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Abstract

An endoprimal clone is defined for aset of unary oP-

erations. It was known before that the endoprimal

clone for the set $\mathcal{O}_{k}^{(1)}$ of all unary operations on a
$k$-element set is the least clone $Jk$ and that the en-
doprimal clone for the symmetric group $S_{k}$ strictly

includes $J_{k}$ . In this paper we consider monoids of

unary operations and clones corresponding to such

monoids. We define adescending sequence {Ni} of

monoids lying between $\mathcal{O}_{k}^{(1)}$ and $s_{k}$ , and show that

the endoprimal clone for $N_{k-1}$ is distinct from Jk.

We also give acharacterization of the endoprimal

clone for $S_{k}$ .

1 Introduction

Let $k=\{0,1, \ldots, k-1\}$ for $k>1$ . Let $\mathcal{O}_{k}^{(n)}$ be

the set of all $n$-ary operations from $k^{\iota\iota}$ into $k$

and let $O_{k}= \bigcup_{n=1}^{\infty}O_{k}^{(n)}$ . Denote by $Jk$ the set
of all projections y7 $(1 \leq i\leq n)$ over $k$ where
$pr^{n}.\cdot$ is defined as $\Psi_{\dot{1}}^{n}$ $(x_{1}, \ldots,x:, \ldots, X_{n})=X$:
every $(x_{1}, \ldots, x_{n})\in k^{n}$ .

Asubset $C$ of $O_{k}$ is aclone on $k$ if (i) $C$

contains $Jk$ and (ii) $C$ is closed under (func-

tional) composition. The set of all clones on
$k$ is alattice with respect to the inclusion re-
lation. It is called the lattice of clones on $k$

and is denoted by $\mathcal{L}_{k}$ . Whereas the structure of

$\mathcal{L}_{2}$ is completely known, the structure of $\mathcal{L}_{k}$ for
$k\geq 3$ is extremely complex and our knowledge

at present is still quite limited.
In [4], some properties of endoprimal clones

were studied. (The definition of an endoprimal

clone appears in Definition 2.5 of Section 2.) It

was shown there, among others, that the end0-

primal clone for $\mathit{0}_{k}^{(1)}$ is exactly the least clone

Jh and that the endoprimal clone for $R$ is dis-

tinct from $Jk$ if $R$ is asubset of the symmetric
group $S_{k}$ of degree $k$ .

This paper is acontinuation of the work in

[4]. We locate the work of [4] in the setting

of Galois connection between clones and rela-

tions. For decades Galois connections between

algebras and relations, or clones and relations,

have been studied by many authors, e.g., [1,

7]. The target of this paper is some nicely

restricted version of Galois connection, which

aims at aparticular tyPe of relations defined

for monoids of unary operations and clones cor-
responding to such relations. In particular, we
investigate an interesting problem to determine

at which points between $S_{k}$ and $O_{k}^{(1)}$ clones cor-
responding to them become strictly larger than

the clone Jk. We give apartial solution to it.

We also characterize the clone corresponding to

the symmetric group $S_{k}$ of degree $k$ in terms of

operations.
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2 Defin\’itions
Properties

and Basic The set of all operations f $\in \mathcal{O}_{k}$ that preserve
relation $\rho$ on k is denoted by Pol(\rho ).

We start with introducing some terms and map-
pings which will Play fundamental role in our
study.

For $s$ , $t\in \mathcal{O}_{k}^{(1)}$ we define composition $t\mathrm{o}s$ of
$s$ and $t$ as $(t\mathrm{o}s)(x)=t(s(x))$ for every $x\in k$ .

Definition 2. 1A subset $M$ of $\mathcal{O}_{k}^{(1)}$ is
$a$ transformation monoid (or, simply,
monoid,) on $k$ if it satisfies the following two
conditions:

(1) For any $s,t\in M$ , composition $t\mathrm{o}s$ belongs
to $M$ , $i.e.$ , $t\mathrm{o}s\in M$ .

(2) The identity operation $\mathrm{i}\mathrm{d}k$ on $k$ belongs to
$M$ , $i.e.$ , $\mathrm{i}\mathrm{d}k\in M$ .

The set of all monoids on $k$ is denoted by $\mathcal{M}k$ .

Note that, since each element $s$ of $M(\in \mathcal{M}k)$

is atransformation (selfmap) on $k$ , the associa-
tive law automatically holds in At: $(u\circ t)\circ s=$

$u\mathrm{o}(t\mathrm{o}s)$ for any $s$ , $t$ , $u\in M$ .

Example. The monoid $\mathcal{O}_{k}^{(1)}$ is the greatest
member of $\mathcal{M}k$ and the monoid $\{\mathrm{i}\mathrm{d}_{k}\}$ is the
least member of $\mathcal{M}k$ . Denote by $S_{k}$ the sym-
metric group $s_{k}$ on $k$ , or the symmetric group
of degree $k$ , that is, the set of all permutations
on $k$ . Then $S_{k}$ is also a member of $\mathcal{M}k$ .

In the study of clones, it is often useful to
describe clones via relations.

Definition 2. 2For $h>0$ , an h-ary relation
on $k$ is a subset of the Cartesian product $k^{h}$ .
For an n-ary operation $f$ in $\mathcal{O}_{k}^{(n)}$ and an h-
$ary$ relation $\rho$ on $k$ , $f$ is said to preserve $\rho$ if
and only if $(x_{1j}, x_{2j}, \ldots, x_{hj})\in\rho$ for all $j=$

1,2, \ldots , n imply

$(f(x_{11}, x_{12},$
\ldots ,

$x_{1n}),$
\ldots ,

$f(x_{h1}, \ldots,x_{hn}))\in\rho$ .

It is easy to see that Pol(P) is aclone in $\mathcal{L}_{k}$

for any relation $\rho$ on $k$ .
In this work, we are mostly concerned with

aspecial tyPe of binary relations which are in-
duced by unary operations.

Definition 2. 3For an operation $s\in \mathcal{O}_{k}^{(1)}$ de-

fine the binary relation $s^{\mathrm{O}}$ as

$s^{\mathrm{O}}=\{(s(x)x)|x\in k\}$ .

Let $f\in \mathcal{O}_{k}^{(n)}$ . For relation $s^{\mathrm{O}}$ for $s\in \mathcal{O}_{k}^{(1)}$ ,
$f\in \mathrm{P}\mathrm{o}1(s^{\mathrm{O}})$ is equivalent to saying that

$f(s(x_{1}), s(x_{2})$ , $\ldots$ , $s(x_{n}))=s(f(x_{1},x_{2}, \ldots, x_{n}))$

for every $(x_{1}, x_{2}, \ldots, x_{n})\in k^{n}$ . Thus, to put
it in algebraic terminology, $f\in \mathrm{P}\mathrm{o}1(s^{\mathrm{O}})$ is
rephrased that $s$ is an endomorphism of the al-
gebra $\langle k;f\rangle$ .

The next definition connects monoids to
clones and clones to monoids, ffom which
emerges aGalois connection between monoids
and clones.

Definition 2. 4A mapping $\varphi$ : $\mathcal{M}_{k}arrow \mathcal{L}_{k}$ is

defined as

$\varphi(M)=\cap \mathrm{P}\mathrm{o}1(s^{\mathrm{O}})s\in M$

for every Af $\in \mathcal{M}_{k}$ . Conversely, a mapping
$\psi$ ; $\mathcal{L}_{k}arrow \mathcal{M}_{k}$ is defined as

$\psi(C)=\{s\in \mathcal{O}_{k}^{(1)}|C\subseteq \mathrm{P}\mathrm{o}1(s^{\mathrm{o}})\}$

for every $C\in \mathcal{L}_{k}$ .

The validity of the above definitions of $\varphi$ and
$\psi$ is certified by the following lemma.

Lemma 2. 1(1) For any M $\in \mathcal{M}_{k}$ , $\varphi(M)$ is

a clone on k, i.e., $\varphi(M)\in \mathcal{L}_{k}$ .
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(2) For any $C$ $\in \mathcal{L}_{k}$ , $\psi(C)$ is a monoid on $k$ ,
$i.e.$ , $\psi(C)\in \mathcal{M}_{k}$ .

Definition 2. 5For a subset $R$ of $\mathcal{O}_{k}^{(1)}$ and $a$

clone $C\in \mathcal{L}_{k}$ , $C$ is endoprimal for $R$ if $C=$

$s\in R\cap^{\mathrm{p}\mathrm{o}1(s^{\mathrm{O}})}$
.

Thus $\varphi(M)$ for $M\in \mathcal{M}_{k}$ is the endoprimal

clone for $M$ .

Lemma 2. 2(1) For any $M_{1}$ , $M_{2}\in \mathcal{M}_{k}$ , if
$M_{1}\subseteq M_{2}$ then $\varphi(M_{1})\supseteq\varphi(M_{2})$ .

(2) For any $C_{1}$ , $C_{2}\in \mathcal{L}_{k}$ , if $C_{1}\subseteq C_{2}$ then
$\psi(C_{1})\supseteq\psi(C_{\mathit{2}})$ .

Lemma 2. 3(1) For any $M\in \mathcal{M}_{k}$ , $M\subseteq$

$\psi(\varphi(M))$ .

(2) For any $C\in \mathcal{L}_{k}$ , $C\subseteq\varphi(\psi(C))$ .

3Full Monoids

In this PaPer, we shall concentrate on monoids
which contain the symmetric group $S_{k}$ on $k$ .

Definition 3. 1 Let $M\subseteq O_{k}^{(1)}$ be a monoid.
$M$ is $a$ full monoid if and only if $S_{k}\subseteq M$ .
The set of all $f?dl$ rnonoids in $O_{k}^{(1)}$ is denoted by

$\overline{\mathcal{M}}_{k}$ .

Definition 3. 2 For every $i=0,1$ , $\ldots$ , $k-1$ ,
a unary operation 4: $karrow k$ is defined as

$d_{\mathrm{t}}(x)=\{$
0if $0\leq x\leq i$ ,
$x$ if $:<x\leq k-1$

for every $x\in k$ .

Figure 1shows how elements in $k$ are
mapped by operation $d*\cdot$

Remark. (1) By definition, $d_{0}=\mathrm{i}\mathrm{d}k$ and
$d_{k-1}=c0$ (the constant operation taking value
0).

(2) $\#({\rm Im}(\mathrm{A}.))=k-|$
. for every $i=0,1$ , $\ldots,k-1$ .

01 $i$ $i+1i+2$ $k-1$

$i+1i+2\mathrm{I}\mathrm{I}\cdots$ $k-1\mathrm{I}$

Figure 1
Unary Operation $d_{\dot{\iota}}$

Monoids Clones

$O_{k}^{(1)}(=N_{1})|-$
$J_{k}$

$N_{\mathit{2}}$ $\varphi(N_{2})||$

$N_{3}||$

$\varphi(N_{3})|$... ..$\cdot$

$N_{k-2}|$

$\varphi(N_{k-2})||$

$N_{k-1}|$

$s_{k}^{1}$

$\varphi(S_{k})$

$\varphi(N_{k-1})|$

Figure 2
ASequence of Full Monoids and
that of Corresponding Clones

Definition 3. 3 For every $i=0,1$ , $\ldots$ , $k-1$ ,
$N_{\dot{1}}$ is the monoid generated by the set $S_{k}\cup\{d_{t}\}$ ,
$i.e.$ ,

$N_{\dot{l}}=\langle S_{k}\cup\{\phi.\}\rangle$ .

Remark. It is clear that $N_{0}=S_{k}$ .

The sequence of N.$\cdot$ ’s and that of correspond-

ing clones $\varphi(N_{\dot{1}})’ \mathrm{s}$ is depicted in Figure 2.

Definition 3. 4 For a unary operation $s\in$

$O_{k}^{(1)}$ , the width of $\mathrm{s}$ is defined to be the rnasc-
$\dot{\iota}mum$ cardinality of preimages $s^{-1}(z)$ for all
$z\in k$ and denoted by $\omega(s),\dot{l}.e.$ ,

$‘ v(s)= \max\{\#(s^{-1}(z))|z\in k\}$ .
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Lemma 3. 1(1) For any $s$ $\in \mathcal{O}_{k}^{(1)}$ , 1 $\leq$

$\omega(s)\leq k$ .
$t(0)=t(1)=\cdots=t(c_{1}-1)=0$,
$t(c_{1})=\cdots=t(c_{1}+c_{2}-1)=c_{1}$ ,

(2) For any $s\in \mathcal{O}_{k}^{(1)}$ , $\omega(s)=1$ if and only if
$s\in S_{k}$ .

(3) For any $s\in \mathcal{O}_{k}^{(1)}$ , $\omega(s)=k$ if and only if $s$

is a constant operation.

(4) For $d_{i}(i=0,1, \ldots, k-1)$ defined in Defi-
nition 3.2, $\omega(d_{i})=i+1$ .

Definition 3. 5 For $a$ unar$ry$ opera-
than $s\in \mathcal{O}_{k}^{(1)}$ , the characteristic sequence
$\langle c_{1}, \ldots, c_{m}\rangle$ of $s$ is the sorted sequence in non-
ascending order of all non-zero elements in

$\langle\# s^{-1}(0), \neq s^{-1}(1), \ldots, \neq s^{-1}(k-1)\rangle$ .

Remark. For the characteristic sequence
$\langle c_{1}, \ldots, c_{m}\rangle$ of $s\in \mathcal{O}_{k}^{(1)}$ ,

$\omega(s)=c_{1}\geq c_{2}\geq\ldots\geq c_{m}>0$

and

$\sum_{i=1}^{m}c_{i}=k$ .

As an example, the characteristic sequence
of $d_{i}$ is $(\mathrm{i}11,1, \ldots, 1)$ with 1’s appearing $k-i-1$

times after $i+1$ .

Lemma 3. 2 For any $s$ $\in$
$\mathcal{O}_{k}^{(1)}$ and $i$ $=$

$1$ , 2, $\ldots$ , $k-1$ , if $\omega(s)\geq i+1$ then $s\in N_{i}$ .

Proof The proof follows ffom Claims 1-3.
Claim 1For $ij\in\{1,2, \ldots, k-1\}$ , if $i\leq j$

then $d_{j}\in N_{i}$ . Accordingly, $N_{j}\subseteq N_{\dot{l}}$ .
Claim 2 $\langle$ “Canonical form” of unary operation)

Let $s$ be aunary operation in $\mathcal{O}_{k}^{\{1)}$ whose that
acteristic sequence is $\langle c_{1}, \ldots, c_{m}\rangle$ . Suppose that
$c_{1}\geq c_{2}\geq\ldots\geq c\ell>1$ and $c_{\ell+1}=\ldots=c_{m}=1$ .
Let $t$ be the unary operation in $\mathcal{O}_{k}^{(1)}$ with the
same characteristic sequence as $s$ and defined as

$t(c_{1}+\cdots+c_{\ell-1})=\cdots=t(c_{1}+\cdots+c\ell-1)$

$=c_{1}+\cdots+c_{\ell-1}$

and
$t(x)=x$ for $\forall x=c_{1}+\cdots+c\ell$ , $\ldots$ , $k-1$ .

Then it holds that $s\in\langle S_{k}\cup\{t\}\rangle$ .
Claim 3Let $s$ be aunary operation in $\mathcal{O}_{k}^{(1)}$

whose characteristic sequence is $\langle c_{1}, \ldots,c_{m}\rangle$ .
Let $i=\omega(s)-1$ . (Note that $\omega(s)=c_{1}.$ ) Then
$s\in N_{\dot{l}}$ .

Due to Claims 1and 3, we conclude that,

for any $s\in \mathcal{O}_{k}^{(1)}$ with characteristic sequence
$\langle c_{1}, \ldots, c_{m}\rangle(c_{1}=\omega(s))$ , if $i\leq\omega(s)-1$ then
$s\in N_{i}$ as desired. $\square$

Proposition 3. 1 For each $i=0,1$ , $\ldots$ , $k-1$ ,

let $W_{i}\subseteq \mathcal{O}_{k}^{(1)}$ be the set of all permutations and
all unary operations with width greater than $i$ ,
that is, $W_{i}=S_{k}\cup\{f\in \mathcal{O}_{k}^{(1)}|\omega(f)>i\}$ . Then
$N_{\dot{l}}=W_{i}$ for every $i=1,2$, $\ldots$ , $k-1$ .

Remark. Obviously, $W_{0}=W_{1}=\mathcal{O}_{k}^{(1)}$ .

Corollary 3. 1 (1) $N_{1}=\mathcal{O}_{k}^{(1)}$

(2) $S_{k}\subset N_{k-1}\subset N_{k-2}\subset\ldots\subset N_{3}\subset N_{\mathit{2}}\subset$

$\mathcal{O}_{k}^{(1)}(=N_{1})$

Here the $s$ ymbol $\subset denotes$ proper inclu-
sion.

4Clones corresponding to
Full Monoids

Definition 4. 1 Pixley’s discriminator func-
than $p\in O_{k}^{(3)}$ is defined as

$p(x, y, z)=\{$
$z$ if $x=y$ ,
$x$ if $x\neq y$

for every $(x,y, z)\in k^{3}$ .

Lemma 4. 1 {[4]) Pixley’s $discr. \min.$atorfimc-
than p belongs to $\varphi(S_{k})$ , i.e., $p\in\varphi(S_{k})$ .
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Proof Let s be arbitrary permutation in Corollary 4. 1 $\varphi(N_{k-1})$ I $J_{k}$ .
$S_{k}$ . If $x=y$ then $s(x)=s(y)$ and conse-
quently $p(s(x), s(y)$ , $s(z))=s(p(x, y, z))$ . On
the other hand, if $x\neq y$ then $s(x)\neq s(y)$ ,

since $s$ is apermutation. Then it follows that
$p(s(x), s(y)$ , $s(z))=s(x)=s(p(x, y, z))$ . $\square$

Theorem 4. 1 ([4])

(1) $\varphi(O_{k}^{(1)})=J_{k}$ , and

(2) $\varphi(S_{k})\supset J_{k}$ . (Inclusion is proper.)

Proof Refer to [4] for the proof of (1). The
proof of (2) is immediate from the previous
lemma. 0

The above results give rise to an interesting
problem: Find maximal monoids satisfying

(1) $S_{k}\subseteq M\subset O_{k}^{(1)}$ and (2) $\varphi(M)\neq Jk$ .

Finally, we characterize the clone $\varphi(S_{k})$ .

Definition 4. 2
For $(x_{1}, \ldots,x_{n})$ , $(y_{1}, \ldots, y_{n})\in k^{n}$ , we say that
$(x_{1}, \ldots,x_{n})$ is similar to $(y_{1}, \ldots, y_{n})$ , denoted

as $(x_{1}, \ldots, x_{n})\sim(y_{1}, \ldots, y_{n})$ , if the following
condition is satisfied:

$x:=xj\Leftrightarrow y:=yj$ for any $0\leq i,j<n$ .

Definition 4. 3 An operation $f\in \mathcal{O}_{k}^{(n)}$ is

synchronous if and only if the following condi-

tion is satisfied: Let $(x_{1}, \ldots,x_{n})$ be any element

in $k^{n}$ .
$If|\{x_{1}, \ldots,x_{n}\}|\neq k-1$ then

(1) $f(x_{1}, \ldots,x_{n})=x\ell$ for sorne $1\leq\ell\leq n$ ,

and

The following theorem provides an initial clue

toward solving this problem.

(2) $f(y_{1}, \ldots,y_{n})=y_{\ell}$ for any $(y_{1}, \ldots, y_{n})\in$

$k^{n}$ which is similar to $(x_{1}, \ldots,x_{n})$ ,

Theorem 4. 2
For Pixley’s $disc\dot{n}m\dot{\iota}nator$ function $\mathrm{p}$ , it holds
that

(1) $p\in\varphi(N_{k-1})$ , and

(2) $p\not\in\varphi(N_{k-2})$ .

Proof (1) Let $c_{i}\in O_{k}^{(1)}$ denote the constant
operation taking value :for $i=0,1$ , $\ldots,k-1$ .
$\mathrm{B}\mathrm{y}_{1}$ definition, . $N_{k-1}=\langle S_{k}\cup\{d_{k-1}\}\rangle=\langle S_{k}\cup$

$\{c_{0}\}\rangle$ . Thus $\varphi(N_{k-1})=\varphi(S_{k})\cap(\bigcap_{:}\varphi(c_{i}))$ .
Lemma 4.1 implies that $p\in\varphi(S_{k})$ . On the

other hand, it is straightforward that $p\in$

P01 $(c_{\dot{1}}^{\mathrm{O}} )$ for every $i=0,1$, $\ldots$ , $k-1$ .
(2) It suffices to show that $p\not\in \mathrm{P}\mathrm{o}1((d_{k-\mathit{2}})^{\mathrm{O}})$ .
According to the definition of discriminator

function it follows that $p(0,1, k-1)=0$ and
$p(d_{k-2}(0),d_{k-2}(1),d_{k-2}(k-1))=p(0,0,$ $k-$

$1)=k-1$ . Since $d_{k-2}(\mathrm{O})=0\neq k-1$ , it is
concluded that $p\not\in \mathrm{P}\mathrm{o}1((d_{k-2})^{\mathrm{o}})$. $\square$

and $if|\{x_{1}, \ldots,x_{n}\}|=k-1$ and $f(x_{1}, \ldots, x_{n})$

$=u$ for some $u\in k$ then

(1) $u=x\ell$ for sorne 1 $\leq\ell\leq n$ implies
$f(y_{1}, \ldots,y_{n})=y\ell$ for any $(y_{1}, \ldots, y_{n})\in$

$k^{n}$ which is similar to $(x_{1}, \ldots, x_{n})$ , and

(2) $u\in k\backslash \{x_{1}, \ldots, x_{n}\}$ implies $f(y_{1}, \ldots, y_{n})=$

$v$ where $v$ $\in$ $k\backslash \{y_{1}, \ldots,y_{n}\}$ for any
$(y_{1}, \ldots,y_{n})$ $\in$ $k^{n}$ which is similar to
$(x_{1}, \ldots,x_{n})$ .

The set of all synchronous operations in $\mathcal{O}_{k}$ is

denoted by $S\mathcal{Y}N_{k}$ .

Example. Pixley’s discriminator function $p$

is synchronous.

Theorem 4. 3 For the $symmet_{7\dot{\mathrm{Y}}\mathrm{C}}$ group $S_{k}$ on
$k$ , it holds that

$\varphi(S_{k})=S\mathcal{Y}N_{k}$ .
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Proof First, we prove that $S\mathcal{Y}N_{k}\subseteq\varphi(S_{k})$ .
Let $f$ be any operation in $\mathit{8}\mathcal{Y}N_{k}$ . As $\varphi(S_{k})$

is defined to be the intersection of Pol(s $\mathrm{o}$ )’s

for all $s\in S_{k}$ , it suffices to show that $f$ be-

longs to $\mathrm{P}\mathrm{o}1(s^{\mathrm{O}})$ for all $s\in S_{k}$. Let $s\in$

$S_{k}$ and $(x_{1}, \ldots, x_{n})$ $\in$ $k^{n}$ . Suppose that
$|\{x_{1}, \ldots, x_{n}\}|\neq k-1$ and $f(x_{1}, \ldots,x_{n})=X\ell$

for some 0 $\leq\ell<$ $k$ . Since $s$ is aPer-
mutation, $x_{i}=xj$ is equivalent to $s(xj)=$

$s(x_{j})$ for any 0 $\leq i,j<k$ . Thus it fol-

lows from the assumption that $f$ is synchronous

that $f(s(x_{1}), \ldots, s(x_{n}))=s(x\ell)$ . Therefore
$f\in\varphi(S_{k})$ holds in this case. The case of
$|\{x_{1}, \ldots, x_{n}\}|=k-1$ can be handled in the

analogous way.
Secondly, in order to prove the converse, we

assume that $f\in \mathcal{O}_{k}^{(n)}$ does not belong to $S\mathcal{Y}N_{k}$

and show that $f$ is not amember of $\varphi(S_{k})$ .
Suppose that $|\{x_{1}, \ldots, x_{n}\}|\neq k-1$ . Since
$f\not\in S\mathcal{Y}N_{k}$ , there exist vectors $(x_{1}, \ldots, x_{n})$ and
$(y_{1}, \ldots, y_{n})$ in $k^{n}$ which satisfy (1) $x:=X\mathrm{j}$ if

and only if $y_{i}=yj$ for any $0\leq i,j<k$ and (2)

either $f(x_{1}, \ldots, x_{n})=X\ell$ for some $0\leq\ell<k$

and $f(y_{1}, \ldots, y_{n})\neq y\ell$ or $f(x_{1}, \ldots,x_{n})=u$ for
$u\in k\backslash \{x_{1}, \ldots, x_{n}\}$ and $f(y_{1}, \ldots, y_{n})\neq v$ for
$v\in k\backslash \{y_{1}, \ldots, y_{n}\}$ . Then it is easy to see that

$f$ does not belong to Pol(s) for the permuta-

tion $s$ which maps $x_{i}$ to $y_{i}$ for each $i=1$ , $\ldots$ , $n$

and $u$ to $v$ . This proves the contraposition of
$\varphi(S_{k})\subseteq S\mathcal{Y}N_{k}$ . $\square$

5Conclusion

We have considered some properties of (trans-

formation) monoids and clones corresponding to

such monoids. It was known before that the

endoprimal clone for $\mathcal{O}_{k}^{(1)}$ is the least clone Jh
and that the endoprimal clone for the symmetric

group $s_{k}$ is distinct from Jk- In this PaPer, we

defined adescending sequence $\{N_{i}\}$ of monoids

lying between $\mathcal{O}_{k}^{(1)}$ and $s_{k}$ , and proved that the

endoprimal clone for $N_{k-1}$ is distinct from Jk-

We also characterized the endoprimal clone for
$S_{k}$ without appealing tq monoids.
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