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Abstract

On Portfolio Selection Problem, it is one of central is-
sues to study avariety of investment policies that de-
cide asset allocations to several securities. In this paper,
we study the problem in the context of online computa-
tion and competitive analysis. Researchers in the field
of finance have examined the advantage of diversified
investments using some stochastic parameters and ver-
ified that the correlations among securities make diver-
sification beneficial. Instead of the stochastic parame-
ters, we use agraph-based method, $(\Delta, G)$ -Adversary,
to describe the correlations. Against the adversary, we
propose the online portfolio selection algorithm BLNC
investing to the diversified portfolio. Then, we seek its
competitive ratio against aspecified class of instances
of $(\Delta, G)$ -Adversary, and make sure that BLNC is a
money making algorithm against this class. Finally, we
show the optimality of BLNC against this class.

1Introduction

In most financial problems, we are forced to make cur-
rent decisions without any complete knowledge of the
future. For example, when we intend to invest to some
stocks, we have to make decisions about how much
quantity of what stock we should buy with our scarce
information on the future stock price movements. This
characteristic has urged anumber ofresearchers to study
financial problems such as Trading Problem $[4][5]$ and
Portfolio Selection Problem [7] in the online computa-
tion framework.

Portfolio Selection Problem is one of traditional fi-
nancial problems, wherein we are asked to study avari-
ety of investment policies that decide asset allocations,
which are called $” po\phi olios"$ , to several securities such
as bonds, stocks and foreign currencies. Originally, the
problem has been studied by researchers in the field of
finance. Harry Markowitz, aNobel Prize winner in ec0-

nomics, published seminal articles on the problem in the
$1950\mathrm{s}$ . His work provided away to methodically deal

with security return and risk through stochastic param-
eters. In this framework, he succeeded in verifying the
empirical knowledge that “diversification”, that is, in-
vesting to portfolio composed of variety of securities,
has an advantage of reducing the total risk of the portf0-
lio [8]. This advantage results from the correlations be-
tween pairs of securities. As to the correlation between a
pair of securities, we can often observe that the increas-
ing value of adomestic currency leads the decrease of
stock prices of the companies in export business. In this
case, we can guess that there are negative correlations
between the domestic currency and the stocks. Consid-
ering security returns to be stochastic, Markowitz for-
malized the correlation by the covariance or the corre-
lation coefficient between apair of return variables. In
fact, he verified that diversified investments are benefi-
cial as long as the portfolio includes some pair of se-
curities between which the correlation coefficient is not
equal $\mathrm{t}\mathrm{o}+1$ .

In this paper, we study Portfolio Selection Problem
along the context of online compuation and competitive
analysis. We regard an investment policy as an online
algorithm and evaluate it against an adversary. The goal
in this paper is to verify that the diversified investment
also performs well in the framework without the use of
any stocastic parameter.

In Section 2, we formalize Portfolio Selection Prob-
lem along the context of online computation and com-
petitive analysis. This formalization follows $[2][6]$ .

In Section 3, we accommodate the correlations
contributing to the advantage of diversification into
the adversary. Now we propose the adversary with
some restrictions, “

$(\Delta, G)$ -Adversary”. Under $(\Delta, G)-$

Adversary, we assume that each security price has its
own fixed fluctuation prescribed by $\Delta$ . The assumption
enables us to specify feasible combinations of security
price movements, because each security moves either
upward or downward by the constant quantity. Consid-
ering each combination to be avertex and the price tran-
sition to be an edge, we can represent the correlations
by the graph $G$ . Then, $(\Delta,G)$ -Adversary is forced to
choose the worst sequence against an online portfolio
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selection algorithm among all walks in the graph $G$ .
In Section 4, we present the online portfolio selection

algorithm BLNC. BLNC always selects $\mathrm{t}\mathrm{h}\mathrm{e}" balanced$
”

portfolios yielding the same return no matter which ad-
jacent vertex $(\Delta, G)$ -Adversary chooses. We demon-
strate that BLNC makes diversified investments under
the market composed of two securities correlated nega-
tively. We use $(\Delta,G)$ -Adversary to specify this market
in the context of competitive analysis. Then, we evalu-
ate the competitive ratio of BLNC against this class of
instances of $(\Delta,G)$ -Adversary. In the process of the in-
vestigation, we can make sure that BLNC is a“money
mking” algorithm [4], that is, it returns positive profit in
any sequence relative price vectors for which the opti-
mal offline algorithm accrues positive profit. Finally, we
show that BLNC is an optimal online portfolio selec-
tion algorithm against the class of instances of $(\Delta, G)-$

Adversary. In the proof, we can confirm that BLNC ac-
tually has the same behavior as the well-known maxmin
strategy in gmne theory. The optimality concludes that
the diversified investment policy has the advantage un-
der the market including correlated securities.

In Section 5, we give the conclusion and brief men-
tion of other interesting results and future works.

2Portfolio Selection Problem
An investor with his initial wealth $w_{0}$ in cash is faced
with amarket consisting of $m$ securities. These
can be stocks, bonds or currencies. Let pi $=$

$(P:1,p_{\dot{1}2}, \cdots,P:m)$ denote avector of the $m$ security
prices, where for each $j=1,2$, $\cdots$ , $m$ , $p_{\dot{\iota}j}$ denotes
the number of units of the $j\mathrm{t}\mathrm{h}$ security that can be
bought for one unit of cash at the start of the $i\mathrm{t}\mathrm{h}$ pe-
riod, $(i=1,2, \cdots)$ . Thus, the small quantity of $p_{\dot{|}j}$

means that the $jth$ security at the start of the $i\mathrm{t}\mathrm{h}$ pe-
riod is expensive. The change in security prices dur-
ing the ith period is represented as arelative price vec-
tor $\mathrm{X}:=$ $(x:1, \mathrm{X}2, \cdots,x:m)$ where for each $i$ and $j$ ,
$x_{\dot{l}j}=p_{\dot{|}j}/p(:+1)j$ . An investment of $d$ units of cash to
the $j\mathrm{t}\mathrm{h}$ security at the $i\mathrm{t}\mathrm{h}$ period yields dxij by the end
of the $i\mathrm{t}\mathrm{h}$ period. Asequence of relative price vectors is
denoted by $X=\mathrm{x}\mathrm{i}$ ,X2, $\cdots$ , $\mathrm{x}_{n}$ .

According to his investment policy, an investor
makes online decisions about each portfolio $\mathrm{b}_{:}$ $=$

$(b_{\dot{1}1}, b_{\dot{1}2}, \cdots, b_{\dot{|}m})(i=1,2, \cdots)$ where for any $i$ and
$j$ , $b_{\dot{|}j}\geq 0$ and $\sum_{j=1}^{m}b_{\dot{|}j}=1$ . Namely, the portfolio
$\mathrm{b}_{:}$ is the proportion of his wealth invested to each of
the $m$ securities at the $i\mathrm{t}\mathrm{h}$ priod. The investment to the
portfolio $\mathrm{b}_{:}$ will multiply his wealth by

$\mathrm{b}:\cdot \mathrm{x}:=(b:1x*\cdot 1+b:2x:2 +\cdots+b_{m}:x:m)$

during the $i\mathrm{t}\mathrm{h}$ period. At this stage, the portfolio $\mathrm{b}_{:}$

is cashed and adjusted by reinvesting the entire current

wealth to the portfolio $\mathrm{b}_{t+1}$ according to the invest-
ment policy. Given asequence of relative price vectors
$X=\mathrm{x}_{1}$ X2, $\cdots$ , $\mathrm{x}_{n}$ , portfolio selection algorithm de-
cides asequence of portfolios $B=\mathrm{b}_{1}$ , $\mathrm{b}_{2}$ , $\cdots$ , $\mathrm{b}_{n}$ . An
online portfolio selection algorithm is required to decide
each portfolio $\mathrm{b}_{i}$ with incomplete knowledge of the fu-
ture price movements, $\mathrm{x}:$ , $\cdots$ , $\mathrm{x}_{n}$ , whereas an offline
algorithm makes decisions with the entire information
on $X$ .

Without loss of generality, we can assume that an on-
line portfolio selection algorithm ALG begins invest-
ments with an initial wealth of 1. The return $\mathrm{R}_{\mathrm{A}\mathrm{L}\mathrm{G}}(X)$

ofALG with respect to asequence of relative price vec-
tors $X=\mathrm{x}\mathrm{i}$ ,X2, $\cdots$ , $\mathrm{x}_{n}$ is defined to be

$\mathrm{R}_{\mathrm{A}\mathrm{L}\mathrm{G}}(X)=\prod_{\dot{l}=1}^{n}\mathrm{b}:\cdot \mathrm{x}:$ .

In the ffamework competitive analysis, we evaluate
an online algorithm through the following competitive
ratio; The competitive ratio $c_{\mathrm{A}\mathrm{L}\mathrm{G}}$ of ALG is

$c_{\mathrm{A}\mathrm{L}\mathrm{G}}= \sup_{X}\frac{\mathrm{R}_{\mathrm{O}\mathrm{P}\mathrm{T}}(X)}{\mathrm{R}_{\mathrm{A}\mathrm{L}\mathrm{G}}(X)}$,

where OPT is an optimal offline portfolio selection al-
gorithm. It is obvious that the competitive ratio $c_{\mathrm{A}\mathrm{L}\mathrm{G}}$

is more than or equal to 1and that the closer to 1 $c_{\mathrm{A}\mathrm{L}\mathrm{G}}$

is, the better ALG performs. This definition indicates
that the performance of ALG is evaluated through the
comparison with the performance of the optimal offline
algorithm with complete knowledge of the future. In
that sense, the competitive ratio cALG is the measure of
the performance of ALG for the worst case input $X$ .
The goal in Portfolio Selection Problem is to acquire an
optimal online portfolio selection algorithm, that is, the
online algorithm with the smallest competitive ratio.

3 $(\Delta, \mathrm{G})$-Adversary
In real life, we can observe that there is some pair of
assets whose values have some correlated movements;
The upward movement of adomestic currency often re-
duces the stock prices of the companies in export busi-
ness. The decline of interest rates, in other words, the
rise of bond prices raises the stock prices of the com-
panies with heavy debt. In order to keep our wealth,
we have learned through these observations that we had
better diversify to several assets whose values have dis-
tinct movements rather than invest to just one. This
advantage of diversification was verified in arigorous
method by Markowitz. He formalized the correlation
of price movements between apair of securities by
means of the correlation coefficient. Using the correla-
tion coefficients, he pointed out that the offsets of price
movements among securities in aportfolio contribut
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to the reduction of the entire portfolio risk. Along the
context of competitive analysis, we propose the adver-
sary accommodating the correlations without using any
stochastic parameter.

4Optimal Online Portfolio Selec-
tion Algorithm against $(\Delta, \mathrm{G})-$

Adversary

3.1 $\Delta$-Fixed fluctuation restriction
Let $\Delta_{j}$ be aconstant real value greater than or equal to
1for each $j(1\leq j\leq m)$ . Suppose that all relative
prices $x_{ij}$ are either $\Delta_{j}^{-1}$ (downward) or $\Delta_{j}$ (upward).
The value $\Delta_{j}$ , which is called the fluctuation ratio of
$j\mathrm{t}\mathrm{h}$ security, is inherent on the security. Without loss of
generality, we can assume

$1\leq\Delta_{1}\leq\Delta_{2}\leq\cdots\leq\Delta_{m}$ .
Also, avector $\Delta=$ ( $\Delta_{1}$ , A2, $\cdots$ , $\Delta_{m}$ ) is called avec-
tor of fluctuation ratios. As the result, the adversary
must choose avector $\mathrm{x}_{i}$ of relative prices among $2^{m}$

candidate vectors.
Although the $\Delta$ restriction seems to be too simplified,

it enables us to have an useful apparatus for represent-
ing the correlations without any stochastic parameter.
Under the $\Delta$ restriction, we consider each relative price
vector $\mathrm{x}_{i}$ to be avertex of agraph. The graph has $2^{m}$

vertices because the number of the possible vectors is
$2^{m}$ . Without any further restriction, afeasible sequence
of relative price vectors would be awalk in the complete
graph $K_{2^{nl}}$ with self-loop. Against an online portfolio
selection algorithm ALG, the adversary must choose the
walk $X$ of length $n$ in the graph that maximizes the ratio
$\mathrm{R}_{\mathrm{O}\mathrm{P}\mathrm{T}}(X)/\mathrm{R}_{\mathrm{A}\mathrm{L}\mathrm{G}}(X)$ .

3.2 $\mathrm{G}$ -Price transition restriction
We impose the adversary on an additional restriction
for the purpose of representing the correlations of price
movements between pairs of securities, which is formal-
ized in Markowitz’s model by means of the correlation
coefficients. Assume that the $k\mathrm{t}\mathrm{h}$ security and the $/\mathrm{t}\mathrm{h}$ se-
curity always move to the opposite direction. Namely,
whenever the $k\mathrm{t}\mathrm{h}$ security moves upward, the $/\mathrm{t}\mathrm{h}$ secu-
rity moves downward, and vice versa. Under the as-
sumption, the adversary is forced to choose asequence
of relative price vectors among the following $2^{m-1}$ vec-
tors;

( $x_{i1}$ , $\cdots$ , $x_{i(k-1)}$ , $\Delta_{ik}$ , $x_{i(k+1)}$ , $\cdots$

. . .
’ $x_{i(l-1\rangle}$ , $\Delta_{il}^{-1}$ , $x_{i(l+1)}$ , $\cdots$ , $x_{im}$ ),

( $x_{i1}$ , $\cdots$ , $x_{i(k-1)}$ , $\Delta_{ik}^{-1}$ , $x_{i(k+1)}$ , $\cdots$

. . .
’ $x_{i(l-1)}$ , $\Delta_{il}$ , $x_{i(l+1)}$ , $\cdots$ , $x_{im}$ ),

where each $x_{ij}$ except the $k\mathrm{t}\mathrm{h}$ and $/\mathrm{t}\mathrm{h}$ elements may
be either $\Delta_{j}$ or $\Delta_{j}^{-1}$ . In other words, the adversary
is forced to choose some walk in the induced subgraph
consisting of these $2^{m-1}$ vertices.

4.1 Online algorithm: BLNC
In the previous section, we have defined $(\Delta, G)-$

Adversary in the most genelarized form. In this section,
we focus on the restricted class of instances of the ad-
versary representing the market consisting of two secu-
rities whose prices move to the opposite direction. The
discussion on the generalized form of the adversary is
mentioned in Section 5.

Let us specify $(\Delta, G)$ -Adversary representing this
situation. Denote the vector of fluctuation ratios by
$\Delta$ $=(\Delta_{1}, \Delta_{2})$ , where 1 $\leq\Delta_{1}\leq\Delta_{2}$ . Then the
price transition restriction $G$ is the complete graph with
self-loops whose vertex set consists of the two elements
{ ( $\Delta_{1}$ , $\Delta_{2}^{-1}$ ), $(\Delta_{1}^{-1}$ , A2)}. (See Figure 2.)

For each period, the online portfolio selection alg0-
rithm BLNC invests to the balanced portfolio $\mathrm{b}^{*}=$

$(b_{1}^{*}, b_{2}^{*})$ such that
$b_{1}^{*}\Delta_{1}+b_{2}^{*}\Delta_{2}^{-1}=b_{1}^{*}\Delta_{1}^{-1}+b_{2}^{*}\Delta_{2}$ .

By solving this formula and $b_{1}^{*}+b_{2}^{*}=1$ , we obtain $b_{1}^{*}$

and $b_{2}^{*};$

$b_{1}^{*}= \frac{\Delta_{2}-\Delta_{2}^{-1}}{(\Delta_{1}-\Delta_{1}^{-1})+(\Delta_{2}-\Delta_{2}^{-1})}$ (1)

$b_{2}^{*}= \frac{\Delta_{1}-\Delta_{1}^{-1}}{(\Delta_{1}-\Delta_{1}^{-1})+(\Delta_{2}-\Delta_{2}^{-1})}$ (2)

where $1\leq\Delta_{1}\leq\Delta_{2}$ . (See Figure 2.) Note that the
formulae (1) and (2) suggest that BLNC is a“constant
rebalanced” algorithm investing to some fixed portfolio
for all periods.

The formulae (1) and (2) suggest that BLNC makes
diversified investments as long as both $\Delta_{1}$ and $\Delta_{2}$ is
greater than 1. Furthermore, they has the implication
that BLNC invests to more quantity of the first secu-
rity with the smaller fluctuation ratio $\Delta_{1}$ than that of the
second security with the larger one $\Delta_{2}$ . This result may
reflect the attitude toward our investment policy in real
life.

4.2 The competitive ratio of BLNC
Let $\mathrm{x}’$ and $\mathrm{x}’$ be two relative price vectors (Ai, $\Delta_{2}^{-1}$ )
and $(\Delta_{1}^{-1}, \Delta_{2})$ , respectively. No matter which of $\mathrm{x}’$ or
$\mathrm{x}’$ the adversary chooses, the portfolio yields the unique
return $\mathrm{r}_{\mathrm{B}\mathrm{L}\mathrm{N}\mathrm{C}}$ during one period;

$\mathrm{r}_{\mathrm{B}\mathrm{L}\mathrm{N}\mathrm{C}}=\frac{\Delta_{1}\Delta_{2}-\Delta_{1}^{-1}\Delta_{2}^{-1}}{(\Delta_{1}-\Delta_{1}^{-1})+(\Delta_{2}-\Delta_{2}^{-1})}$

$= \frac{\Delta_{1}\Delta_{2}+1}{\Delta_{1}+\Delta_{2}}$ . (3)
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$(\Delta_{1}, \Delta_{2}^{-1})$ $(\Delta_{1}^{-1}, \Delta_{2})$

$(\Delta_{1}^{-1}, \Delta_{2})$ for all periods in order to maximize the nu-
merator $\mathrm{R}_{\mathrm{O}\mathrm{P}\mathrm{T}}(X)$ . Consequently, the adversary would
adopt the sequence $X’=\mathrm{x}’,\mathrm{x}’$ , $\cdots$ of length $n$ as the
worst-case sequence. The competitive ratio cblnc is;

CBLNC $= \frac{\mathrm{R}_{\mathrm{O}\mathrm{P}\mathrm{T}}(X^{*})}{\mathrm{R}_{\mathrm{B}\mathrm{L}\mathrm{N}\mathrm{C}}(X^{*})}=[\frac{\Delta_{2}}{(\Delta_{1}\Delta_{2}+1)/(\Delta_{1}+\Delta_{2})}]^{n}$

Using $1\leq\Delta_{1}\leq\Delta_{2}$ , we have $\Delta_{1}\Delta_{2}\leq\Delta_{1}\Delta_{2}+$

$1\leq 2\Delta_{1}\Delta_{2}$ . By the inequality, $c_{\mathrm{B}\mathrm{L}\mathrm{N}\mathrm{C}}$ is bounded as
follows;

$[ \frac{\Delta_{2}(\Delta_{1}+\Delta_{2})}{2\Delta_{1}\Delta_{2}}]^{n}\leq \mathrm{I}\mathrm{L}\mathrm{N}\mathrm{C}$ $\leq[\frac{\Delta_{2}(\Delta_{1}+\Delta_{2})}{\Delta_{1}\Delta_{2}}]^{n}$

Thus,

$(1+ \frac{\Delta_{2}}{\Delta_{1}})^{n}2^{-n}\leq c_{\mathrm{B}\mathrm{L}\mathrm{N}\mathrm{C}}\leq(1+\frac{\Delta_{2}}{\Delta_{1}})^{n}$ (6)

0 $\mathrm{b}_{1}^{*}$ 1 $\mathrm{b}_{1}$

Figure 2: The return of portfolios

Thus, the return of BLNC, $\mathrm{R}_{\mathrm{B}\mathrm{L}\mathrm{N}\mathrm{C}}(X)$ , is

$\mathrm{R}_{\mathrm{B}\mathrm{L}\mathrm{N}\mathrm{C}}(X)=(\frac{\Delta_{1}\Delta_{2}+1}{\Delta_{1}+\Delta_{2}})^{n}$ (4)

for any sequence $X$ of relative price vectors of length
$n$ against the $(\Delta, G)$ -Adversary. We can easily make
sure that the right-hand side of the formula (3) is always
greater than 1as long as $1<\Delta_{1}\leq\Delta_{2}$ holds. It follows
that BLNC is amoney making algorithm against the
class of instances of $(\Delta,G)$ -Adversary in the sense that
whenever the optimal offline algorithm accrues positive
profit, BLNC also ends with positive profit.

On the other hand, the return of the optimum offline
algorithm OPT, RoPT(X), is

RoPT(X) $= \prod_{\dot{|}=1}^{n}\max\{X:1,\mathrm{x}\mathrm{i}2\}$ (5)

for any sequence $X$ of relative price vectors of length
$n$ . OPT can take such behavior that it invests the entire
wealth to the security with the highest yield for each
period because of its complete knowledge of the future
price movements.

For the sequence $B^{*}$ of balanced portfolios, the
adversary chooses the sequence $X$ of relative price
vectors such that the ratio $\mathrm{R}\mathrm{o}\mathrm{P}\mathrm{T}(X)/\mathrm{R}_{\mathrm{B}\mathrm{L}\mathrm{N}\mathrm{C}}(X)$ is
maximized. Since BLNC yields the unique return

BLNC(X) regardless of the adversary’s choice, the
adversary must choose the relative price vector $\mathrm{x}’=$

4.3 The optimality of BLNC

Next we show that BLNC is an optimal online portf0-
lio selection algorithm against the instance of $(\Delta, G)-$

Adversary prescribed by Figure 1. In fact, we can con-
firm that BLNC always makes the optimal selection for
each period in terms of the return. Let $\mathrm{b}$ be an arbitrary
portfolio. The $(\Delta, G)$ -Adversary suppress the return of
$\mathrm{b}$ on the bold line in Figure 2, because the adversary
is able to choose the smaller return of the two candi-
dates on the two straight lines. We can see that the bal-
anced portfolio $\mathrm{b}^{*}$ yields the maximum return $\mathrm{r}_{\mathrm{B}\mathrm{L}\mathrm{N}\mathrm{C}}$

on the bold line. Thus, we have verified that BLNC is
an optimal online portfolio selection algorithm against
the instance prescribed by Figure 1. Note that BLNC
takes substantially the same behavior as the well-known
maxmin strategy in game theory.

5Conclusion and Future Work

On Portfolio Selection Problem, we have conducted re-
search in the context of online computation and com-
petitive analysis. Assuming that the sucurities have
their own unique fluctuations, we have used $(\Delta, G)-$

Adversary to describe correlations of price movements
among pairs of securities in amarket. While researchers
in the field of finance often formalize the correlation
using the covariance or the correlation coefficient, we
make use of the graph whose vertex represents afeasi-
ble combination of security prices and whose edge pre-
scribes the price transition. Then we have presented the
online portfolio selection algorithm BLNC against the
restricted class of instances of $(\Delta, G)$ -Adversary. In the
market comprised of the two securities with the opposit
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movements, we have confirmed that BLNC makes di-
versified investments. Actually, BLNC selects the port-
folio which contains relatively more quantity of the se-
curity with the smaller fluctuation. This result seems to
be consistent with ordinary investment policies in real
life. Along the context of competitive analysis, we have
computed the competitive ratio and gained the upper
and lower bounds of the ratio. In the process, we have
made sure that BLNC is money making. Furthermore,
we have proved that BLNC is an optimal online port-
folio selection algorithm against the class of instances
of $(\Delta, G)$ -Adversary corresponding with the market in
question. Thus, we can conclude that diversification has
the advantage on portfolio selections.

While this paper focuses on the quite simple situation
represented by Figure 1, we expect to study more gen-
eralized classes of instances of $(\Delta, G)$ -Adversary. Until
now, we already have some results on other genelarized
classes. Especially, we gain an interesting result on the
class of instances whose fluctuation vector Ahas three
dimensions, in other words, on the market composed
of three securities. As to the market, we consider the
following situation; While BLNC knows that two se-
curities of the three have the negative correlation each
other, it has no information on the correlations between
both of the pair and the remaining security. We have al-
ready acquired the result; Against this class of instances
of $(\Delta, G)$ -Adversary representing this situation, BLNC
invests to the partially diversified portfolios whose con-
stituents are only the two correlated securities. Namely,
BLNC never invests to the security whose correlations
the algorithm has no information on. Thus, BLNC fol-
lows the ordinary belief that investors do not invest to
the security on which they have little information.

Also, we intend to characterize the performance of
BLNC in terms of graph configuration. In this paper,
we have focused on the complete graph with self-loops.
However, we have made sure that the adversary always
adopts the same relative price vector as the worst-case
input in this case. This results ffom the fact that the
adversary is able to choose the favorable vector to it-
self among all the vertices because of the complete
graph with self-loops. This fact urges us to character-
ize BLNC or other online algorithms from the point of
graph configuration.

While $(\Delta, G)$ -Adversary is based on the assumption
that security prices move either upward or downward
for each period, they are any nonnegative values within
some ranges in real market. Thus, we have to consider
an adversary accommodating this situation.

25:pp.99-115, 1998.

[2] A.Borodin and R.El-Yaniv. Online Computation
and Competitive Analysis. Cambridge University
Press, 1998.

[3] A.Borodin, S.Irani, P.Raghavan, and B.Schieber.
Competitive paging with locality of reference.
Journal of Computer and System Science,
$5\alpha 2)$ :pp.244-258, 1995.

[4] A.Chou, J.Cooperstock, R.El-Yaniv,
M.Klugerman, and T.Leighton. The statisti-
cal adversary allows optimal money-making
trading strategies. In Proceedings of the 6th
Annual $ACM$-SIAM Symposium on Discrete
Algorithms, pp.467-476, 1995.

[5] R.El-Yaniv, A.Fiat, R.Karp, and G.Turpin. Com-
petitive analysis of financial games. In Proceed-
ings of the $\mathit{3}\mathit{3}rd$ Annual Symposium on Foun&-
tions ofComputer Science, pp.327-333, 1992.

[6] A.Fiat and $\mathrm{G}$ J.Woeginger. Online Algorithms, The
State ofthe Art. Springer, 1998.

[7] E.Ordentlich and T.M.Cover. On-line portfolio se-
lection. In Proceedings of the 9th Annual Confer-
ence on Computational Learning Theory, pp.310-
313, 1998.

[8] W.F.Shat and $\mathrm{G}$ J.Alexander. Investments.
Prentice-Hall, 1990.

References
[1] S.al-Binali. Arisk-reward ffamework for the com-

petitive analysis of financial games. Algorithmica,

187


