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Galois Connection between
Clones and Full Monoids
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Abstract

An endoprimal clone is defined for a set of unary op-
erations. It was known before that the endoprimal
clone for the set OS)

k-element set is the least clone Ji and that the en-

of all unary operations on a

doprimal clone for the symmetric group Si strictly
includes Jx. In this paper we consider monoids of
unary operations and clones corresponding to such
monoids. We define a descending sequence {NNV;} of
monoids lying between Of,l) and Sk, and show that
the endoprimal clone for Nk-; is distinct from Ji.
We also give a characterization of the endoprimal

clone for Sk.

1 Introduction

Let k= {0,1,...,k—1} for k > 1. Let 0,(:') be
the set of all n-ary operations from k™ into k
and let Oy = U=, O™, Denote by Ji the set
of all projections pr?* (1 < i < n) over k where
prl is defined as pri*(zxy,...,%i,...,2n) = z; for
every (z1,...,Zn) € k™.

A subset C of O is a clone on k if (i) C
contains Ji and (ii) C is closed under (func-
tional) composition. The set of all clones on
k is a lattice with respect to the inclusion re-
lation. It is called the lattice of clones on k
and is denoted by £x. Whereas the structure of
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L, is completely known, the structure of Ly for
k > 3 is extremely complex and our knowledge
at present is still quite limited.

In (4], some properties of endoprimal clones
were studied. (The definition of an endoprimal
clone appears in Definition 2.5 of Section 2.) It
was shown there, among others, that the endo-
primal clone for O;cl) is exactly the least clone
J, and that the endoprimal clone for R is dis-
tinct from Ji if R is a subset of the symmetric
group Sy of degree k.

This paper is a continuation of the work in
[4]. We locate the work of [4] in the setting
of Galois connection between clones and rela-
tions. For decades Galois connections between
algebras and relations, or clones and relations,
have been studied by many authors, e.g., (1,
7). The target of this paper is some nicely
restricted version of Galois connection, which
aims at a particular type of relations defined
for monoids of unary operations and clones cor-
responding to such relations. In particular, we
investigate an interesting problem to determine
at which points between Sj and (’)il) clones cor-
responding to them become strictly larger than
the clone Ji. We give a partial solution to it.
We also characterize the clone corresponding to
the symmetric group Sk of degree & in terms of

operations.



2 Definitions and Basic
Properties

We start with introducing some terms and map-
pings which will play fundamental role in our
study.

For s,t € (’),(cl) we define composition ¢ o s of

s and t as (t o s)(z) = t(s(x)) for every z € k.

Definition 2.1 A subset M of 0,9) is
a transformation monoid (or, simply,
monoid) on k if it satisfies the following two

conditions:

(1) For any s,t € M, composition to s belongs
to M, ie,tose M.

(2) The identity operation idy, on k belongs to
M, ie., idg, € M.

The set of all monoids on k is denoted by My,.

Note that, since each element s of M (e My,)
is a transformation (selfmap) on k, the associa-
tive law automatically holds in M: (uot)os =

uo (tos) for any s,t,u € M.

Example. The monoid C’),(cl) is the greatest
member of My, and the monoid {idx} is the
least member of My,. Denote by Sy the sym-
metric group Si on k, or the symmetric group
of degree k, that is, the set of all permutations
on k. Then Sk is also a member of My,.

In the study of clones, it is often useful to

describe clones via relations.

Definition 2.2 For h-> 0, an h-ary relation
on k is a subset of the Cartesian product k".
For an n-ary operation f in O,(c") and an h-
ary relation p on k, f is said to preserve p if
and only if (z15,%2j,...,Th;) € p for allj =

1,2,...,n imply

(f(.’Ell,IL‘lz, e ,:1:1,,), ey f(ZL‘hl, ces ,.’Ehn)) €p.
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The set of all operations f € Oy that preserve
relation p on k is denoted by Pol(p).

It is easy to see that Pol(p) is a clone in Ly
for any relation p on k.

In this work, we are mostly concerned with
a special type of binary relations which are in-
duced by unary operations.

Definition 2. 3 For an operation s € OS) de-
fine the binary relation s© as

o~{( )]s}

Let f € (’),(c") . For relation s° for s € O,
[ € Pol(sP) is equivalent to saying that

f(s(zl)a 3(7:2)1 sy S(.'En)) = S(f(xl,(l,'z, oo 13:11))

for every (z,z2,...,2,) € k™. Thus, to put

it in algebraic terminology, f € Pol(s?) is
rephrased that s is an endomorphism of the al-
gebra (k; f).

The next definition connects monoids to
clones and clones to monoids, from which
emerges a Galois connection between monoids

and clones.

Definition 2.4 A mapping ¢ : My, — Ly is
defined as

(M) = () Pol(s")
sEM
for every M € M. Conversely, a mapping
P L — My is defined as
¥(C) = {s € O, | C < Pol(s7)}
for every C € L.

The validity of the above definitions of ¢ and
¥ is certified by the following lemma.

Lemma 2.1 (1) For any M € My, p(M) is
- a clone on k, i.e., o(M) € Ly.



(2) For any C € L, ¥(C) is a monoid on k,
i.e., P(C) € M.

Definition 2.5 For a subset R of O,(cl) and a
clone C € L, C is endoprimal for R if C =

ﬂ Pol(s").

SER

Thus ¢(M) for M € M, is the endoprimal
clone for M.

Lemma 2.2 (1) For any My, My € My, if
My C M, then p(My) 2 p(Ma).

(2) For any C1,C2 € Ly, if C1 C Cy then
%(C1) 2 ¥(Ca).

Lemma 2.3 (1) For any M € My, M C
P(p(M)).

(2) For any C € Li, C C o(¥(C)).

3 Full Monoids

In this paper, we shall concentrate on monoids

which contain the symmetric group Sk on k.

Definition 3.1 Let M C Ofcl) be a monoid.
M 1is a full monoid if and only if S, C M.
The set of all full monoids in OS) 18 denoted by
M.

Definition 3.2 For everyi =0,1,...,k -1,
a unary operation d; : k — k is defined as

if 0<z<1,
if i<z<k-1

0
dta)={ 2
for every z € k.

Figure 1 shows how elements in k are
mapped by operation d;.
Remark. (1) By definition, dp = idy and
di-1 = cp (the constant operation taking value
0).
(2) #(Im(d;)) = k—i foreveryi=0,1,...,k-1.
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Figure 1

Unary Operation d;

Monoids Clones
C|9£1)(= Ny)—— ~|7k
JIVz —_— T(N2)
N3 @(N3)
| |
I |
Jle—z T(Nk—z)
Nk—l T(Nk— 1 )
ALk (Sk)

Figure 2

A Sequence of Full Monoids and
that of Corresponding Clones

Definition 3.3 For everyi =10,1,...,k -1,
N; is the monoid generated by the set S, U {d;},
i.e.,

N; = (Sx U {d:}).
Remark. It is clear that Ny = Sy.

The sequence of N;’s and that of correspond-
ing clones ¢(N;)’s is depicted in Figure 2.

Definition 3.4 For a unary operation s €
O, the width of s is defined to be the maz-
imum cardinality of preimages s~1(z) for all
z € k and denoted by w(s), i.e.,

w(s) = max{#(s™'(2)) | z € k}.



Lemma 3.1 (1) For any s € OS), 1 <
w(s) <k.

(2) For any s € (’),(cl), w(s) = 1 if and only if
s € Sk.

(8) For any s € (’)fcl), w(s) =k if and only if s

18 a constant operation.

(4) Ford; (i =0,1,...,k — 1) defined in Defi-
nition 8.2, w(d;) =1+ 1.

Definition 3.5 For a  unary opera-
tion s € O,(cl), the characteristic sequence
(c1,.-.,Cm) Of s is the sorted sequence in non-

ascending order of all non-zero elements in
(#3—1(0)3 #3_1(1)1 L) #s_l(k - 1))

Remark. For the characteristic sequence

(c1,. .-y Cm) ofse@fcl),
wd)=c1>2ec>...2¢cn>0

and

As an example, the characteristic sequence
ofd; is (1+1,1,...,1) with 1's appearing k—i—1
times after ¢ + 1.

(1)
k

Lemma 3.2 For any s € O, and i =

1,2,...,k—1,ifw(s) > i+ 1 thens € N;.

Proof The proof follows from Claims 1 — 3.
Claim 1 Fori,j € {1,2,...,k—1},ifi <j
then d; € N;. Accordingly, N; C N;.

Claim 2 (“Canonical form” of unary operation)
Let s be a unary operation in Ofcl) whose char-
acteristic sequence is {ci, . . . , ¢y ). Suppose that
cL>cp>...>c > 1andcz+1=7..=c,,,=1.
Let t be the unary operation in (’)S) with the

same characteristic sequence as s and defined as
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40) = t(1) = --- = t(c; — 1) = 0,
tlcr)=---=tlcr+ca—1) =cy,

He)=c forVo=ci+ - +op..., k-1

Then it holds that s € (S U {t}).

Claim 3 Let s be a unary operation in (’)fcl)

whose characteristic sequence is (cy,...,cm).
Let i = w(s) — 1. (Note that w(s) = ¢;.) Then
s € Ni.

Due to Claims 1 and 3, we conclude that,
for any s € Ofcl) with characteristic sequence
(c1,---rem) (1 = w(s)), if 1 < w(s) — 1 then
s € N; as desired. a
Proposition 3.1 For eachi=0,1,...,k—1,
let W; C (’),(cl) be the set of all permutations and
all unary operations with width greater than 1,
that is, W; = S, U{f € O | w(f) > i}. Then
N; =W, for everyi=1,2,...,k—1.

Remark. Obviously, Wy =W; = O,(cl). ‘
Corollary 3.1 (1) N; = (’)S)

(2) Sx € Ny C Np_2 C...C N3C N, C
0 (= Ny)
Here the symbol C denotes proper inclu-

sion.

4 Clones corresponding to
Full Monoids |

Definition 4.1 Pizley’s discriminator func-
tion p € O,(c3) is defined as

z if z=y,
p(z,y,z)z{ r if x#,‘(y”
for every (z,y,2) € k3.

Lemma 4.1 ([4]) Pizley’s discriminator func-

tion p belongs to p(Sk), i.e., p € p(Sk).



Proof Let s be arbitrary permutation in
Sk. If z = y then s(z) = s(y) and conse-
quently p(s(z),s(y),s(2)) = s(p(z,y,2)). On
the other hand, if z # y then s(z) # s(y),

since s is a permutation. Then it follows that

p(s(2),5(),5(2)) = s(z) = s(p(z,,2)). O
Theorem 4.1 ([4])

(1) (O = Ji, and

(2) ©(Sk) O Jk. (Inclusion is proper.)

Proof Refer to [4] for the proof of (1). The
proof of (2) is immediate from the previous
lemma. ]

The above results give rise to an interesting
problem: Find maximal monoids satisfying

1) SscMcod and

The following theorem provides an initial clue
toward solving this problem.

Theorem 4. 2
For Pizley’s discriminator function p, it holds
that

(1) p € p(Ng-1), and
(2) p & p(Ni-2).

Proof (1) Let¢; € OS) denote the constant
operation taking value 7 for ¢ = 0,1,...,k - 1.
By, definition, Ni-1 = {8k U {dk-1}) = (SiU
{co}). Thus ¢(Nk-1) = @(Sk) N (N w(c)).
Lemma 4.1 implies that p € ¢(Sk). On the
other hand, it is straightforward that p €
Pol(c?) for every i =0,1,...,k— 1. ,
(2) It suffices to show that p ¢ Pol((dx—2)°).
According to the definition of discriminator
function it follows that p(0,1,k — 1) = 0 and
p(dr-2(0), di—2(1), d—2(k — 1)) = p(0,0,k —
1) = k— 1. Since dr2(0) = 0 # k-1, it is
concluded that p & Pol((dx—2)). (m]

(2) (M) # Tk
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Corollary 4.1  (Nk_1) # Jk-
Finally, we characterize the clone ¢(Sy).

Definition 4. 2

For (z1,...,2n),{(y1,---,¥Yn) € k", we say that
(z1,...,2n) is similar to (y1,...,yn), denoted
as (T1,--.,Zn) ~ (Y1,---+Yn), if the following
condition is satisfied:

i=zj <>y =y; for any 0<4,j<n.

Definition 4.3 An operation f € O is
synchronous if and only if the following condi-
tion is satisfied: Let (z1,...,T,) be any element
in k"

If {z1,...,2n}| # k — 1 then

(1) f(z1,...,Zn) = z¢ for some 1 < € < n,

and

(2) f(y1,---,Yn) = ye for any (y1,...,9n) €
k™ which is similar to (z1,...,Z,),

and if |[{z1,...,Zn} = k=1 and f(z1,...,Zn)

= u for some u € k then

(1) u = z¢ for some 1 < £ < n implies

fW1s- -y ¥n) = ye for any (y1,...,yn) €
k™ which is similar to (z1,...,T,), and

(2) u€ k\{wl""’xﬂ} 'mel‘zes f(yl,- L] 1y'n) =
v where v € k \ {y1,...,yn} for any
(y1y---,¥n) € k" which is similar to

(z1,-..,Zn).

The set of all synchronous operations in Oy is
denoted by SYN.

Example. Pixley’s discriminator function p

is synchronous.

Theorem 4.3 For the symmetric group Sy on
k, it holds that

©(Sk) = SYN.



Proof First, we prove that SYN C o(Sk)-
Let f be any operation in SYNk. As ¢(Sk)
is defined to be the intersection of Pol(s®)’s
for all s € S, it suffices to show that f be-
longs to Pol(s?) for all s € Sk. Let s €
Sy and (z1,...,Z,) € k™. Suppose that
Hzy,. - 2o} # £k —1 and f(z1,...,2Zn) = Z¢
for some 0 < ¢ < k. Since s is a per-
mutation, ; = z; is equivalent to s(z;) =
s(zj) for any 0 < 4,5 < k. Thus it fol-
lows from the assumption that f is synchronous
that f(s(z1),...,8(zn)) = s(z¢). Therefore
f € ©(Sk) holds in this case. The case of
{z1,...,Zn} = kK — 1 can be handled in the
analogous way.

Secondly, in order to prove the converse, we
assume that f € OL") does not belong to SYNi
and show that f is not a member of ¢(Sk).
Suppose that |{z1,...,Zn}| # k — 1. Since
f & SYNy, there exist vectors (z1,...,z,) and
(Y1,---,Yn) in k™ which satisfy (1) z; = z; if
and only if y; = y; for any 0 < 4,5 < k and (2)
either f(z1,...,2n) = Z¢ for some 0 < £ < k
and f(y1,...,Yn) # Ye Or f(z1,...,Zn) = u for
u € k\ {z1,...,z.} and f(y1,...,Yn) # v for
v € k\ {y1,---,Yn} Then it is easy to see that
f does not belong to Pol(s") for the permuta-
tion s which maps z; to y; foreachi=1,...,n
and u to v. This proves the contraposition of
@(Sk) C SYN. o

5 Conclusion

We have considered some propertieﬁ of (trans-
formation) monoids and clones corresponding to
such monoids. It was known before that the

endoprimal clone for O,(cl)

is the least clone Ji
and that the endoprimal clone for the symmetric
group Sy is distinct from Ji. In this paper, we

defined a descending sequence {N;} of monoids
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lying between Of:) and S, and proved that the
endoprimal clone for Ni_; is distinct from J.
We also characterized the endoprimal clone for
Sy without appealing tQ monoids.
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