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A remark on the derivative of the one-dimensional
Hardy-Littlewood maximal function

HrtosH TaNAKA * (HH {2)
FEBRT

Abstract

For p > 1 and d > 1 J. Kinnunen proved that if f is a function on the Sobolev
space W1P(R?), then the Hardy-Littlewood maximal function M f has the first order
weak partial derivatives which belong to LP(R?) and whose LP-norm are controlled
by those of f. We improve Kinnunen’s result to p = 1 and d = 1 by making an
expression of the maximal function by the one-sided maximal functions. We also
study some properties of the one-sided maximal functions.

1 Introduction

For f a locally integrable function on R?, d > 1, define the Ha.rdy—thtlewood maximal
function M f as

(Mf)(z) = up o /Q £ dy,

where the supremum is taken over all cubes Q containing z € R?. Here, |Q| denotes
the volume of the cube Q. The maximal function is a basic tool in real analysis. The
well-known theorem of Hardy, Littlewood and Wiener asserts that if f € LP(R?), with
1 < p < 0o, then M f € LP(R?) and

IMfllp < Apllflle, | (1)

where the constant A, depends only on p and the dimension d. Moreover, one knows that
the constant A, satisfies

A, =0(1/(p—1)), asp—1. (2

(See [St].) Recall that the Sobolev space W P(R?), 1 < p < oo, consists of functions f in
L?(R?), whose first order weak partial derivatives D;f, i = 1,2,- -+, d, belong to L?(R).
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In [K] ! J. Kinnunen showed that if f € W'?(R?), with 1 < p < 0o and d > 1, then
Mf € W?(R?) and

|(D3Mf)(z)| S (MDif)z), i=1,2,---,d, (3)
almost everywhere z € R?. This implies by (1) that
IDiM fll, < AllDifll, i=1,2,---,d. (4)

Kinnunen’s methods used to prove (3) mainly depend on the LP-boundedness of M
and the fact that the first order Sobolev space is a lattice (see [GT]). So, one cannot
directly extend the result of (4) to the case p = 1 because then we do not have the
Hardy-Littlewood-Wiener theorem available. But, according to the embedding theorem of
Sobolev, W'*!(R?) can be continuously embedded in LZ#(¢~1)(R9). (See [St].) Therefore, by
the Hardy-Littlewood-Wiener theorem we see that Mf € L/(-D)(R?), if f € WII(RY).
In particular, Mf becomes a locally integrable function and hence is differentiable in
distribution sense.

Now, we have the following problems.

(I) If f € WH1(R?), are the derivatives of M f function or not?
(IT) If the derivatives of M f are functions, is it possible to show some norm estimates?

The purpose of this note is to investigate the above problems for the one-dimensional case.
As yet we have not been able to prove the corresponding results in the higher dimensions.
Our result is the following.

THEOREM 1 If f € WVY(R), then the derivative of Mf becomes an integrable function

and
WM £l < 201 1]s (5)

Acknowledgement. The author wishes to express his sincere thanks to S. T. Kuroda
and Takeshi Hatakeyama for helpful discussions, which streamlined the original proof.

2 The one-sided maximal functions

A crucial point in our argument is to consider one-sided maximal functions. In this section
we shall discuss our problem for one-sided maximal functions.
For f a locally integrable function on the line define the one-sided maximal functions

M,f and M, f as .
(Mf)(z) =sup - [ |f|dy,
>0 8 Jr

1Roughly speaking, the Hardy-Littlewood maximal function may be distinguished into two types. The
first is defined as the supremum taken over all balls centered at z, and the second is defined as the supremum
taken over all cubes containing . Kinnunen proved his results for the first type maximal function. But,
one sees that the corresponding results hold for the second one by the slight modification of the argument.
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alna

(M, f)(z) = ‘Ti%’%/:“ | fl dy.

We will refer M;f and M, f to the left maximal function and the right maximal function
respectively. A

The first lemma represents an expression of the one-dimensional Hardy-Littlewood max-
imal function by the one-sided maximal functions.

LEMMA 2 Let f be a locally integrable function on the line. Then we can express Mf by
M;f and M, f as
(Mf)(z) = max{(M,f)(z), (M. f)(z)}
Proof. It follows from the definitions that

max{(Mif)(z), (M. f)(z))} < (M[)(z). (6)

To prove the reverse inequality we see that

1 [+t s 1 (= t 1 fe+t
sre o M= s v+ g | W
< S MNE) + =M@ < max{(MN)(E), MAE). ()

Taking the supremum on the left hand side of (7) over s,t > 0, we obtain

(Mf)(z) < max{(M,f)(z), (M, f)(z)}. (8)

(6) and (8) imply the desired relation. 1

Next, we shall prove some elementary propositions. We will state only the case M;, but
the corresponding results hold for the case M, as well. In the following we assume that
the function f is continuous. With this assumption, we note that

tim = [* 1fldy = 1), ©)

s—0

and
(Muf)(z) 2 |f(=)]

for every z € R.
PRroPOSITION 3 Let f € C(R). Assume that there exists a point 2o € R such that

(Mif)(zo) = oo.

Then we have

sz = 00.
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Proof. By the assumption there exists a sequence {s,} of positive numbers, which
converges to oo, such that

20 Ifldy>n. (10)

Sp Jxo—spn

Fix a point z on the line and take s, sufficiently large, then by (10) we see that

1 f=o S, +z— 129 1 /= 1/3
— = dy — — d
n < = ,,_.,,lfldy eyl SN | f] dy ., | f| dy
T—z ~\fld
< 1+ M) - LY

Letting n tend to 0o, we obtain
(Mif)(z) =co. B
COROLLARY 4 Let f € C(R). Assume that there exists a point zo € R such that
(Mif)(z0) < o0.

Then we have

(Mif)(z) < 00
for every z € R.

Next, if f € C(R) and M;f < oo, then the lower semi-continuity of M, f implies that

the set E:
E = {z € R|(Mif)(z) > |f(=)|}

is open. Hence, E' can be written as E = Y, I, where I; denotes an open interval.

PROPOSITION 5 Let f € C(R), Mif < 00 and E = T;I;. Then (M;f)(z) becomes a

non-increasing function of z on each I;.

Proof. Fix z € I, and set ¢ = (M, f(z) — | f(z)])/2 > 0. By the continuity of |f| there
exists a 6 > 0 such that |z — y| < § implies

£ < 1@l +e (1)
(11) yields .
(Mif)(z) = sup > [ |f|dy. (12)
Forz—he€l;N(z~§6, z),and s > § it follows from (11) that
1= —h 1 e ho1 e
sy =22 a2 [y
< max{(M,f(z = h), |f(z)] +€}. (13)

Taking the supremum on the left hand side of (13) over s > 6, we have

(Mif)(z) < max{(M.f(z = h), |f(z)| + ¢}
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by (12). Since, the relation: (M;f)(z) < |f(z)| + € and the choice of € give
(Mif)(z) < |f(=)l,

which contradicts z € I;, we obtain
(Mif)(z) < (Muif)(z —h). B

PROPOSITION 6 Let the assumptions and notation be the same as those of Proposition 5.
Then (M, f)(z) becomes a locally Lipschitz function of z on each I;. In particular, M,f
becomes an absolutely continuous function on each I;.

Proof. Take K = [a, ] C I;. By the lower semi-continuity of M;f and the continuity
of | f| there exists an € > 0 such that z € K implies

(Mif)(z) > |f(z)| +e. (14)

By the uniform continuity of | f| there then exists a § > 0 such that z € K and |y —z| < 6
imply '

F@I < If@1+5 (15)
(14) and (15) yield that z € K implies

(Mif)@) =sup [ If1dy. )

For z,z +h € K, h > 0, and s > § it follows from the previous proposition that

iy [y < s [ ifldy - — [ 11y

S Jz—s s+ h Jr—s z—3 s+ h Jz—s

Moving s > § on the left hand side of (17) freely, we obtain
0 < (Mif)(z) = Mif)(z+h) < Ch. B

PROPOSITION 7 Let the assumptions and notation be the same as those of Proposition 5.
Then (M;f)(z) is continuous at the boundary of E.

Proof. Fix a point a at the boundary of E. Then we have

(Mif)(a) = |£(a)l. (18)
Clearly, we see |
liminf(Mif)(z) 2 |f(e)] (19)

by the lower semi-continuity of M, f.
Now, we assume that

limsup(M:f)(z) — | f(a)| = ¢ > 0. (20)
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With this assumption, by the continuity of |f| there exists a § > 0 such that |y — al <26
implies

F@ < If@)] + 7,

and hence we can select by (20) the sequences {z,} and {s,}, where {z,} converges to a

and s, > 6, such that
= [ 1fldy > 1@ + 5. (21)
Taking 7, so that
(14 17)8p = a— 2z, + sy, (22)
we have

] < 22l (29)

by the fact that s, > 8. It follows from (21) and (22) that

@l +5 <= [" |fldy

n JTn"8n

= e (L v [1na)

< (= m)(Muf)(@) + | [ 1114y

Letting n tend to oo, we obtain

f(@)l + 2 < (Mif)(a) (24)
by (23) and the fact that s, > 6. (24) contradicts (18) and hence we obtain
Lim(M:f)(z) = |f(a)|

x—ra

by (20) and (19). N
The next theorem is the key of our argument, and will be proved by using the above
propositions.

THEOREM 8 If f € W!(R), then the distribution derivatives of M,f and M, f become
integrable functions and

WMfY Il < UF s MYl < 11 (25)

Proof. It suffices to pfove only the case M;f. We note that if f € WLI(R), then
|f] € WH(R) and

WA = 1 Fls (26)

(See [GT].) By the fact that |f| € W'*(R) we note further that |f| becomes a continuous
function and hence the assumptions of Propositions 5-7 are satisfied.
First, we shall prove that M, f have a weak derivative. Recall that

E = {z € R|(Mif)(z) > |f(2)]}
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E=Y 1 =Y(e, 5).

J
Set F = R\ E. From Propositions 5, 6 M;f has a weak derivative v < 0 on each [;. For
a test function ¢ € D(R) we see then that

[, Mus 8 dy = 15BIH6) — 1 (o)) = / vpdy (20)
by Proposition 7. It follows from (27) that
fomisddy= [ Mifé dy
= SIS B:)I8(8) - £ ol - [ vpay+ [ 1f1¢'dy

= [\igdy+ [1itsdy~ [ opay+ [ 1716'dy
= [1fisdy+ [ Iftgdy— [ vpdy=— [ (xev+xeliP)edy.

Here, xg and xr denote the indicator functions of the sets E and F respectively. This
relation implies that M, f has a weak derivative (M, f)' = xgv + xr|f]|".

Lastly, we shall prove (25). For each finite interval I;, by the fact that v < 0 and
Proposition 7 we have ‘

[ Toldy = (Muf)(e) = (M)

= 1)~ 15B)l = [ 15V dy< [ H1dy. (28)
If there exists an infinite interval I;, such that
L, = (=00, ;)
then from Proposition 5 and the definition of I, we see that
(Mif)(2) 2 (Mif)(B;,) >0, Vz €. (29)

(29) contradicts the weak type (1, 1) inequality for M;f. (See [St].)
If there exists an infinite interval I, such that

Ijz = (ajz’ °°)a
then we have

[ ldy = (Mif)as) = (M)

Az
<Uf(a)l =15l = [ Ifrdy< [ lIf11dy (30)
A5z @ja
for a;, < r. From (28) and (30) we obtain

NMf)Y Il < MM = 1l
by (26). Thus, we have proved the theorem. W
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3 Proof of Theorem 1

The proof of Theorem 1 follows now easily from Theorem 8. We shall need only the
following lemma.

LEMMA 9 Let f and g be the (real valued) integrable functions on the line. Set
F)= [ fay,

G(z) = /_:ogdy,

and

H(z) = max{F(z), G(z)}.

Then the weak derivative of H becomes an integrable function and

WH Iy < Wflh + llgll-

This lemma can be proved easily. (cf. [GT], Lemma 7.6.)

Theorem 1 can be now proved by Lemmas 2, 9 and Theorem:8.
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