ON THE PAINLEVÉ I HIERARCHY

SHUN SHIMOMURA

Department of Mathematics, Keio University

下村俊 愿應大理工

Every solution of the first Painlevé equation

$$(I) Z'' = 6Z^2 + 4t$$

('=d/dt) is meromorphic in C, that is to say, equation (I) admits the Painlevé property. It is known that the fourth-order equation

$$Z^{(4)} = 20ZZ'' + 10(Z')^2 - 40Z^3 + 16t$$

also admits the Painlevé property, which is proved by using Miwa's result concerning the isomonodromic deformation ([1,2,3]). In this note, we show that

(1) there exists a hierarchy of systems of nonlinear equations, from which we can derive (I), (I_4) and

$$(I_6) Z^{(6)} = 28ZZ^{(4)} + 56Z'Z^{(3)} + 42(Z'')^2 - 280(Z^2Z'' + Z(Z')^2 - Z^4) + 64t,$$

(2) all the systems in the hierarchy and the nonlinear equations derived from it such as (I), (I_4) , (I_6) admit the Painlevé property.

1. Results

Cosider the following formal power series in ξ :

$$Q(\xi) = \sum_{\nu \ge 1} Z_{\nu} \xi^{\nu},$$

$$R(\xi) = \sum_{\nu \ge 1} U_{\nu} \xi^{\nu},$$

$$F(\xi) = 2\xi^{-1} Q(\xi)(1 + Z_{1}\xi) + (\xi^{-1} Q(\xi)^{2} - R(\xi)^{2})(1 - Q(\xi))^{-1} - u_{0}^{2},$$

where u_0, Z_{ν}, U_{ν} ($\nu \in \mathbb{N}$) are parameters. Then, $F(\xi)$ is written in the form

$$F(\xi) = \sum_{\nu > 0} F_{\nu} \xi^{\nu}$$

$$F_0 = 2Z_1 - u_0^2,$$

$$F_{\nu} = 2Z_{\nu+1} + G_{\nu}(Z_j, U_k; 1 \le j \le \nu, 1 \le k \le \nu - 1) \quad (\nu \in \mathbb{N}).$$

Here $G_{\nu}(Z_j, U_k; ...)$ denotes a polynomial in Z_j and U_k $(1 \le j \le \nu, 1 \le k \le \nu - 1)$. Let m be a nonnegative integer and t a variable. Then the relations

$$\frac{d}{dt}(u_0 + R(\xi)) \equiv F(\xi) + 2(t - Z_{m+1})\xi^m \pmod{\xi^{m+1}},$$

$$\frac{d}{dt}Q(\xi) \equiv 2R(\xi) \pmod{\xi^{m+1}},$$

define the following systems: for m = 0,

(S₁)
$$u_0' = 2t - u_0^2;$$

for $m \geq 1$,

$$u'_{0} = 2Z_{1} - u_{0}^{2},$$

$$Z'_{\nu} = 2U_{\nu},$$

$$(S_{m})$$

$$U'_{\nu} = 2Z_{\nu+1} + G_{\nu}(Z_{j}, U_{k}; 1 \leq j \leq \nu, 1 \leq k \leq \nu - 1),$$

$$Z'_{m} = 2U_{m},$$

$$U'_{m} = 2t + G_{m}(Z_{j}, U_{k}; 1 \leq j \leq m, 1 \leq k \leq m - 1)$$

 $(1 \le \nu \le m-1)$. Then we have

Theorem 1.1. Every solution $(u_0(t), Z_{\nu}(t), U_{\nu}(t))$ $(1 \leq \nu \leq m)$ of (S_m) $(m \geq 0)$ is meromorphic in \mathbb{C} .

As an immediate corollary of this theorem, we have

Corollary 1.2. Every solution of (I₄) or (I₆) is meromorphic in C.

It is known that, for an arbitrary solution P(t) of (I), every solution of

$$y'' - 2P(t)y = 0$$

is meromorphic in C. Futhermore we have

Corollary 1.3. Let $P_4(t)$ (resp. $P_6(t)$) be an arbitrary solution of (I_4) (resp. (I_6)). Then every solution of

$$y'' - 2P_4(t)y = 0$$
 (resp. $y'' - 2P_6(t)y = 0$)

is meromorphic in C.

2. Outline of the proof of Theorem 1.1

Consider the 2 by 2 matrix linear differential equation

(2.1)
$$\frac{d\Xi}{dx} = A(x)\Xi, \quad A(x) = -\sum_{j=0}^{2(m+1)} A_{-j}x^{j} + A_{1}x^{-1}.$$

Here $A_{-\nu}$ are given as below:

$$\begin{split} A_{-2(m+1)} &= J, \quad A_{-(2m+1)} = -u_0 L, \\ A_{-2m} &= v_1 K - w_1 J, \quad A_{-(2m-1)} = -u_1 L, \\ A_{-2(m+1)+2i} &= v_i K - w_i J, \quad A_{-(2m+1)+2i} = -u_i L \quad (1 \leq i \leq m), \\ A_0 &= s(J+K), \quad A_1 = (I-L)/2 \end{split}$$

with

$$J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad L = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Proposition 2.1. Let $t, u_0, u_1, ..., u_m, v_1, ..., v_m$ be arbitrary parameters. System (2.1) admits a formal matrix solution of the form

$$\Xi = \Xi(x) = Y(x) \exp T(x),$$

$$T(x) = -\frac{J}{2m+3} x^{2m+3} - tJx + \frac{I}{2} \log(1/x), \quad Y(x) = \sum_{j>1} Y_j x^{-j},$$

if and only if

$$w_{1} = u_{0}^{2}/2,$$

$$(2.2) w_{\nu} = \frac{1}{2} \left(\sum_{j=1}^{\nu-1} w_{j} w_{\nu-j} - \sum_{j=1}^{\nu-1} v_{j} v_{\nu-j} + \sum_{j=1}^{\nu} u_{j-1} u_{\nu-j} \right),$$

$$s = t - \frac{1}{2} \left(\sum_{j=1}^{m} w_{j} w_{m+1-j} - \sum_{j=1}^{m} v_{j} v_{m+1-j} + \sum_{j=1}^{m+1} u_{j-1} u_{m+1-j} \right)$$

 $(1 \le \nu \le m).$

For the deformation parameter t, the deformation equation with respect to (2.1) is written in the form

(2.3)
$$dA(x) = \frac{\partial}{\partial x} \Omega(x,t) + [\Omega(x,t), A(x)],$$
$$\Omega(x,t) = \Phi_{-1}(t)x + \Phi_{0}(t),$$

where $\Phi_{-1}(t)$ and $\Phi_{0}(t)$ are 1-forms of t defined by

$$\sum_{k=-\infty}^{1} \Phi_{-k}(t) x^{k} = Y(x) (-x dt) J Y(x)^{-1}.$$

Proposition 2.2. Equation (2.3) is equivalent to

$$u'_{\nu-1} = 2v_{\nu}, \quad v'_{\nu} = 2u_{\nu} + 2u_{0}w_{\nu}, \quad w'_{\nu} = 2u_{0}v_{\nu},$$

 $u'_{m} = 2s, \quad s' = 1 - 2u_{0}s$

 $(1 \le \nu \le m)$, where w_{ν} , s are the parameters defined by (2.2).

System (2.1) possesses an apparent singularity at x = 0, and Miwa's theorem [2] is not applicable. To remove it, we employ the Schlesinger transformation

$$W=\Psi(x)\Xi, \quad \Psi(x)=\left(egin{array}{ccc} 1 & 1 \\ u_0/2 & u_0/2+x \end{array}
ight).$$

Then system (2.1) is changed into

(2.4)
$$\frac{dW}{dx} = B(x)W, \quad B(x) = -\sum_{j=0}^{2(m+1)} B_{-j}x^{j},$$

where

$$B_{-2(m+1)} = J,$$

$$B_{-(2\nu+1)} = \begin{pmatrix} -u_{m-\nu} - u_0(v_{m-\nu} + w_{m-\nu}) & 2(v_{m-\nu} + w_{m-\nu}) \\ -u_0^2(v_{m-\nu} + w_{m-\nu})/2 - u_0u_{m-\nu} - v_{m-(\nu-1)} & u_{m-\nu} + u_0(v_{m-\nu} + w_{m-\nu}) \end{pmatrix}$$

$$B_{-2\nu} = \begin{pmatrix} -(v_{m+1-\nu} + w_{m+1-\nu}) & 0 \\ -u_0(v_{m+1-\nu} + w_{m+1-\nu}) - u_{m+1-\nu} & v_{m+1-\nu} + w_{m+1-\nu} \end{pmatrix},$$

$$B_{-1} = \begin{pmatrix} -u_m - u_0(v_m + w_m) & 2(v_m + w_m) \\ -u_0^2(v_m + w_m)/2 - u_0u_m - s & u_m + u_0(v_m + w_m) \end{pmatrix},$$

$$B_0 = \begin{pmatrix} 0 & 0 \\ 1/2 & 0 \end{pmatrix}$$

 $(1 \leq \nu \leq m)$, $v_0 = w_0 = 0$. Applying Miwa's theorem to (2.4), we can show that u_0 , $Z_{\nu} = v_{\nu} + w_{\nu}$ and $U_{\nu} = u_{\nu} + u_0 Z_{\nu}$ are meromorphic in **C**. Since the isomonodromy property is invariant under the Schlesinger transformation, from (2.2) and Proposition 2.2 we derive the deformation equation with respect to Z_{ν} , U_{ν} , which coincides with (S_m) . This completes the proof.

3. Derivation of the corollaries

Eliminating the unkown variables other than Z_1 , from (S_2) and (S_3) we get equations (I_4) and (I_6) , respectively. Thus we have Corollary 1.2.

To show Corollary 1.3, let us consider, for example, system (S₃). By Corollary 1.2, an arbitrary solution $Z = P_6(t)$ of (I₆) is meromorphic in C, and, around each pole $t = t_0$, it is expanded into one of the following Laurent series:

$$(3.1) (t-t_0)^{-2} + \cdots, 3(t-t_0)^{-2} + \cdots, 6(t-t_0)^{-2}.$$

By Theorem 1.1, every solution of

$$(3.2) u' = 2P_6(t) - u^2,$$

is meromorphic in C, which is the first equation of (S_3) . The transformation u = y'/y takes (3.2) into

$$(3.3) y'' - 2P_6(t)y = 0.$$

Let y(t) be an arbitrary solution of (3.3). It is sufficient to show that an arbitrary pole $t = t_0$ of $P_6(t)$ is at most a pole of y(t). To do this, we note that u(t) = y'(t)/y(t) is written in the form

$$u(t) = c(t-t_0)^{-1} + \cdots,$$

around it, where c is an integer equal to one of -3, -2, -1, 2, 3, 4. Hence we get an expression of the form

$$y(t) = (t - t_0)^c \sum_{j=0}^{\infty} C_j (t - t_0)^j,$$

from which Corollary 1.3 follows.

REFERENCES

- M. Jimbo, T. Miwa and K. Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, I, - General theory and τ-function -, Phys. D2 (1981), 306-352.
- 2. T. Miwa, Painlevé property of monodromy preserving deformation equations and analyticity of τ -functions, Publ. Res. Inst. Math. Sci. 17 (1981), 703-721.
- 3. S. Shimomura, Painlevé property of a degenerate Garnier system of (9/2)-type and of a certain fourth order non-linear ordinary differential equation, Ann. Scuola Norm. Sup. Pisa 29 (2000), 1-17.