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ABSTRACT. In standard theory of real analysis having relation with PDE(=Partial Differential Equa-
tion), we usually take as coefficient fields R or C. In order to treat “boson” and “fermion” on equal foot-
ing, the so-called even (bosonic) and odd (ferminionic) variables are introduced formally in physics liter-
ature. To make rigorous such new variables, we introduced the new algebras called Fréchet-Grassmann
algebras R or € which play the role of R or C, respectively. Over this algebra, we construct elementary
and real analysis. In this note, we explain not only the necessity of this new notion and its applications
but also the reason why the analysis on the superspace based on the Banach-Grassmann algebras is not
so preferable when we apply this analysis to treat the systems of PDE.

1. INTRODUCTION

In this note, I try to explain the necessity of new concept, called supera.nalySis. Which is started
with the desire in physics world to treat photon and electron on the equal footing. Moreover, physicist’s
treatise of super symmetric quantum mechanics makes it clear the effect of introducing new Grassmann
variables.

On the other hand, Manin [41] claimed the need of three directions in geometry of 2000’s mathe-
matics, which are, even, odd and arithmetic directions. Here, I explain the two directions of three are
appeared very naturally when we are dealing with systems of PDEs without diagonalization procedure.

In §2, we recall the Feynman’s problem which claims implicitly the need of the classical mechanics
corresponding to the systems of PDE. By using the Chevalley’s theorem that (a) every matrices are
decomposd by Clifford algebras, and (b) the Clifford algebras have representations on Grassmann algebras,
we may represent the systems of PDE as the sclar type one but with dependent and independent variables
in non-commutative Fréchet-Grassmann algebras. Using this formulation, we give a partial answer to
the Feynman’s problem. We enumerate problems which may be studied in the same fashion; (i) WKB
approximation of the Dirac equation, (ii) a trial to extend the Melin’s inequality for positivity of systems
of PDE by Sung, (iii) characterization of ellipticity for the systems of PDE, (iv) a generalization of
Hopf-Cole transformatlon by Maslov, (v) whether the Euler equation is attackable by superanalysis?

§3 is devoted to the Witten’s treatment of Morse thoery and etc. by using superanalysis. Aharonov
and Casher’s theorem, retreatise of Atiyah-Singer Index theorem by susy QM, are also proposed by
superanalysis.

In §4, we apply this technique to Gaussian Random Matrices and get a precise asymptotic formula for
the Wigner’s semi-circle law. A beautiful formula given by physicist’s are checked from a mathematician’s
point of view.
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In the final section §5, we recall the problem of Gelfand on dynamical theory and propose a candidate
of its solution.

Unfamiliar notion from superanalysis will be seen, for example, in [25, 27, 29, 35].

2. FEYNMAN’S PROBLEM FOR SPIN

2.1. Feynman’s path integral representation and his problem. Feynman [16] introduced the
expression

‘ in-t [ 7).%(7))dr . 1.
(21)  E(ts:q.4q)= / ] 7 HAHNT ) = S - Ve, )

¢, 8iq,q’

where  Ciuig¢r ~ {7() € C([s,t] : R™) | ¥(s) = ¢', 7(t) = g},

and rederived the Schrédinger equation, not by substituting —ikd, into H(t,q,p) = 1Ip|> + V (¢, q).
This expression contains the notorious Feynman measure [dv], but this derivation is efficiently used to
construct a fundamental solution of the Schrédinger equation for suitable potentials. That is, a Fourier
Integral Operator

U(t, s)u(q) = (2eh)™™/2 /Rm dg' DY3(t, 530, )™ 000y g')

gives a “good parametrix” of the Schrédinger equation (shown by Fujiwara (18, 19]). Here, S(t,s;q,¢")
satisfies the Hamilton-Jacobi equation and D(t, s; g,¢’), the van Vleck determinant of S (t,s;q,¢), satisfies
the continuity equation. (“good parametrix” means that not only it gives a parametrix but also its
dependence on A and its relation to the “classical quantities” are explicit.)

This formula is reformulated (by Inoue [28]) in the Hamiltonian form as
Un(t, s) u(g) = (2wh)~™/? / dp Dy'/(t, 5;q,p)et Sultsian)y(p),
R™
where, with () = (t,£;¢,p) and (xx) = (2,4, S(*)),

S +HEa SN =0 o {5D(*)+a—q(D(*>Hp<**»-o,

(H—J) {S(Evi;q’p) =gp, D(Lz;q,p) =1.

On the other hand, Feynman(-Hibbs) [17] posed the following problem:

...... path integrals suffer grievously from a serious defect. They do not permit a
discussion of spin operators or other such operators in a simple and lucid way. They
find their greatest use in systems for which coordinates and their conjugate momenta
are adéquate. Nevertheless, spin is a simple and vital part of real quantum-mechanical
systems. It is a serious limitation that the half-integral spin of the electron does not find
a simple and ready representation. It can be handled if the amplitudes and quantities
are considered as quaternions instead of ordinary complex numbers, but the lack of
commutativity of such numbers is a serious complication.

[Problem for system of PDE]: We regard Feynman’s problem as calling a new methodology of
solving systems of PDE. By the way, a system of PDE has two non-commutativities,

(i) one from [8,,g] = 1 (Heisenberg relation),

(ii) the other from [A, B] # 0 (A, B: matrices).
Non-commutativity from Heisenberg relation is nicely controlled by using Fourier transformations (the
theory of ¥.D.Op.). Here, we want to give a new method of treating non-commutativity (4, B] # 0;

after identifying matrix operations as differential operators and using Fourier transformations, we may
develop a theory of ¥.D.Op. for supersmooth functions on superspace Rmin,
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Dogmatic opinion. For a given system of PDE, if we may reduce that system to scalar PDEs by
diagonalization, then we doubt whether it is truely necessary to use matrix representation. Therefore,
if we need to represent some equations using matrices, we should try to treat system of PDE as it is,
without diagonalization. (Remember the Witten model which is represented 2 independently looking
equations but if they are treated as a system, that system has supersymmetry.)

Remark. We may consider the method employed here, as a trial to extend the “method of
characteristics” to PDE with matrix-valued coefficients.

2.2. A partial solution for Feynman’s problem. Now, we give a partial answer of this problem by
taking the Weyl equation as the simplest model with spin. That is, we rederive the Weyl equation from
the Hamiltonian mechanics on superspace (called pseudo classical mechanics). More precisely speaking,
introducing odd variables to decompose the matrix structure, we define a Hamiltonian function
on the superspace from which we construct solutions of the superspace version of the Hamilton-Jacobi
and the continuity equations, respectively. (The even and odd variables are assumed to have the in-
ner structure represented by a countable number of Grassmann generators with the Fréchet topology.)
Defining a Fourier Integral Operator with phase and amplitude given by these solutions, we may define
the good parametrix for the (super) Weyl equation. This means, back to the ordinary matrix-valued
representation, that we rederive the Weyl equation and therefore we give a partial solution of Feyn-
man’s problem (“partial” because we have not yet constructed an explicit integral representation of the
fundametal solution itself).

‘We reformulate the above problem in mathematical language as follows:

Problem: Find a “good representation” of ¥(t,q) : R x R® — C? satisfying

L0
(W) tha ¥t q) = H)¥(t 9),
¥(t,9) = ¥(9)-
Here, t is arbitrarily fixed and
ha . /n o
(2.2) H(t) = H(t,q, ;‘5&) = ZCU (—1"8—— - —Ak(t Q)) +€4o(t,q)
k=1

with the Pauli matrices {o;}.

In order to get a good parametrix, we transform the Weyl equation (W) on the Euclidian space R®?
with value C? to the super Weyl equation (SW) on the superspace 312 with value €:
0 ko 7]
A— t,x, = t,z, - 7,0, = » LV ),
i Btu( z,6) ( T 52 6 a6)1‘c(tx6)

u(t, z,0) = u(z, 6).

(SW)

Remark. For example, the operators

0 a?

17} o
80) 616, — 391392 ’ b1 — b2

82 8
716, 96,06, 20,00, 3gg) =1~ 96, 286,

o2(8 (6162 +

o
2 86)
act on u(f1,02) = up + 116162 as o1 = ((1) é), oo = (—?z 8), o3 = <(1) _(_)1), respectively.

Theorem 2.1. Let {A;(t, q)}?=0 € C®(R x R3 : R) satisfy, for any k =0,1,2,---,

(2.3) A5 llx,00 = sup_ (1 + |g)M=1874;(t, @)l <00 for j=0,---,3.
t,q.|vl=
We have a “good parametriz” for (SW) represented by

Ut t)u(z,6) = (2mr) =R / dedn DV2(t, 82,0, €, m)e™h SE=OET Fy g, m).
SR312
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Here, S(t,t;z,0,£,7) and D(t,t;z,0,&,7) satisfy the Hamilton-Jacobi equation and the continuity equa-
tion, respectively:

8 as , 88 8. 8/ OHy 0, OH
(H-1) { =S +H(tz, 52,6, %) =0 © { =D+ %(D-a?) + %(Da—w) =0,
S(.t_,t'.;zrevga 71') = (xlf) + <0|7r)v D(§,§;3y61£a 77) =1.

Here, for u(z, 8) = uo(x) + u1(x)6162, Fourier transformation F is defined by

Fu(€,m) = (2rh) %2R dzdf e~ P (=IO+CIm)y (1 9) = Kay(€) + A ag (€)Tims.
PR32

Using the identification maps

f:L2(R%: C?) = £35,,(R*?) and b:f3g,, (%?) — L3(R®: C?),

=}
. 1 .
i (:i;) (z,6) = uo(x) + u1(x)0102 with wuj(z) = _;_ 376:’¢j+1(x3):c§' for z=zp+zs, j=0,1,
lad=0-""

. o
(ulla) = (5283) with ¥1(q) = (= O)|z=g, ¥2() = g z5ulz,Olz=s,
we get

Corollary 2.2. Let {A,(t,q) }?=0 € C®(R x R3 : R) satisfy (2.3). We have a good parametriz for (W)
represented by

U(t, )(q) = b(2rh) =/ /m , EAm D28, 852,0,6,m)e T S OEN F(gy) (¢, )|

An explicit solution: For € = 0, the above formula gives an exact solution for the free Weyl
equation.

(2.4) £(t,0)u(z,§) = (2nh)~%/2k / dedr D(t, 3,€,8,m) /2™ ' SE2E0D Fy(g, ).
R3I12 — - -

Here

S(t,%,€,0,1) = (ZI€) + [|€] cos(ch™t|€]) — i€, sin(ch ¢lg])] ™"
x {|ENBl=) — /"lsin(ch‘lt|_¢_'_|)(§_1 + i_§2)§1§2 -R! sin(cﬁ,‘lt|§|)(§l - i§2)1112]1

satisfies Hamilton-Jacobi equation, and

D(t,%,£,8,1) = €] [I¢] cos(ch="tlg]) — i€, sin(chtI€N)],
satisfies the continuity equation.

After integrating w.r.t dr in (2.4), we have
u(t, Z,8) = E(t,0)u(Z,0) = uo(t, ) + u1(t, £)8:8:
with
uo(t, Z) = (2mh) =%/ L . Be™ 9 {cos(ch gD (§)
— ilg]™* sin(ch™ gD, R0 (€) + (€, — i6,)E (E)}
wa(t,2) = @)/ [ de e foos(ch~teig) (9
— il¢] " sin(ch T HEDI(E, +i€,)80() — £ (&)1},

which is equivalent to the following expression.
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Proposition 2.3. For anyt <R, ¢ € L*[R®: C),

(2.5) e~ By (g) = (2mh) /2 dp et ape=ih T Y () — / dq' E(t,q,9")¥(q"),
- RS - R3 -
with '
E(t,q,¢) = (2nh)~3 / dpeh a=a)p [ cos(ch™ t|p|)Iz — ic™*|p|~ ! sin(ch~t|p|)H].
Here,

3 v .
ar — T - e = D3 D1 —1p2
H = H(g,p) = ;WJPJ ¢ (Pl +ips —p3 ) ’

Important Remark. The reason why we prefer the Fréchet-Grassmann algebra instead of the
Banach-Grassmann algebra?

We need the precise estimate of a solution (z(t),£(t),8(t), w(t)) of the classical mechanics corre-
sponding to H(z,£,0,). For example, to know the dependence of z(t) on the initial data (z, &, 8, ), we
need to prove the following:

Let |t—t| < 1. Ifla+bl=2and k=|a+pB|=0,1,2, -, there exist constants C{¥) independent
of (t,z,€,8, ) such that

Ims030f 0§05 (x(t,t:2,€,8,m) — )| < CfF ¢ — g +/DO~(),
Such a estimate for the #-norm for 3;3?633_%(:1:(15,5_2;, §,8,m) — z) € Rey w.rt. the Grassmann
generators {0 }7ez seems extremely complicated.

2.3. Problems in systems of PDE.

2.3.1. WKB approach to Dirac equation by Pauli, de Broglie, Rubinow & Keller. The modified Dirac
equation with an anomalous magnetic moment,may be written in the form

o . RO e ek Lk
(2.6) zﬁaw— [oa](i 3a; - A ;) + e® + Bmc? ]z/)+g2 Fu(a*at — ala*)y
where
Fy = BAk BA,
T e T Bz

Pauli tried to have a solution in the following form:
N oo
U~ eih s Z(—ih)"‘an,
n=0

where S is a scalar function, a, are matrix-valued functions. Though Pauli didn’t decide the all terms
completely, his procedure yields the correct result in inhomogeneous field regions and fixed finite distances
from them, but not at all distances of the order A~* from them, so claimd in Rubinow and Keller {48].

Our problem is to apply our method to the superversion of (2.6) and to get the corresponding result
mathematically.

For the case of the free Dirac equation, that is, when A; = & = 0, we have the result [27]: Given
%(q), find a good representation of ¥(t,q) : R x R® — C*, satlsfymcr

- in 2 y(t,0) = Hy(t, 0
$(0,9) = ¥(9)

I[J]I—-—-zhoozki +mc?B.
0gx
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Here, h is the Planck’s constant, ¢, m are constanﬁs, P(t,q) = *(¥1(t, q), ¥2(t, ), ¥3(t, q), Yalt, g
summation with respect to k = 1,2, 3 is abbrebiated, and the matrices {ay, 8} satisfy the Clifford re

(2.8) ajo +aka; = 20;kly, oxB+Par =0, BP=1; j,k=1,2,3.

In the following, we use the Dirac representation of matrices

_ ]Iz 0 _ 0 g _
ﬂ-—(o —112>’ ak—-(o_k 0) for k=1,2,3.

Applying formally the Fourier transformation with respect to ¢ € R3 to (2.7), we get

(2.9) iﬁ%d;(t,p) = H(p)d(t, p)
where
me 0 P3 p1 —ip2
(2.10) H(p) = cajp; + mc®f = ¢ ;; n Tcipg pljrff ’ —53
m+ip2  —p3 0 —mc

Remarking H?(p) = ¢?||p||2L4 with ||p|| = \/m2c? + [p|2, we have,

—in - i, -
(2.11) e~ ) = cos(ch1t||p|)Lq — msm(cﬁ ‘t||pll ) H(p)-
Therefore, we have readily

Proposition 2.4. For anyt € R and y € L*(R3: C)* = L?(R®: C¥),

(212) V(t,q) = e Hy(g) = (2mh) 2 / dp e e~V (p).
R3
For ¢ € S(R?®: C)*, we have formally
(2.13) ey (g) = [ da'Etg - 2 )(e)
Ra
with

(2.14) E(t, g) = (27h) /R dpe™ 0 cos(ch™ eIy - ﬁ" sin(ch~1¢|lp|)H(p)] € S'(R® : C)*.

Applying our analysis on superspace, we have the following.

Theorem 2.5 (Path-integral representation of a solution for the free Dirac equation).

(215) ()= ()2 [ deanDV(0,2,8, e AT EDF () ¢, )
R3I3

Zp=q

Here, S(t,%,0,¢, 1) and D(t,%,0,£, ) are given by

S(t,%,€,8,x) = (2|§) + (Olx) + B(t)[2imcfazs + (B —iIL)(Gs + ik~ x5)),

(2.16) D(t,%,£,8,x) =4(t),

where _ -
E(t) = J{(t)S'l(t), .Z(t) = a(t) — 2imceb(t), 6(t)=1- 2b(t)|§|2 — 2imc A(t),
sin 2vt 1 —cos2vt

o) = ZEr 2O = e
8 = (£ +i6,)01 —,0;, = (€ —iE,)m — £,

v=chllgll, lI€I® =& +m2? and

144
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Moreover, S(t, %, 9, §,m) and D(t, I, 6, §,m) are solutions of the Hamilton-Jacobi equation

(2.17) { el

3, 88-88)=0
5(0,%,¢,

é w)+H(5§,9,ﬁ
8,m) = (z(§) + (O|z),

and the continuity equation,

ot ¢ or
D(Or xag_? 0) E) - 11

a 8 /. OH
5p+2 (DBH) + == (D ) 0,
(2.18)
respectively. In the above, the argument of D is (t,Z,¢, 8,x), while those of He and Hy are (Sg,0,S;),
respectively. F is the Fourier transformation for functions on the superspace R313.

Problem. Extend the procedure mentioned above for the free Dirac equation to (2.6) (hint: see
[29, 30] which treats the analogous case for the Weyl equation).

2.3.2. Sung’s example for Melin’s inequality for system of PDE. Let H(q,p) = ZI atBl<2 aapq®p® where
aep € R and (g,p) € R*™. Let Hz(q,p) = ¥|4p=2 %s9*P° and P((g,p), (¢, ') be the polarized form
of H(q,p). Let o(-,-) be the standard symplectic form on R?". F is the Hamiltonian map of H, defined

by o((¢,p), F(¢',p")) = P((¢,p),(¢’,?’)) and tr* p; is defined as the sum of the positive eigenvalues of
—iF.

Let
w -2n ' g+q i(g—q") ' n
H™ (¢, Dy)u(g) = (2) dg'dp H| =—5—,p | """ Pu(q’) for ueSR™).

Theorem 2.6 (Melin). (HY (g, D,)u,u) > 0 for anyu € S(R™) if and only if inf H(g,p) +tr + H, > 0.
In particular, if H(q,&) > 0, then HW(q, D) >o0.

This claim is not generalized straight fowardly to the system of PDE:
Ezrample.(Hérmander [24]). Let

2
P(q,p)=(gp g§> for (g,p) € R?,

then P(q,p) > 0 but for u; =v”, up =i(v—qv’) and 0 £ v € S(R),

® @0y (). (1)) =5 [aawy <o

Problem. Is it posssible to characterize vectors v such that (P¥ (g, D,)v,v) < 07?
Let ,

2 2
ag” + bp agp o
H(g,p) = ( agp cg? dp2> for (¢,p) €R® a,b,¢,d>0 and ad+bc#0.

Theorem 2.7 (Sung[52]). Leta, b, c,d >0 and ad + bc # 0. For HY (q,D,) > 0, it is neccessary and
sufficient that (A1, X2) €  or (A2, A1) €  where

vad — Ve + o \ Vad — vVbe — a
n =

A= 2 -
Y T Vad + Ve 2T T Vad + Voo

Q= {(z,9) | N(z,y) 2 0},
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and

Gz 0 0 0 0
oz 1 Gy 0 0 0
0 0

0

1
0 0 0 0 Cz 1

0 Gy 1 Gz
. (2n +1)(2n +2)\1/2
N(z,y)=1] 0 0 1 th (= .
(@) 0 0 Czo-’r Csy Ciy iz w ¢ ((4n +1)(4n + 5))

Problems. (1) Construct a good parametrix for the following operators:

20 (0 _ gw . Y

ing (31) =10, -imp) (32).
92 .

2 (1) =8 @-2 (31).

9 (1) _pgw h

ot <¢2> =H"(28) {4y, )
(2) Extend the result of Sung to more general positive definite matrices? Find the condition like Melin’s
characterization.

2.3.3. Gelfand’s question for the meaning of ellipticity. Let a matrix be given by

2 2

PM—pz —2mp2
B(p) =
(®) (2P1P2 p%—z%)

which is weakly but not strongly elliptic system. How about the characteristic behavior of the solution
caused by “weakly but not strongly elliptic system” of the following equations?

g (3a) =2 =m0 (31).
o (1) =20 (31).

0 11’1) w (¢1)
—_ =B .
5 (1/:2 )\ g,
Problem. Can we characterize the ellipticity of the systems of PDE by checking the behavior of
solutions of the heat type for ¢ — 0o?

2.3.4. Is the Euler equation attackable by superanalysis? The Euler equation on R3 is given by

u+(u-VYu+Vp=0,
(2.19) divu =0,
u(0,z) = u(z), where u =" (u;(t,z),ua(t,x), us(t,x)).
This equation is the one of the most charming one which is not solved for the long time.

Taking the rotation du = v, we get -

v+ (u-V)v=(v-Vu,
(220) {v<o, z) = 1(2).
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vy u2,3 — U3,2 A
Putting {v2 | =du= |usp ~wu13 |, ui; = o we have, for each 1 = 1,2, 3,
J

v3 Uy,2 —U21
3 3 1
(2.21) Zvju,-,j = Zdijvj where d,;j = 5(1!,',]' + ‘U._,',i).
Jj=1 j=1

D = (d;;) is called the deformation matrix of the fluid flow with Z?=1 di; =divu = 0.

Therefore

5 (v 3 5 (W dip diz diz\ [n
(2.22) 7 | V2 + Z uﬂag v2 | = (da1 dy2 da3 v2 ).
v3 i=1 7 \vs d3;y d3z d3z/ \v3

Problem. The above equation (2.20) in R? has no right-hand side and solved nicely which garantees
the classical solution for (2.19) in dimension 2. In spite of this fact, whether one can make use of the
solution of this vorticity equation nicely to the Euler equation in R3 ?

On the other hand, it is well-known that we may apply the method of characteristics to

n
a‘u,k
2.23 ; — = =
(2.23) j;a,(q,u)]h Bg; = be@w) for k=121,
assuming (a1(g,u),- -+ ,an(g,u)) # 0.

Especially, we have the following:

Theorem 2.8. Let a;(t,q) be C! near (t.q), and let be(t,q,u) be C! near (¢, g,u), u = ¢(qg), and ¢ is
C! nearg. Ifg= z(t,t;q) is a solution of

i =a;(t,q), ¢;(t:t;9) =g,
and U(t,q) = (U1(t, 9),--- ,Ui(t,q)) is a solution of
Uk = be(t,2(t,8;9),U),  Uk(t,q) = ¢k (9)-
Putting u(t,q) = U(t,y(t,t; 7)) wherey = y(t,t;q) is the inverse function of §=z(t,t;q), then it satisfies
Oug

n a ) .
(2.24) 2+ Jgla,-(t, Q)Iz-é%:— =be(tiq,u) with u(t,g) = ¢(g)

Probelm. Extends the above theorem to the case a;(t,q) are I x l-matrices. -

2.3.5. The generalized Hopf-Cole transformation of Maslov. Let V(t,q) € C®(R,; x R3 }“'::ER) be given.
For a solution % € C*(R x R?® : R) satisfying

V2
v =AY+ VY,

1

PO)=yp=e""",

(2.25)

we put u(t,q) = —vVlogy(t,q), that is, u = Hug, us,u3) = t(—u%‘?-, —u"'—fn —V"'—‘Zﬁ-). Then, u satisfies

(2.36) ue+ (u-V)u+VV = -;-Au,
' u(0) = V¢.
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Example. Let V(t,q) = Yo_, 3w?q?. We have a solution of (2.25) as

¥(t,) = (Bp)(@) = (2m)™? /R da D(t,3,9)/%e™ 7 S0y (g)

3 1/2
= H _.—(‘J]_— / / dq e-V_ts(t»G:g_)w(q).
-4\ 27y sinw;t RS -=
J=1

Here, we put

3 3

_ e [wi N2 Wi o 7 q) = Y
S(t,q,9) = E 1: [ 2 (cotw;t)(g; + 4;) sinwjt-q-jq-’] and D(t.,9) =] vsinwjt’
j= =1

Therefore, we get
Jro dg (wycotwstls = mabzg,)e™ S4y(g)
Jos dge™ " 5E0Dy(q)
N o 10
Jas dge™ "SI Dy(g)

uj (t) (7) =

= wjcot w;td; —

Taking especially

1
$(q) = 55k23%;
we calculate explicitly as
u;(t,g) — Ilost the result when v —O0.

Problem. Does there exists Ehrenfest type theorems for the above (2.25) and what does it imply in
(2.26)? (see, Hepp [23]). '

3. WITTEN’S APPROACH

3.1. Morse theory from susyQM.

Definition 3.1. Let H be a Hilbert space and let H and Q be selfadjoint operators, and P be a bounded
self-adjoint operator in H such that

H=Q?*>0, P’=1I [Q,Pl4+=QP+PQ=0.
Then, we say that the system (H,P,Q) has supersymmetry or it defines a susyQM(=supersymmetric
Quantum Mechanics).
Under this circumstance, we may decompose

H=H, ®H; where H;={u€H|Pu=-u}, H,={ueH|Pu=u}

Using this decomposition and identifying an element u = up + u¢ € H as a vector (Z"), we have a
: £

representation
(L 0 _ . 1 0
P= (0 _ If) = (or simply denoted by) (0 _1> .

Since P and Q anti-commute and Q is self-adjoint, Q has always the form

(3.1) Q=(f)1 ‘;) and H=(A;A A&_),

where A, called the annihilation operator, is an operator which maps Hj, into Hg, and its adjoint A,
called the creation operator, maps Hg into Hy. Thus, P commutes with H, and H, and H¢ are invariant
under H, i.e. HH), C Hy, and HH; C Hy. That is, there is a one-to-one correspondence between densely
defined closd operators A and self-adjoint operators Q (supercharges) of the above form.
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Definition 3.2. We define a supersymmetric indez of H if it exists by
ind ¢(H) = dim(Ker (H|Hb)) — dim(Ker (H|H¢)) € Z = Z U {00}

Remark. If the operator A is semi-Fredholm, we have the relation
ind ;(H) = indp(A) = dim(Ker A) — dim(Ker A*).

Corollary 3.1 (Spectral supersymmetry). The operator A*A on (ker A)L is unitarily equivalent to
the operator AA* on (ker A*)L. In particular, the spectra of A*A and AA* are equal away from zero,

a(A"A)\ {0} = o(44%) \ {0}.

Proposition 3.2. For any supercharge Q and any bouned continuous function f defined on D(Q), we
have

er@ =s@e, 1@ = ("GP L 2.),
FIA*A)A* = A*F(AA%), F(AA®)A = Af(A*A).

In order to check whether the supersymmetry is broken or unbroken, E. Witten [59] introduced the
so-called Witten index.

Definition 3.3. Let (H, P,Q) be susyQM with (3.1).
(I) Putting, fort >0

Ay(H) =tr(e 474 — ¢ 2447y = gtr ¢ tH
we define, if the limit exists, the (heat kernel regulated) Witten index Wy of (H, P,Q) by
Wy = tll»nolo A(H).
We define also the (heat kernel regulated) azial anomaly Ay of (H, P,Q) by
Ap = }ir% Ay(H).

(II) Putting, for z € C\ [0, oc),
A (H)= —ztr[(A*A—2)71 — (AA* — 2) Y = —zstr (H — 2)7},
we define, if the limit exists, the (resolvent regulated) Witten indez Wg of (H, P,Q) by

Wgr = lir% A(H) for some Cy > 0.
|®2|<Col 2]

Similarly, we define the (resolvent regulated) azial anomaly Ag by

Ap = — zli.nc}o A,(H) for some Cy > 0.
|R2]<C1[D2|

We have

Theorem 3.3. Let Q be a supercharge on H. If exp(—tQ?) is trace class for some t > 0, then Q is
Fredholm and

ind ;(Q)(independent of t) = ind r(Q) = ind ;(H).
If (Q* — 2) 1 is trace class for some Z € C\ [0,00), then Q is Fredholm and

ind ,(Q)(independent of z) = ind p(Q) = ind ((H).
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In the next subsection, we consider the case where A is not semi-Fredholm. To treat this case, Bollé
et al (8] introduced the notion of Krein's spectral shift function which is not presented here.
Ezample 1. Let (M,g), g = Z?,j=1 9i(g)dg*dg? be a d-dimensional smooth Riemannian manifold.
We put A(M) = Uf_ A¥(M) or Ao(M) = UE_,AS (M), where

A¥(M) = {w = Z Wi, i (@)dg A - Adg® | Wy, i (q) € C®(M : C)},

1<i < <ik<m
A§(M) = {w € A*(M) |w;, .4, (q) € CE(M : C)}, A¥(M) = {w € A*(M)] |lw]| < oo}

Let d be an exterior differential acting on w, ...;, (g)dg** A--- Adg as
dw = Z Oy . "(Q)dqf/\dq"1 Ao Adgte.

P is defined by Pw = (—1)*w for w € A*¥(M).
Put H = A(M) where M: Ug_oA%(M) with A*(M) is the closure of A*(M) in L2-norm || - ||.
Denoting the adjoint of d in A(M) by d* and putting
Qi=d+d", Q=i(d-d*), H=Q?=Q2%=dd" +dd,
we have that (H, Qq, P) has the supersymmetry on H for each o = 1, 2.
Ezample 2 (Witten’s deformed Laplacian [59]).. For any real-valued function ¢ on M, we put
dy = e Mde?, d} = ate ™

where X is a real parameter. We have d? = 0 = d}>.
Qux=dx+d;, Qar=i(dr—d}), Hy=dxd} +d}ds.
Defining P as before, we have the supersymmetric system (H», Qq, P) on H for each a = 1,2.

Using the above deformed Laplacian, Witten rederived the Morse theory which is outside the scope
of our mathematical power to be treated rigorously.

The most important thing of his rederivation is to regard the operator H) as the quantized one from
the action

dq‘dq D¢ Tk Tial 22 1 a¢ a¢ Dzd’ yx1

where
Dd; _dz/; + T3, gk, D% _ 9% _ ,”6_¢
Dt dt kd DqiDgi ~ 9qidq? Y 0g
That is, to. consider the path-integral

(3.2) [ali@iad s,

and its “generator” which is the Hamiltonian H) to be obtained. Here, we used the summation convention
and 1* and ¥’ are anti-commuting fields tangent to M, which becomes the creation and annihilation
operators after quantization.

Instanton or tunneling paths satisfying the classicg.l mechanics defined by

_1 dg'dg’ z'ji‘é?ﬁ)
/dt(” aat T aiag
dg*

/dt <

give the main contribution to the behavior of (3.2) when A — oo. This is a typical example of physicist’s
usage of the stationary or steepest descent method to path-integral, which is beyond the mathmatical

——xAg "

:F)\/dt%?- where |b*|? = g;;b'V,
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power existing. But, in this case at hand, we are in the way of giving the mathmatical proof of Witten’s
procedure by constructing “good parametrix” for a system of heat type equations.

3.2. Atiyah-Singer index theorem by path-integral. Alvarez-Gaumé [2] gave a formal expression
below which gives Gauss-Bonnet-Chern theorem:

Let (M, g) be a smooth Riemannian manifold of dimension d whose Ricci curvature is denoted by
Rijke. We may extend the Riemannian metric ¢ = %g,-_.,-(q)dq"dqj to the supersymmetric one on the
supermanifold M. More precisely, for a local patch U C M — (U) ~U C R we take U = {(z,0) €
R44| gz € U}. Glueing these patches suitably, we get M.

For a given Lagrangian

o1 g
L(g,q) = Egij(Q)qqu € C*®(TR®: R),
we get as a supersymmetric extension, following physicist’s prescription,

| . i Dyt _.Dyk 1 -
5.3) £(@,d,8,5) = g0 2 + Son D0 + 900 Lpyripurd

In other word, we may define a supersymmetric Hamiltonian H(z, ¢, 6, 7) of H(q,p) by
1 .. 1 1 1 . .
H(z,&,0,7) = '2'9” (&- E(gik,l - gak)0*t) (& — E(gjm,n ~ Gjn,m)0" ") + iRikjtg’elW’Wk

which belongs to Css(924124 : R, ). Here, the functions g*/ = g% (x) of z € RO etc. appeared above are
Grassmann extensions of the corresponding ones g = g*/(q) of ¢ € R? etc.

Then, this (M, L) gives a susyQM whose susy-index is formally expressed by
8 . -
ind ;(H) = tr (_1)Fe'—ﬁ7'i - / [d’)’] [d,w] [d,&]e"j; dt 'C(‘Y(t)a'Y(t)ﬂl’(t)ﬂb(t)),
PBC

where PBC stands for the periodic boundary condition with period 8, that is, y(t +8) = (), ¥(t+8) =
#(t) and (¢t + B) = ¥(t). By its very definition of susy index, this gives us the Euler number x(M). On
the other hand, independence of the above quantity tr (—1)Fe=2¥ w.r.t. 8 and the good parametrix of
e~PM gives the density of Gauss-Bonnet-Chern.

3.3. Aharonov-Casher’s theorem and related topics. Let A = (4;, 42) € C°(R? : R?). Put

2 ' me2  eD*
Pam =Y 03l = ) + oo’ = (75, 7).
(3.4) j=1
. . . . R . . 190
D =p1 — Ai(q) +i(P2 — A2(9)), D* =51 — Ai(qg) —i(p2 — A2(q)) with p; = 100
2

We put also

0Ax 0A;

1
- = = — B(q).
aQ1 aq'_) and F 2T Az dq (q)

Theorem 3.4 (Aharonov-Casher [1}). Under above condition, we have
(I) the spectrum o, ) is symmetric with respect to 0 exzcept possibly at +mc? and

(3.5) B=VxA=

(-mc?, me?)n oPam) =0,

Pam¥b=mcp = ¢ = <‘/{)‘) , D*Dypy = 0 (i.e. Dy, = 0),

Pam¥= —mc?p &= P = (152) , DD*tg =0 (i.e. D*yp = 0).

(II) Moreover, assuming that B € C§°(R? : R), we have the following;
(a) If F > 0, thenmc® € 0,@,,) and —mc* & o,(@, ,,) and the multiplicity of the eigenvalue mc?
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equals {F}.
(b) If F < 0, then —mc? € op(@ A,m) and mc? & op(P am) and the multiplicity of the eigenvalue —mc?
equals {|F|}. (Here, {a} stands for the largest integer strictly less than a.)

Theorem 3.5 (Aharonov-Casher [1]). Put

] .
_ (A AN _ _~2_ ((B—-A?+B 0
Q—;aj(ﬁ Aj) —vA,o’ P=o;, H=Q= ( 0 - A)? _B)-

Then, (H,Q, P) has supersymmetry in H = L2(R? : C?). Moreover, if 0 # B € C°(R? : R), we have
ind s (H) = (sign F){| F|}.
Theorem 3.6 (Bollé et al. (8]). Under the same assumption as above, we have
Ay(H) = Wy = F = Wr = A,(H).

Remark. This theorem was first recognized by Kihlberg et al [37] by the calculation using path-
integral: That is,

Oy(H) = / dgdypdi} / (dalldwiled]e” o E@O PO F),
(3.6) J
with  £(q,4,%,%) = 56} —i4;4;(q) +¥(0 - B(@)¥, d(s) = 7905

Their criterion of evaluation of the nght-hand side of above is (i) in the limit ¢ — 0, to use constant
configuration or (ii) to evaluate the functional integration they use the change of variables according to
the Nicolai mapping and construct a lattice approximation.

Theorem 3.7 (Anghel [4]). Under the same assumption as above, we have

ign(F) 1
(3.7 ind, (&) = F - ) _ Lo 0) 4 sign(F)n
where r(0) is the eta invariant associated to T = —i% — F on C®(S!) and h = dimker T".

Remark. In this paper, Anghel used the Atiyah-Singer Index Theorem for a manifold with boundary.

Problem: May we derive the formula (3.7) without the Index Theorem? In other word, may we
derive t_he Index Theorem with boundary by using susyQM? ‘

On the other hand, we notice the following physicists dscription:

Claim 3.8 ('t Hooft [54]). The massless fermion functional integral vanishes when the Fermi field is
coupled to a gauge field with nontrivial topology.

Claim 3.9 (Callan, Dashen and Gross [10], Jackiw and Rebbi (36]). The functional integral over
the fermi fields in the presence of the pseudoparticle vanishes because it represents a transition in which
a conservation law s violated.

Claim 3.10 (Kiskis [38]). If the gauge field to which the fermions are coupled has nontrivial topology,
then the spectrum of P, , includes either a zero-eigenvalue bound state or a zero-eigenvalue unbound
resonance.

In other word, let A = (A;, A2) € C°(R? : R?) satisfying 0 # B = dA € C°(R? : R) with
a0 =01(—10g, — A1(2)) + 02(—i0g, — A2(z)).

Then, the spectrum of P , , must include either a bound state or an unbound resonance at zero eigenvalus.
Either one of these is sufficient to give

[dv)(dd]e”! [ QWI@PAV@  det,
f[d'/)] [d"Z] e-[j;, dgP(q)Po,0¥(9)] - det?ovo' -
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4. WIGNER’S SEMI-CIRCLE LAW IN R.M.T.
In the random matrix theory (=R.M.T.), the following problem is considered as the first one to be
solved.

Let 4y be a set of Hermitian N x N matrices, which is identified with RY *asa topological space.
In this set, we introduce a probability measure duy(H) by

N N
dun(H) = [ ] d(®RHux) [] d(RH;¢)d(SHye) P, s (H),
(4.1) k=1 i<k

- N .
Py y(H)=Z5  exp [ - syt H H]
where H = (Hy), H" = (Hy,) = (Hiz) = *H, [I2, d(RH) [17, d(RH;)d(SH,x) being the Lebesgue

measure on RV, and Z5 N is the normalizing constant given by Zy,; = 2N/2(J2x /N)3N/2,
Let Eq = Eo(H) (a=1,--- ,N) be real eigenvalues of H € {y.
We put

N
(4.2) pN(X) = pn(X H) = N71 Y 5(A - Eo(H)),

a=1

where ¢ is the Dirac’s delta. Denoting

(P = {FOhy = [ duwtan) s,
N
for a “function f” on Uy, we get
Theorem 4.1 (Wigner’s semi-circle law).

(2nJ?)"IVAJ2 =22 for [N <2/,

(4.3) Mim (pn (V) = wae(A) = {0 for |\l >2J.

Seemingly, there exist several methods to prove this fact. Here, we want to explain a new derivation
of this fact using odd variables(Efetov [15], Fyodorov [20], Brézin (9], Zirnbauer [62]).

Following facts are essential: (1) Let A = A; +1A4; = (A,x), where A;, Ay are real symmetric
N x N-matrices with 4; > 0. Putting z;, y; € R, we have

N
/ dz;dy; e—z ey (@i— W) Ak (zative) _ 1
(RXE)N ™ " detA’

d:z_,,dy] E{v,‘_ (z5—iy;) Aje(zr+ive) _ (A Yap
/me)N H (a = iya)(zs + iyp)e “ir= T detA

(2) Let Ok, 0; € Roq.

N
/ H dBydfye” Lkmr A% _ et 4,
moyz/v

N -
/;wrw H d9kd9k9 91,6 Zi,k=1 05 Ak 0% - (A—l)a,b det A.

(A) Based on the above facts, physicists derived the following formula:

(4.4) (on(N), =771 /Q 4Q ({( = i0), - Q}1),, exp [-NL(Q)]
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where I, stands for n x n-identity matrix and
L(Q) = str[(2J%)71Q? + log((\ — i0) > — Q)),
T
(45) Q= {Q = (P; il:)Elz) l$1,22 € Rev, p1,p2 € 9‘od} = m2|2’ dQ =
, - A =10 — z1)(A — 20 —iz2) + p1p2
A—i0)L, — Q)1 = & ! 1
(A~ -Q) )"b (A =140 —1)2(\ —i0 —izp)

Here in (4.4), the parameter N appears only in one place. This formula is formidably charming but
not yet directly justified, like Feynman’s expression of the kernel of the Schrédinger equation using
his measure (2.1).

%dmdpz,

(B) In physics literatures, for example in [20],[62], they claim without proof that they may apply
the method of steepest descent to (4.4) when N — oo. More precisely, as

Q= ZL@+eQ)|

=0
they seek solutions of

6L(Q) =str (J2 3 Q
As a candidate of effective saddle points, they take

Qc=(GA+ 3V -4,

—) =0.

and they have .
dim (on () = 7780 = Qu)g! = wae(N).

Remark. Not only the expression (4.4) nor the applicability of the saddle point method to it are
not so clear. To get the mathematical rigour, we dare to loose such a beautiful expression like
(4.4), but we have the two formulae (4.6) and (4.7).

1 1 N \Y2 NN L
(46) (tr W>N = Zm(m) (}—2) //hxnd.?d’f (14 (r+1X) ls)

x exp[-N(=5 (-r2 + 2i)s + 82) — log s(T + i\))].

2J2

1/2 N
47 (on(N)y = (2;\‘,]2) 21r(Nl— ol (%) /,/m dt ds exp [-No4(t,s,N)]ax(t, s, \; N),

where

o+(t,8,\) = 372 (t2 + 52 + A2) — log(AFit) (AFis),
Ny — Lt 1o Nyl L 1
oalt2: ) = [y = 3037 o |

We get, in Inoue & Nomura (35,

Theorem 4.2 (A refined version of Wigner’s semi-circle law). For each A with |A| < 2J, when
N — oo, we have

VATZ = XE (-1)NJ MATZ )2

(4.8) (pn(N))y = 27T w4 =\ cos(N| 572 + 2arcsm( )])N' +O(N~?).

When ) satisfies |\| > 2J, there ezist constants Cx(A) > 0 and k+()) > 0 such that

(4.9)

(Pn(A) y| < Cx(A) exp [~k (A)N]
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with k+(A) = 0 and C(X) — o0 for A\, 2J or A / —2J, respectively.

Theorem 4.3 (The spectrum edge problem). Let z € [—1,1]. We have

(410) (pn(2J — z2NT23)) = N7Y3f(2/J) + O(N"%3) 45 N — oo,
' (pn(=2J + zN"3)) = —N=Y3f(2/7) + O(N-%/3) 45N = oo,

where

Fw) = o5 (AT (w)? ~ AT'(w) Ai(w)),  Ai(w) = /R dz exp[-52° + iwa],

Problem. Do we calculate analogously if we replace GUE with GOE(=Gaussian Orthogonal En-
semble) or GSE(=Gaussian Symplectic Ensemble)? ‘

Problem. Not only Airy functions above, but also the relation of R.M.T. to other Painleve tran-
scendent is pointed out recently. Interprete these relations using superanalysis.

On the other hand, using eigenvalues denoted by Aj(j =1,---,N), we may consider the following
integral:

PN = N/R-N-_-1 /d)\g - dANPR (AN Az, AN)

where

- N2
PY(An )2, , An) = Che P3m IT 1 = 202,
i<j
and

cy = /M/d)\l-nd)\;ve“ﬁw

N
= (2m)"/2G~N2-BN WD+ 52))N [T 01 + 5 2),
j=1

N
YA - YT loglh - M.
j=1

1<j<k<N

with W =

N}

It is well-known that 8 = 2 is equivalent to the above GUE.

Problem. Can we apply our method to have a suitable limit when N — oo for all B?

5. GELFAND’S PROBLEM FOR DYNAMICAL SYSTEMS °

5.1. Out line of the problem. The study of dynamical systems geverned by

(3-1) %qj(t) =Fi@at), ) (G=12-,n)

is related to that of a partial differential equation(PDE) of the first order
(5.2  uti0) = 3 )a-t(t,q)
. ot ’q"“j=1 i\d1, »dn 3q_-, »q)-

By the so-called spectral method of the theory of dynamical systems due to Koopman, the theory of
dynamical systems may to a significant degree be interpreted as a theory relative to a linear partial
differential equation of first order.

For example, if Q is an invariant set of the flow defined by (5.1) (i-e. if T; is defined by ¢(t) = T3q(0),
€2 should satisfy T3 = Q), there exists an invariant measure p of the flow T;, (i.e. for any Borel set w C ,
MT-w) = w) such that i 3°7_, F;(q)8/8q; is self adjoint on L3(R, dy).
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Gelfand [21] asked whether in the above story, we may replace (5.2) by
0 (*) .
(5-3) gt—uj(t,q) = ZA ¥, (q) ue(t, g) for j,£=1,2,---,nm,
k=1

where A¥) are nxn-matrices whose elemants are denoted by Agk,) . Gelfand’s first question in this direction

is, whether there exists an invariant measure /i on an invariant set € such that ¢ Z =1 A(k)(q) becomes
self adjoint on L2({); dji)?

5.2. Our formulation by an example. Here, we may take 2 x 2-systems of PDE and explain our
formulation for Gelfand’s problem.

We consider the initial value problem

o F(569)-S (0 50) 5 (0 = (6D -EC6)

For the hyperbolicity, we assume

(5.5) (a(g)p — b(g)P)? + 4(c(@)p)(d(g)p) 2 0 for |p| =1.
Here, we abbribiate 21_1 a’(q)p; = a(q)p, etc.

For the matrix

__(a(@p clg)p
H(q,p) = (d(q)p b(q)P)

_a(g)p+b(g)p _ alg)p - b(g)p o5 — c(g)p +d(q)p o — clg)p — d(a)p |

- 2 2 2 2 »
we may associate a Hamiltonian H(z, £,6,7) on T*(R3?) = RSl4 given by
(5.6) H(z,€,0,m) = —a(z)§ + ib(z)€(f|m) — c(2)§6:02 — d(T)émm2,
with
o) = LEEVE i) - SEAPE) g6 5w, bt = Z ¥ ()6

j=1

It yields the superspace version of the equation (5.4) represented by

(5.7) i%u(t, z,0) = ’H(a:,—i—a%, ) (t,z,8) with u(0,z,0) =u(z,9).

80
As H is even, we may consider the classical mechanics corresponding to H(z,§,0,m):

d OH(z,£.6,7)

Lr; =m0 = ol (z) +ibY (z)(8]7) — ¢ (2)6:162 - &’ (z)m 2,
O b %%
Doy = TEEOT) _ o (0)¢ — ibs, (2IE(0I) + s, (26016 + d, (2
dt : Oz; 7
' %91 = —QH—-(%—-’::.eﬂl = ib($)§91 + d(z)fﬂ'z,
| b= THEE0™ _ )60, - d(z)em,
(58)oa ‘3 onmenm
™= 39’ —ib(z)émy + c(x)E62,
| = - TUELRT) i) - ca)ehy
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and at time ¢t = 0, the initial data are given by
(5.9) ((0),£(0),6(0),7(0)) = (z,¢, 8, m)-
If there exists a unique solution of (5.8) with (5.9), we denote it by »
Ti(z, €, 8, m) = (z(t),£(2), 0(t), 7(t)) = (z(t; 2. € 8,m),&(¢ 32,6, 8, 7),0(t 5 2, &, 6, m), w(t 5 2, &, 6, 7))
Therefore, it is natural to ask whether there exists a set & C R84 = T*R3I2 such that
T0=07

whether —iH(z, —10;, 6, —10s) is self-adjoint on L2($), i)? Here, /i is an invariant measure on ) related
to the symplectic measure dz A dé + d@ V dm on T*R312.
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