$ (4.7)

holds for every t $>0$ .

From the proposition above, real interpolation and the Sobolev embed-
ding theorem, we have the following corollary.

Corollary 4.4. Let $\epsilon$ , $m$ , $b$ and $p$ as in Proposition 4.3, and let $q\in[p, \infty]$ .
Then there exists a positive constant $C$ such that, for every $u_{\infty}$ as in From
sition 4.3 and every $a(x)\in L_{\sigma}^{p,r}(\Omega)$ , the functions $u(t,x)$ and $\pi(t, x)$ enjoy
the estimate

$\{\int_{0}^{\infty}(||u(t, \cdot)|W_{q}^{2m}(\Omega_{b})||+||\frac{\partial u}{\partial t}(t, \cdot)|W_{q}^{2m}(\Omega_{b})||+||\pi(t, \cdot)|W_{q}^{2m}(\Omega_{b})||)^{r}$

$(1+t)^{3r/2p-1}dt\}^{1/r}\leq C||a||_{p,r}$ (4.3)
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for every t $>0$ .
Moreover, if supp c $0_{b}$ holds, then vne have the estimate

$||u(t, \cdot)|W_{q}^{2m}(\Omega_{b})||+||\frac{\partial u}{\partial t}(t, \cdot)|W_{q}^{2m}(\Omega_{b})||+||\pi(t, \cdot)|W_{q}^{2m}(\Omega_{b})||$

$\leq C(1+t)^{-3/2}||a||_{p,r}$ (4.9)

for every $t>0$ .

We next assume that $\Omega\subset\{x\in \mathbb{R}^{3}||x|<b-2\}$ , and choose afunction
$\psi(x)\in C_{0}^{\infty}(\mathbb{R}^{3})$ such that $0\leq\psi(x)\leq 1$ , $\psi(x)\equiv 1$ if $|x|\leq 6-2$ and $\psi(x)\equiv 0$

if $|x|\geq b-1$ . Then we have

$\int_{|x|\leq b-1}(\nabla\psi)\cdot u(t, \cdot)dx$

$= \int_{|x|\leq b-1}\nabla$ . $(\psi u(t, \cdot))dx$

$= \int_{|x|=b-1}n(x)\cdot\psi(x)u(t, x)dS(x)+\int_{\partial\Omega}n(x)\cdot\psi(x)u(t, x)dS(x)=0$ .

On the other hand, we have the following proposition and definition.

Proposition 4.5. Let $p\in(1, \infty)$ and $r\in[1, \infty]$ , and let $m$ be a nonnegative
integer. Then there exists a positive constant $C=C_{p,r,D,m}$ such that, for
every $f(x)\in H_{p,r,0}^{m}(D)$ such that $\int_{D}f(x)dx=0$ , there uniquely exists $a$

function $w(x)\in(H_{p,r,0}^{m+1}(D))^{n}$ such that $\mathrm{d}\mathrm{i}\mathrm{v}w=f$ in $D$ and that

$||w|H_{p,r}^{m+1}(D)||\leq C||f|H_{p,r}^{m}(D)||$ .

Definition 4. Let $B$ denote the Bogovskii operator on $D$ which maps the
function $f(x)\in H_{p,r,0}^{m}(D)$ in Proposition 4.5 to the unique function $w(x)\in$

$(H_{p,r,0}^{m+1}(D))$ given by Proposition 4.5.

Proof of Theorem 4.2. In view of Proposition 4.5 applied to the bounded
domain $D=\Omega\cup\{x\in \mathbb{R}^{3}||x|<b-1\}$ , we put

$z(t, x)=(1-\psi(x))u(t,x)+B[(\nabla\psi)\cdot u(t, \cdot)]$ .

Then we have $||z(0, \cdot)||_{p,r}\leq C||a||_{p,r}$ and

$\frac{\partial z}{\partial t}-\Delta z+(u_{\infty}\cdot\nabla)z+\nabla\{(1-\psi(x))\pi\}=h$ (4.10)

$\nabla\cdot z=0$ (4.11)
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in (0,$\infty)\cross \mathbb{R}^{3}$ , where

$h(t, \cdot)=(\nabla\psi)\cdot\pi(t, \cdot)+\{2(\nabla\psi)\cdot\nabla u(t, \cdot)\}$

$-((u_{\infty} \cdot\nabla)\psi)u(t, \cdot)+(\frac{\partial}{\partial t}-\Delta+(u_{\infty}\cdot\nabla))B[(\nabla\psi)\cdot u(t, \cdot)]$ .

Then we have $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}h(t, \cdot)\subset\Omega_{b}$ and $||h(t, \cdot)|W_{\infty}^{m}||\leq C(1+t)^{-3/2p}||a||_{p,r}$ for
every positive integer $m$ in view of Corollary 4.4. Now let $S_{u_{\infty}}(t)$ denote the
Oseen semigroup on $\mathbb{R}^{3}$ . Then (4.10) yields that we can write

$z(t, \cdot)=S_{u_{\infty}}(t)z(0, \cdot)+\int_{0}^{t}S_{u_{\infty}}(t-s)h(s, \cdot)ds$ .

Here we remark that $(S_{u_{\infty}}(t)f)(x)=(S_{0}(t)f)$ ( $x$ –t\^u). It follows that
$S_{u_{\infty}}(t)$ enjoys the same unweighted estimates of $I\nearrow-L^{q}$ type as $S_{0}(t)$ , the
Stokes semigroup on the whole space $\mathbb{R}^{3}$ , does. It follows that

$||S_{u_{\infty}}(t)z(0, \cdot)||_{q,r}\leq Ct^{3/2(1/q-1/p)}||a||_{p,r}$ (4.12)

and

$||\nabla S_{u_{\infty}}(t)z(0, \cdot)||_{q,r}\leq Ct^{3/2(1/q-1/p)-1/2}||a||_{p,r}$ (4.13)

hold for $p$ and $q$ such that $1<p<\infty$ and that $p\leq q\leq\infty$ . On the other
hand, since $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}h(t, \cdot)\subset\Omega_{b}$ , we can apply Corollary 4.4 to obtain

$|| \int_{0}^{t}S_{u_{\infty}}(s)h(t-s, \cdot)ds||_{q,r}$

$\leq\int_{0}^{t}||S_{u_{\infty}}(s)h(t-s, \cdot)||_{q,r}ds$

$\leq C(\int_{0}^{1}||h(t-s, \cdot)||_{q,r}ds+\int_{1}^{t}s^{-3/2}||h(t-s, \cdot)||_{3/2,r}ds)$

$\leq C||a||_{p,r}(\int_{0}^{1}(1+t-s)^{-3/2p}ds+\int_{1}^{t}s^{-3/2}(1+t-s)^{-3/2p}ds)$

$\leq C||a||_{p,r}t^{-3/2p}$

and

$|| \nabla\int_{0}^{t}S_{u_{\infty}}(t-s)h(s,$.) $ds||_{q,r}$
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$\leq\int_{0}^{t}||\nabla S_{u_{\infty}}(t-s)h(s, \cdot)||_{q,r}ds$

$\leq C(\int_{0}^{1}s^{-1/2}||h(t-s, \cdot)||_{q,r}ds+\int_{1}^{t}s^{-3/2}||h(t-s, \cdot)||_{3/2,r}ds)$

$\leq C||a||_{p,r}(\int_{0}^{1}s^{-1/2}(1+t-s)^{-3/2p}ds+\int_{1}^{t}s^{-3/2}(1+t-s)^{-3/2p}ds)$

$\leq C||a||_{p,r}t^{-3/2p}$

for $t\geq 1$ . These estimates, together with (4.12) and (4.13), complete the
proof of Theorem 4.2. $\square$

Remark 4.2. In the case $u_{\infty}=0$ , the estimate

$||A_{u_{\infty}}^{1/2}T_{u_{\infty}}(t)a||_{q}\leq Ct^{-n/2p+n/2q-1/2}||a||_{p}$

holds for $q>n$ as well, and we derive Theorem 4.3 from this fact. However,
in the case $n=3$ and $u_{\infty}\neq 0$ , the author does not know whether the estimate
above holds for $q>n$ as well.

We next derive from Theorem 4.3 the following stronger estimate, which
plays the most important role in the proof of the results in the preceding
section.

Theorem 4.6. Suppose that $1<p<q\leq\infty$ , and suppose that $u_{\infty}$ enjoys
$|u_{\infty}|\leq\in 0$ in the case $n=3$, and $u_{\infty}=0$ in the case $n=4$ . Then we have
the following assertions:

(1) There exists a constant $C$ independent of $u_{\infty}$ such that the estimate

$\int_{0}^{\infty}t^{n/2(1/p-1/q)-1}||T_{u_{\infty}}(t)a||_{q,1}dt\leq C||a||_{p,1}$ (4.14)

holds for every $a\in L_{\sigma}^{p.1}(\Omega)$ .

(2) If $q\leq n$ , the constant $C$ can be chosen so that the estimate

$\int_{0}^{\infty}t^{n/2(1/p-1/q)-1/2}||\nabla T_{u_{\infty}}(t)a||_{q,1}dt\leq C||a||_{p,1}$ (4.15)

holds for every $a\in L_{\sigma}^{p,1}(\Omega)$ .

Proof Although this theorem can be proved exactly in the same way as [45,
Corollary 2.3], we give another proof, which does not rely on real interpolation
between non-Banach spaces and seems to be more elementary. We shall prove
(4.15) only, since (4.14) can be proved exactly in the same way
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Fix p and q, and choose 70 and $p_{\mathrm{t}}$ such that $1<p_{0}<p<p_{\mathrm{I}}<q$ , and for
every jEZ, put

$c_{j}= \int_{2^{j}}^{2^{j+1}}t^{n/2(1/p-1/q)-1/2}||\nabla T_{u_{\infty}}(t)a||_{q,1}dt$. (4.16)

Suppose that $a\in L_{\sigma^{h}}^{p,1}(\Omega)$ . Then Theorem 4.3 implies that

$c_{j} \leq C\int_{2^{f}}^{2^{j+1}}t^{n/2(1/p-1/p_{h})-1}||a||_{p_{h},1}dt\leq C2^{jn/2(1/p-1/p_{h})}||a||_{p_{h},1}$.

In other words, the sequence $\{c_{j}\}_{j=-\infty}^{\infty}$ belongs to the function space
$\ell^{n/2(1/p-1/p_{h}),\infty}$ and the estimate

$||\{c_{j}\}_{j=-\infty}^{\infty}|\ell^{n/2(1/p-1/p_{h}),\infty}||\leq C||a||_{p_{h},1}$ (4.17)

holds for $h=0,1$ . Now choose $\theta\in(0,1)$ so that $1/p=(1-\theta)/p_{0}+\theta/p_{1}$ .
Then we have the real interpolation relations

$L_{\sigma}^{p,1}(\Omega)=(L_{\sigma^{0}}^{p,1}(\Omega), L_{\sigma^{1}}^{p,1}(\Omega))_{\theta,1}$ , $\ell^{1}=(\ell^{n/2(1/p-1/p\mathrm{o}),\infty}, \ell^{n/2(1/p-1/p_{1}),\infty})_{\theta,1}$ .
(4.18)

From (4.17) and (4.18) we conclude that

$\sum_{j=-\infty}^{\infty}c_{j}\leq C||a||_{p,1}$ .

From this inequality and (4.16) we obtain the conclusion. $\square$

Now the results in Section 3follows from this theorem in the same way
as in [45].

References
[1] Amann, H., On the strong solvability of the Navier-Stokes equations, J.

Math. Fluid Mech., 2, 16-98 (2000).

[2] Bergh, J., Lofstrom, J., Interpolation Spaces, Springer, Berlin-
Heidelberg-New York, 1976.

[3] Bogovskii, M. E., Solution of the first boundary value problem for the
equation of continuity of an incompressible medium, Doklady Acad.
Nauk, SSSR, 248, 1037-1040(1979); Engl. transl., Soviet Math. Dok-
lady, 20, 1094-1098(1979)

136



[4] Bogovskii, M. E., Solution for some vector analysis problems connected
with operators div and grad, Proc. S. L. Sobolev Sem., No. \yen Us-
penskii, ed., Acad. Nauk SSSR, Sibirsk. Otdel. Inst. Mat., Novosibirsk,
1980, pp. 5-40.

[5] Borchers, W., Miyakawa, T., Algebraic $L^{2}$ decay for Navier-Stokes flows
in exterior domains, Acta Math., 165, 189-227 (1990).

[6] Borchers, W., Miyakawa, T., On stability of exterior stationary Navier-
Stokes flows, ibid., 174, 311-382 (1995).

[7] Finn, R., On exterior stationary problem for the Navier-Stokes equations
and associated perturbation problems, Arch. Rational Mech. Anal., 19,
363-406 (1965).

[8] Fujita, H., Kato, T., On the Navier-Stokes initial value problem I, ibid.,
16, 269-315 (1964).

[9] Fujiwara, D., Morimoto, H., An $L_{r}$ theorem of the Helmholtz decomp0-
sition of vector fields, J. Fac. Sci. Univ. Tokyo, Sect. IA, 24, 685-700
(1977).

[10] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-
Stokes Equations, vol. 1, Linearized Steady Problems, Springer, Berlin-
Heidelberg-New York, 1994.

[11] Galdi, G. P., An Introduction to the Mathematical Theory of the Navier-
Stokes Equations, vol. 2, Nonlinear Steady Problems, Springer, Berlin-
Heidelberg-New York, 1994.

[12] Galdi, G. P., Rabier, P. J., Sharp existence results for the stationary
Navier-Stokes problem in Three-dimensional exterior domains, Arch.
Rational Mech. Anal., 154, 343-368 (2000).

[13] Galdi, G. P., Simader, C. G., New estimate for the steady-state Stokes
problem in exterior domains with applications to the Navier-Stokes prob-
lem, Differential and Integral Equations, 7, 847-861 (1994).

[14] Giga, Y., Analyticity of the semigroup generated by the Stokes operator
in $L_{r}$ spaces, Math. Z., 178, 297-329 (1981).

[15] Giga, Y., Sohr, H., On the Stokes operator in exterior domains, J. Fac.
Sci. Univ. Tokyo, Sect. IA, 36, 103-130 (1988)

137



[16] Iwashita, H., $L_{q^{-}}L_{r}$ estimates for solutions of the nonstationary Stokes
equations in an exterior domain and the Navier-Stokes initial value prob-
lems in $L_{q}$ spaces, Math. Ann., 285, 265-288 (1989).

[17] Kato, T., Strong If-solution of the Navier-Stokes equation in $\mathbb{R}^{m}$ , with
applications to weak solutions, Math. Z., 187, 471-480 (1984).

[18] Kobayashi, T., Shibata, Y., On the Oseen equation in the three dimen-
sional exterior domains, Math. Ann., 310, 1-45 (1998).

[19] Kozono, H., Nakao, M., Periodic solutions of the Navier-Stokes equa-
tions in unbounded domains, Tohoku Math. J. (2), 48, 33-50 (1996).

[20] Kozono, H., Ogawa, T., On stability of the Navier-Stokes flows in exte-
rior domains, Arch. Rat. Mech. Anal., 128, 1-31 (1994).

[21] Kozono, H., Sohr, H., On anew class of generalized solutions for the
Stokes equations in exterior domains, Ann. Scuola Norm. Sup. Pisa, 19,
155-181 (1992).

[22] Kozono, H., Sohr, H., On stationary Navier-Stokes equations in bounded
domains, Ricerche Mat., 42, 69-86 (1993).

[23] Kozono, H., Sohr, H., Yamazaki, M., Representation formula, net force
and energy relation to the stationary Navier-Stokes equations in 3-
dimensional exterior domains, Kyushu J. Math., 51, 239-260 (1997).

[24] Kozono, H., Yamazaki, M., Local and global unique solvability of the
Navier-Stokes exterior problem with Cauchy data in the space $L^{n,\infty}$ ,
Houston J. Math., 21, 755-799 (1995).

[25] Kozono, H., Yamazaki, M., Exterior problem for the stationary Navier-
Stokes equations in the Lorentz space, Math. Ann., 310, 279-305 (1998).

[26] Kozono, H., Yamazaki, M., On alarger class of stable solutions to the
Navier-Stokes equations in exterior domains, Math. Z., 228, 751-785
(1998).

[27] Kozono, H., Yamazaki, M., Uniqueness criterion of weak solutions to
the stationary Navier-Stokes equations in exterior domains, Nonlinear
Anal., 38, 959-970 (1999).

[28] Leray, J., \’Etude de diverses equations int\’egrales et de quelques
problemes que pose l’hydrodynamique, J. Math. Pures Appl, (9), 12,
1-82 (1933).

138



[29] Leray, \yen mouvement d’un liquide visqueux emplissant l’espace,
Acta Math., 63, 193-248 (1934).

[30] Miyakawa, T., On nonstationary solutions of the Navier-Stokes equa-
tions in an exterior domain, Hiroshima Math. J., 12, 115-140 (1982).

[31] Miyakawa, T., On uniqueness of steady Navier-Stokes flows in an exte-
rior domain, Adv. Math. Sci. AppL, 5, 411-420 (1995).

[32] Miyakawa, T., Yamada, M., Planar Navier-Stokes flows in abounded
domain with measures as initial vorticities, Hiroshima Math. J., 22,
401-420 (1992).

[33] Nazarov, S. A., Pileckas, K. I., Asymptotics of solutions to the Navier-
Stokes equations in the exterior of abounded body, Doklady Acad.
Nauk, 367, 461-463 (1999); Engl. transl., Doklady Math., 60, 133-135
(1999).

[34] Nazarov, S. A., Pileckas, K. I., On steady Stokes and Navier-Stokes
problems with zero velocity at infinity in athree-dimensional exterior
domain, preprint.

[35] Novotny, A., Padula, M., Note on decay of solutions of steady Navier-
Stokes equations in 3-D exterior domains, Differential and Integral Equa-
tions, 8, 1833-1842(1995).

[36] Salvi, R., On the existence of periodic weak solutions on the Navier-
Stokes equations in exterior regions with periodically moving bound-
aries, in Navier-Stokes Equations and Related Nonlinear Problems,
Proc. Third Int. Conf. in Funchal, Madeira, Portugal, 1994, A. Sequeira,
ed., Plenum, New York, 1995, 63-73.

[37] Shibata, Y., On an exterior initial boundary value problem for Navier-
Stokes equations, Quart. Appl. Math., 57, 117-155 (1999).

[38] Shibata, Y., Yamazaki, M., Uniform estimates in the velocity at infinity
for stationary solutions to the Navier-Stokes exterior problem, preprint.

[39] Simader, C. G., Sohr, H., Anew approach to the Helmholtz decomp0-
sition and the Neumann problem in $L^{q}$-spaces for bounded and exte-
rior domains, in Mathematical Problems relating to the Navier-Stokes
Equations, Ser. Adv. Math. Appl. Sci. G. P. Galdi, ed., World Scientific,
Singapore-New Jersey-London-Hong Kong, 1992, 1-35

139



[40] Solonnikov, V. A., Estimates for solutions of nonstationary Navier-
Stokes equations, J. Soviet Math., 8, 467-529 (1977).

[41] Stein, E. M., Singular Integrals and Differentiability Properties of Func-
tions, Princeton University Press, Princeton, 1970.

[42] $\check{\mathrm{S}}\mathrm{v}\mathrm{e}\mathrm{r}\acute{\mathrm{a}}\mathrm{k}$ , V., Tsai, T.-P., On the spatial decay of 3-D steady-state Navier-
Stokes flows, Comm. in Partial Differential Equations, 25, 2107-2117
(2000).

[43] Taniuchi, Y., On stability of periodic solutions of the Navier-Stokes
equations in unbounded domains, Hokkaido Math. J., 28, 147-173
(1999).

[44] Triebel, H., Interpolation Theory, Function Spaces, Differential Opera-
tors, 2nd edition, Johann Ambrosius Barth, Heidelberg, 1995.

[45] Yamazaki, M., The Navier-Stokes equations in the weak-L space with
time-dependent external force, Math. Ann., 317, 635-675 (2000).

[46] Yamazaki, M., Solutions in the Morrey spaces of the Navier-Stokes equa-
tion with time-dependent external force, Funkcialaj Ekvacioj, in press

140


