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Iterated Forcing with “s-bounding and Semiproper Preorders

Tadatoshi MIYAMOTO
=T B (IS - BoEfER)

Abstract

Assume the Continuum Hypothesis (CH) in the ground model. If we
iteratively force with preorders which are “y-bounding and semiproper taking
suitable limits, then so is the final preorder constructed. Therefore we may
show that the Cofinal Branch Principle (CBP) of [F] is strictly weaker than
the Semiproper Forcing Axiom (SPFA).

§0 Introduction

We formulate a theory of iterated forcing and propose a construction of
a limit stage in [M2]. We call it the simple limit. This limit is designed to
preserve the semiproperness of preorders. Namely, if we construct an iterated
forcing of semiproper preorders which takes this limit at every limit stage,
then so is the iterated forcing thus constructed. We move on to consider the
“y-boundingness together with the semiproperness in this note. Assuming
CH in the ground model, we show the preservation of these two properties
combined. It is known that the “w-boundingness together with the proper-
ness is preserved under countable support. Our proof is a straightforward
modification of [B] in the current context.

§1 Preliminary

Our approach to forcing is based on the notion of preorders. We say
(P,<,1) is a preorder, if <is a reflexive and transitive binary relation on
P with a greatest element 1. So a preorder may not be anti-symmetric.
A preorder P (we use this type of abbreviations) is separative, if for any
p,q € P, we have ¢ < piff ¢|-p“p € G”, where G denotes the canonical
P-name of the generic filters. For p,q € P, we write p = ¢ for short, if
p < q < p. Since P is a preorder, this relation = is an equivalence relation.
But we never take the quotient.

We review the following technical but important structures and notions
from [M1] and [M2]. For more details, we may consult [M1] and [M2].
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o Iterations I = (P, | o < v) and dynamical stages (b, | k < w).
e The simple limit and simple iterations.

® Nested antichains T.

o (T, I)-nice sequences.

o A fusion structure F and its fusions.

Let us first recall our axiomatic approach to the theory of iterated forcing.
The actual construction of a relevant iterated forcing (P, | o < v) together
with the P,-names Q, is done by recursion.

1.1 Definition. Let I = ((P,, <qa,1q) | @ < ) be a sequence of separ-
ative preorders s.t. for any o < v, P, is a set of sequences of length a. We
say I is an iteration, if for all o < 8 < v, we have

e 15[a=1, and if p € P3, then p[a € P,.

o Ifp € Pg,a € P,and a <, p[a, then a™p[[a, B) € Ps and a~p[la, ) <g

D.
o If p <g g, then p[a <4 g[a and p <g p[ag[[a, B).

o If 8 is a limit ordinal, then for any z,y € Ps, we have y <; z iff
Va < B yla <, z[a.

Let I = (P, | a < v) (we allow this type of abbreviations) be an iteration
and a < B < v. Let G, be a P,-generic filter over the ground model V. In
V[G.], the quotient preorder P,z is defined as follows:

es = {z[[a, B) | x € Py with z[a € Ga}.
e Fort,s € Py, we set t <,5 s, if thereis a € G, s.t. a™t < a"s in Pg.

We consider conditions in the limit stages which have a sort of their own
Boolean-valued w-stages. The stages are dependent to given generic objects
in the manner given below.

1.2 Definition. Let v be a limit ordinal and J = (P, | @ < v) be an
1terat10n We say p € P, has P,-dynamical stages (6,c | k < w), if for all
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e §; is a P,-name s.t.

o |Fp,“0 < bk < V.
e Foranyz € P, if z|-p, “bp = & then z[¢"1,[[€,v) |Fp, O =
£”.

° p”"P., “5k <.
o |5 ifd= sup{dx | k < w} and p[6 € G,[6, then p € G, .

The conditions with dynamical stages constitute a limit stage of an iter-
ated forcing.

1.3 Definition. Let v be a limit ordinal and I = (P, | o < v) be an
iteration. We write I* for the inverse limit of I. By this we mean I* = {z | z
is a sequence of length v s.t. for all @ < v, we demand z[a € P,}. The
simple limit X of I is a subpreorder of I* and its universe is defined by
X = {z € I" | there exist I*-dynamical stages (¢ | k < w) for z}.

In the following the former requirement is what we call the fullness of
successor stages. This requirement is satisfied by the usual recursive con-
structions. We demand to take the simple limit at every relevant limit stages.

1.4 Definition. We say an iteration I = (P, | a < v) is simple, if

e For any o with o + 1 < v and any P,-name 7, if a ||-p, “T € Pay1 with
r[a € Go”, then there is b € Payq s.t. bla = a and al|l-p, “b[[e, o +
1) =71[la,a+1) in Paasr”-

e For any limit a < v, P, is the simple limit of I]c.

We sum up what we got here. The following is 3.5 Lemma and 3.12
Proposition in [M2]. The last two items say we have some freedom when we
choose dynamical stages in the simple limit. We caution that to define the
simple limit we use I*-dynamical stages. But once we got the limit X, then
every £ € X has X-dynamical stages. This takes some proof and these two
should not be confused.

1.5 Lemma. Let I = (P, | a < V) be a simple iteration. For any limit
ordinal j < v, let us write (I[j). for the direct limit of I[j and (I[j)* for
the inverse limit of I[j. Then we have
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e (I[1). S B C (U1
® For any z € (I[§)*, we have z € P; iff x has (I[j)*-dynamical stages.

o And so if cf(j) = w, then P; = (I[4)*. If cfl§) > w1, then P; might be
bigger than (I[j)..

o For any z,y € P;, we have z S5y iffVa < j zfa <, yla.

e For any i < j and z € Py, we may construct P;-dynamical stages
(O | k <w) forz s.t. |-p, g = 1"

® For any z,y € P; with y <; z, if (0x(x) | k < w) are Pj-dynamical
stages for z and (8¢ (y) | k < w) are Pj-dynamical stages for y, then we
may assume for all k < w, |F-p, “Gry1(x) < Sk (y)”.

The simple iterations enjoy the fullness not only at the successor stages
but at the limit stages. We state this precisely in 1.11 Lemma. And for that
we introduce a kind of generalized names.

1.6 Definition. Let v be a limit ordinal and I = (P, | a@ < v) be an
iteration. A nested antichain T in I is ((T,, | n < w), (suck | n < w)) s.t. for
all n < w and all a € T, we have

o To = {ao} for some oy < v and ay € P,,.

To CU{Pa| a <v} and suc}: T, = P(T,41).

e For any b € sucy(a), we have I(a) < I(b) and b[l(a) < a.

{b[l(a) | b € suc}(a)} is a maximal antichain below a in Py(y).

For any b, € sucf(a), if b[l(a) = b'[I(a), then b =¥

® Thi1 =U{suct(a) | a € T,}.

We consider a relation between conditions and nested antichains. We
intend to identify conditions and nested antichains in the simple iterations
via this relation.

1.7 Definition. Let v be a limit ordinal and I = (P, | a < v) be an
iteration. Let T' be a nested antichain in I. We say z € I* (the inverse limit
of I) is (T, I)-nice, if the following hold.
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z[l(ag) = ao, where {ao} = To.

For any a € Ty, we have a < z[l(a).

For any a € T, and any b € suc}(a), we have b = b[l(a)"z[[l(a), 1(b)).

For any o < v and w € P, with w < z[a, if w|-p, “there is a se-
quence (a, | n < w) s.t. for all n < w, we have a, € Tn, Gny1 €
suck(ay,), l(an) < a and a, € G.[l(az)”, then we have w™z[[a,v) =
w™ 1, ([, V).

In particular, in this case, for any limit Y of I with z € Y, we have

e |-y “z € Gy iff there is a sequence (a, | n < w) s.t. for all n <w, we
have a,, € Ty, Gny1 € suck(a,) and a, € Gy [l(an)”.

We are going to perform a diagonal argument by constructing a nested
antichain with associated objects. The following is from [M1].

1.8 Definition. Let v be a limit ordinal and J = (P, | @ < v) be
an iteration. Let T be a nested antichain in I = J[v. We say a structure
F = {(a,n) — (@, T@M) | g € T,,,n < w) is a fusion structure in J, if for
alln <wand all a € T,

e T(®" is 3 nested antichain in I.
e z(@m ¢ P, is (T(®™, I)-nice.
e a < z®™M[l(a) and if r € Téa’"), then I(r) = l(a).

e For any b € suc®(a), we have z®n+D) < z(®m) and T®nt1) /T(em) By
this we mean that for all i < w and all e € Ti(b’"“), there is f € ’.l“i(f:i")

s.t. I(f) < l(e) and e[l(f) < f.

We are interested in the identification between a condition and the nested
antichain T which served as indices of the fusion structure F. The condition,
if any, is to work kind of a master condition by generically descending through
T.

1.9 Definition. Let F be a fusion structure in J, y € P, and write
I = J[v. We say y is a fusion of F, if y is (T, I)-nice.
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We have the following as in 4.9 Lemma of [M2)].

1.10 Lemma. Let v be a limit ordinal and J = (P, | a < v) be a
simple iteration. Let us write I = J[v. If F = ((a,n) — (z(@™,T@M) | a €
Th,n < w) is a fusion structure in J with fusion y € P,, then y|l-p, “there

is (@n | n < w) s.t. for all n < w, we have a, € Ty, any, € sucT(an)
an € G, [l(a,) and z(&™) € G, 7.

The following are 4.10 Theorem and Claim 1 of 6.4 Theorem in [M2]. The
former says every nested antichain is equivalent to a condition in the limit
stage. The latter says the conditions which have equivalent nested antichains
are dense in the limit stage. Hence we may assume every condition in any
limit stage of any simple iteration has not only dynamical stages but also
an associated nested antichain. Whenever we want a condition in the simple
limit, we construct a nested antichain through the iteration with associated
objects, i.e., a fusion structure.

1.11 Lemma. Let v be a limit ordinal and J = (P, | o < v) be a simple
iteration. Let us write I = J[v. Then we have

(1) For every nested antichain T in I, there is x € P, s.t. x is (T, I)-nice.

(2) For every p € P,, there is a nested antichain T in I s.t. if g € P, is
(T, I)-nice, then q < p.

We quote the preservation theorem for the semiproperness with the simple
iterations from [M2].

1.12 Theorem. Let I = (P; |i < v) be a simple iteration of semiproper
preorders ie,lisa simple iteration and for all i with i+ 1 < v, we assume
|- P, “Pii+1 is semiproper”, 0 be a sufficiently large regular cardinal and N be
a countable elementary substructure of Hy with I € N.

Suppose we have o < 8 < v, P,-names M, § and d € P, s.t.

(1) d|Fp, “NU{G.} C M < H:[G"], M is countable and B € M”
(2) d|-p. 9 € MN Ps and g[a € Go”

Then there is d* € Pp s.t.
(3) &*la=d
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(4) d* H—Pg «g € Gﬁ ”
(5) d* |-, “M[Gsl[e, B Nw} = MNw ™.

Proof. We consider a maximal antichain below d to decide the values of
§. Then take a mixture of conditions gotten by 6.2 Theorem in [M2] to form
dr. a]

§2 Main Theorem

Let us recall that a preorder P is “w-bounding, if for any P-generic filter
G over V and any f € V[G] with f: w — w, thereis g € V with g: w — w
s.t. f <* g holds. Namely, there is k < w s.t. for all n with k < n < w, we
have f(n) < g(n). We write this f < g for short. So f <o g means for all
n < w, we have f(n) < g(n). We may abusively use this notation to finite
sequences of natural numbers.

We also recall that a preorder P is semiproper, if for all sufficiently large
regular cardinals 6, all countable elementary substructures N of Hy with
P e N and all p € PN N, there is ¢ < p s.t. we have glFp“NNuwy =
N[G]NwY”. For a cardinal A > w; and S C [A]*, wesay §'is semistationary,
f{YeP|3XeSXCYwithXNu =Y Nw;} is stationary in [A]“.
It is known that P is semiproper iff P preserves not only w; but also every
semistationary subset S C [\]“ for every cardinal A > w;.

We consider a simple iteration I = (P; | i < v) of semiproper preorders.
By this we mean that for every ¢ < v, we assume |Fp. “Psit1 is semiproper”.
Namely, we force with a semiproper preorder each time. We know that the
“o-boundingness is trivially preserved by the 2-step iterations. And we have

2.1 Lemma. (CH) Let v be a limit ordinal and J = (F; | i < v) be a
simple iteration of semiproper preorders. If for all i < v, P; is “w-bounding,
then so is P,.

So we immediately have

2.2 Theorem. (CH) If I = (P, | i < v) is a simple iteration of “w-
bounding and semiproper preorders, i.e., for all i with i + 1 < v, we assume
I-p, “Piit1 s “w-bounding and semiproper”, then for all i < v, so are P;.
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Proof of 2.1 Lemma. Let f be a P,-name s.t. plFp“f :w = w. We
want to find ¢ < pin P, and g : w - w s.t. q|-p “f <* g". To thlS end
we define D = D(J, p, f) and fix an operation II = I1(J, p, f) in the ground
model. We write I = J[v for short in the following.

Xo = (o, 2,T%, fo, (5 | k <w)) € D, if
(1) a<v.

(2) z < pin P, and T® is a nested antichain in I s.t. z is (T*, I)-nice and
for af € T, we assume [(af) = a.

(3) fois a P,-name s.t.
o z[a|p “fo:w— W

(4) For all k < w, 3 are P,-names s.t. given any P,-generic filter G, over
V with z[a € G,, we have the following in V[G,]. We first calculate
fo= fO[Ga] and s = $[G,]. We then have two items

® S0 =1, Sky1 < Sk in P, and si[a € G,,.
o skl “fTk = (fol k).

So we are looking at f standing in V[G,] and it looked like f,[k with the
condition s;.

For Xy € D and af € T?, we consider

(e, a%, z, T?, fo, (8 | k < w))
= (l(a:f)’xvsx’fli (tlc I k < LU), (u.)k»gk I k < w)’gw)

Let us write 5 = l(af) for short. Then concerning the image of II, we
demand

(*) (,B,IL', Sz’jl’ <tlc I k < (AJ)) € D.

(5) Given any Ps-generic filter G4 over V with z[8 € Gg, let us calculate
f1 fl [Gg) and tx = £[Gp]. Let us write G, = Gs[a and calculate
= fo[Ga), 5k = $[Ga]. Then

o If s[B € Gp, then t; = s; and so fo[k = f,[k.
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(6) For all k < w, 1k, gy and g, are P,-names. Given any P,-generic filter
G, over V with a%[a € Gy, let us calculate sp = §;[Ga), wp = Wi[Gal,
gk = 0k|Go] and g, = §u,[Ga). Then we have the following in VI[Gal-

o wy < si[B, af and w[a € GL.
o gr € (w)” and wi |-p,“f1 <o G”-
e w;[a decides the value of .

e g, w— ws.t. g,(m) > max{gr(m) | k < m} for all m <w and
SO gk <m 9w for all m with k < m < w.

So we have the following three Facts in the generic extension V[G,] as in
(6) for all k < w and all g € (“w)".

Fact 1. wi[a Y. “k = 8k~ and s0 wy H—gﬁ “p = Si”.

Proof. Since wy [« decides the value of §;, wp[a € G, and $[G4] = s,

we must have wi[a |} “Sk = $i”.

To observe the latter half, let G be any Ps-generic filter over V' with
wi € Gg. Let us write G, for Gg[a. Since wy € G, we have wi[a € Ga.
Since wi[a |F%, “5k = $i”, we have wy < s5[8 = $1[Go][ B and so $x[G,][B €
Gp. Hence by the definition of £, we have t,[Gj] = 5| 5—] = 5. O

Fact 2. If fo[k <o g[k and g, <k g, then wy l}—V “f <0 g”.

Proof. Suppose fo[k <o g[k and g, <z g € (“w)V. Let Gg be any
Ps-generic filter over V with w, € Gp. Since wy H—gﬂ “fi <o gx”, we have
AIGs) <o 9k <k 9w <k g. Since wi |-y, “te = 8”7, we have i[Gg] = sk
Since w;, < z[B € Gp, we have ix[Gg] |5 “f[k = (fl[G;‘g]fk)” Since
sk |IF% “f[k = (fo[k)”, we have A[GaI[k = folk <o g[k. So we have
fl[@ﬂ <0 9. o

Fact 3. If fo[k <o g[k, then wi s[[B,v) |}, “fTk <o (g[k)”.

Proof. Suppose fo[k <o g[k. Let G, be any P,-generic filter over V
with wi sk [[8,v) € G,. Since s € G, and s¢ |-}, “fTk = (fo [k)” we have

fIGTk = folk <o g[k. o
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On (5): Given G with z[3 € G, we descend along the s¢[3 as long as
sk[B € Gg. And we set tx = s;. But once we hit k < w s.t. sx[8 & Gg, then
we forget about s; and start to construct the rest of the ;.

On (6): Suppose we have fixed f; and (i | k < w). Since we assume Pj
is “w-bounding, it is routine to get w; and g.

The following is from 2.11 Lemma in [M1].

Lemma. Let x € P, be (T*,I)-nice, aF € TF, B = l(a%), y € P, and
y < af"x[[B,v). Then there is a nested antichain TV in I s.t. y is (TY,I)-
nice, T = {a}}, l(af) = B, af < af and TY/T*. Namely, we mean for all
n<wandallee€Ty thereis f € T7,, s.t. I(f) <l(e) ande[l(f) < f. ©

The following is concerned with a closure property of D.

Subclaim. Let z € P, be (T°,I)-nice and a] € T{. Let us write 3 for
I(af). Let X, = (B,2,5% f1,(ts |k <w)) € D, k* <w, w € Ps and t € P,
s.t.

o w<af.
o wlp, 4 =1".

Then there are y, TY, (i | k < w) s.t. Yo = (8,y, T, f1, (e | k < w)) €
D and for all k < w

o y=w"t[[B,v) < af"z[[B,v), t.
 y[B I, “wu[[B,v) = te1i[[B,v)".
o TV/T=,

Proof. Since w < t[f, we may consider y = w™t[[8,v) € P,. We have
y < af"z[[B,v), t. So by Lemma, we may take a nested antichain 7% in I
s.t. y is (T%,I)-nice, {af} = T¢, l(a}) = B, af < a% and TY/T*. To define
(4 | k < w), let G be any Ps-generic filter over V with y[3 € Gs. We
define a sequence (u | k < w) by recursion in V[Gg). Let t; = £,[Gg] and
f1 = f1[Gg]. So we have t;. =t. We first set ug = y. So we clearly have
uo[[B,v) = t[[B,v) = tr-+o[[B,v). Suppose we have constructed uy so that

ur <y, ur[B € Gg and ui[[B,v) = ty 1k [[B, V). Since teyx11[B, ur[B € Gg,
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we have a common extension e € Gg. Let ugy1 = € teeqiksa[[B,v) € P,.

Then we have ugy; < ug, tisix+1. And 50 ugs1 |5, “f[k +1=(f [15+ 1)”.
This completes the construction. Now back in V, let u; be a Pg-name of u.
This (4 | k < w) together with y work. o

Let 6 be a sufficiently large regular cardinal and N be a countable ele-
mentary substructure of Hy with p, f,J,D,I1 € N. Let usfix g : w = w so
that N N “w <* g which is meant that for any h € NN “w, we have h <* g.

The following construction is crutial.

Main Claim. Suppose we have given Xo = (e, z, T7, fo, G5k | k <
W) ED,M,a€ P, and K <w s.t.

(7) a < zfa.

(8) M is a P,-name s.t.
o allp, “NU{Ga, X0} C M < H;/[G°] and M is countable”.
e allp, ‘NNuw/ =MnuwY”

Since we assume CH, an enumeration of “w in the order type w, exists in
N. Since we assume P, is “w-bounding, we consequently have

o allp, ‘NN (w)V =Mn (W)Y and M N (“4w)VCl <* §7.
(9) z[al-r, “fo <o §”-
Then the following d € P, are dense below a.

There are Yy = (B, y,Ty,fl,(uk | k < w)) € D, af € T, Ml, d* € P3
and k* s.t.

(0) y < a§"z[[B,v) in P, and that
o If {a}} =T¢, then a < l(a§) = l(af) = B and TY/T".
(0%) d|-p. 5,8 € M”.
(0tF) d*[a=d < y[a < af|a.
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(7) d* < y[B.
(8) M, is a Ps-name s.t.
o d'|Fp, “N U{Cs, Yo} C My = M[Gp[[e, B)] < HY®® and M, is
countable”.
o d*|Fp, “NNwY =Mnuw! =MNuwy”

0) y[B-r, “f1 <0 §”.
(10) K < k* <w and y |-p, “f[k* <o §[k*".
Proof. Take any d (we abusively denote it) below a. Let us write T =
{a§}. Fix any P,-generic filter G, over V with d € G,. We argue in V[G,].

(Step 1) Since d < a < z[a = af, we have af € G,. Since {b[a | b €
suc. (af)} is a maximal antichain below af in P,, there is af € suc. (ag)
s.t. af[a € G,. Let us write M = M[G,]. Since T*,af,G, € M, we have
af € M and so § = l(af) € M.

(Step 2) Let X = (o, af, z, T®, fo, ($k | k < w)) and
Y =I(X) = (8,x,5% f1, (b | k < w), (g, Gk | k < w), §u)-

Since I1 € NU {X,o} C M, we have X, Y € M.

(Step 3) Let us write fo = fo[Ga), sx = $[Gal, wk = Wk[Ga], g =
9k[Ga); 90 = §u[Ga)- Since X,Y,G, € M, we have foy, (sk | k < w), (wk, gk |
k < w), g, € M. Since g, € M N (“w)¥Gel, there is k* s.t. K < k* < w and
g <k+ 9. Since fo <o g, we have

e folk* <o g[k* and g, <+ g. Hence by Facts 1 through 3, we have

H <o 8

o wisk:[B,v) |F% “f[k* <o (g[k*)”. We set y = wisg-[[8, v). Then we

have

[ J wka

e y € M. By Subclaim, we have T¥ and (i | k < w) s.t.
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o Yo=(8,y,T% fi, (i | k <w)) € DN M.
o y < af z[[B,v) and y[a € G..
o TY/T*.

9) y[BIFE, “fi <o §"-

(10) K <k*<wand y|-p, “fk* <o (g[k*)”.

(Step 4) Now back in V, by extending d, we may decide the values of
a?, k* and Yy € DN M. So we may assume

o d|-p.“B,5 € M and j[a € Go”.

Then by the iteration theorem for the semiproperness, we have d* € Pg
S.t.

o d'[a=d, d* <y[B.

o d*|lp,“M NwY = M[Gg[[er, Bl Nw}™”.

(Step 5) Let M; be a Psg-name s.t.

o d*|l-p,“My = M[Gp[[e, B)]-

Then we certainly have (8). In particular,

o d' |-, “N U {Gp, Yo} C My < Hy'® and M, is countable”.
o &*|p,“NNwl =M Nw”. | |

This establishes Main Claim. , ‘ W a

We now carry a recursive construction of a fusion structure
F = {(a,n) — (&>, T®) | a € Tp,n < w)
together with
((a,n) = (@@, f@ (5™ | k < w), M@™) |a € Tp,n < w)

such that if we denote X@" = (I(a), z(@™, T(@n), flam) (5{o™ | k < wy)
for short, then ,
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(¥) X@n) ¢ D,

e For any b € suc}(a), we have z(bn+1) < g(an) apq T(ba+1) y7(am)
(7) a < z@=™i(a).
(8) M@™ s a Pyz)-name s.t.

® a|-p, “N U {Gi@), X@m} C Mem < g/lo@] 31q pram i
countable”.

® allp,, “NNwl = MEM N WY?,

(9) 2P (@) |-, “Fo <o 77
(10) For b € sucf(a), we have z®n+D) | p “f[# <, §[A”.

If g is a fusion of F, then ¢ < p in P, and ¢ k5, “f <o §”. So we would
be done.

Here is the construction. We first take f : w — w and (s; | k < w) s.t.
so = p and for all k¥ < w, we have s;,; < s; and s IFp, “fk = (f[k)”. We
may assume f, (s | k < w) € N. We may also fix a nested antichain 77 s.t.
pis (T?,I)-nice and T§ = {@}. We may assume T® € N.

Now we let Ty = {0}. And set z®9 = p T®O = Tr {00 _ f,
(s |k <w) = (s | k< w) and M®0) = N,

Since we may assume g : w = w s.t. f < gand NN “w <* g, we are
done at Tj.

For successor stages, suppose we have gotten T, and the associated ob-
jects. Fix any a € T, and apply Main Claim to X", M%) 4 and n. It
is routine to form sucf(a) and attach associated objects to each b € suci(a).
This completes the construction.

a

§3 Applications

We consider an application of our main theorem. We pick up a forcing
axiom from [F.
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3.1 Definition. ([F]) The Cofinal Branch Principle (CBP) says: Every
tree of height w; which preserves every stationary subset of w; has a cofinal
branch.

We have the following.

3.2 Proposition. ([F]) The Semiproper Forcing Aziom (SPFA ) implies
CBP.

We give a forcing construction which establishes the consistency of CBP
and more.

3.3 Theorem. (CH) Let k be a supercompact cardinal. We may construct
a notion of forcing P, which is semiproper, has the k-c.c. and we have the
following in VF=.

o Forany f : w — w, there egists g € (w)" s.t. f<*g.

e CBP holds.

3.4 Corollary. CBP does not imply SPFA.

To give a proof to the theorem, we make preparations.

3.5 Lemma. The following are equivalent.

(1) CBP.

(2) Every tree of height w, which is semiproper has a cofinal branch.

Proof. Since semiproper preorders preserve every stationary subset of wy,
we know that (1) implies (2). To show the converse the following suffice.

Claim 1. (2) implies the Strong Reflectin Principle (SRP).

Claim 2. SRP implies that if a preorder P preserves every stationary
subset of wy, then P is semiproper.

Proof of Claim 1. By p. 58 of [Be], the notion of forcing which forces a
strong reflection sequence is a tree of height w1 and is semiproper. Hence (2)
implies SRP. O

Proof of Claim 2. Let A > w; be a cardinal and S C [A\]“ be a semistationary
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subset. We show ||-p “S remains semistationary in [A]*”. To this end suppose
plp“r: <“A = X, We want tofindg<p, X € Sand Y s.t. q|p“X C
YeN“ XNwy =Y NwY and Y is #-closed”.

Let 0 be a sufficiently large regular cardinal. Then by SRP, we have
(Ni|i<uw)s.t.

e N; is a countable elementary substructure of H,.

e P, 7t € N,.

If] < wy, then (M I 1 < ]) € Nj+1.
o If j <w, is a limit ordinal, then N; = U{N; | i < j}.

Either thereis X € Sst. X C N;N A and X Nw; = N; Nwy,

Or, for any countable elementary substructure N of Hj s.t. N;CN
and N;Nw; = NNuw;, we have no X € Sst. X C NN X and
XN w = NN Wwi.

Subclaim. Sy ={i<w; |[IX €S XCN,NAXand XNw;, = NiNw}
1s stationary in w;.

Proof. By contradiction. Suppose w;\ Sy contained a club subset Cy of w;.
Since S is semistationary, we may take a sufficiently large regular cardinal
x and a countable elementary substructure M of H, so that Co, Hy, (N; |
¢t <wp) € M and thereis X € Sst. X C MNAand X Nw;, = M Nw,.
Let 43 = M Nw;. Since Cp is a club and Cy € M, we have i; € Cp. Since
(Ni | i <wi) € M, each N; is countable and continuously increasing, we have
Ni1 = U{N, l 1 < 21} - MnHa < Ha and N,'l Nw; = ’il = (MﬂHg)ﬂwl.
Since we have X € Sand X C (M NHg)NAand X Nw; = (M N Hp) Nw,
and since (N; | i < w) is a strong reflection sequence, we must have some
X € S s.t. X - Ni1 ﬂ/\and)_(ﬂwl =N,~lﬂw1. But il € Co le\So, SO
t1  So. This contradicts to the definition of Sy. This establishes Subclaim.

0

Now since P preserves every stationary subset of w;, we have p I_I—— p“So
remains stationary”. However, p|-p“C = {i <w; | NjNw;, =1 = Ni[G]Nw, }
is a club”. Therefore, p forces the following. There is ip € S, N C. Since



io € So, we have X € S s.t. X CNpyNA and X Nw; = Ny Nwr. Since
io € C, we have N, Nwy = Gg = Nyg[G] Nwi. Let Y = N;,[G]n' A. Then
XCY,XNw = Y Nw; and Y is #r-closed. So we may take ¢ < p which
decides the value of X € S. This establishes Claim 2 and 3.5 Lemma. o

Proof of 3.3 Theorem. Let k be a supercompact cardinal. We may assume
CH. We construct a simple iteration J = (Ps | @ < k). The construction
is exactly the same as when we force SPFA. So P, is semiproper and has
the k-c.c. However, since we force with o-Baire preorders each time in this
contruction, we are iterating with “y-bounding and semiproper preorders.
Therefore by our main theorem, P is “w-bounding. o
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