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On a Fuzzy Extension of Stopping Times
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0. Introduction

We have studied fuzzy stopping stopping problems in dynamic fuzzy systems and fuzzy
stochastic systems in our papers ([7, 10, 11]). However, in our papers, the problems are
defined by a-cuts and the formulations are not given in direct forms. In this talk, we
discuss the definition of fuzzy stopping times and formulation of a new fuzzy stopping
model from the viewpoint of Zadeh’s extension principle.

1. Fuzzy random variables

Fuzzy random variables were first studied by Puri and Ralescu [8] as a fuzzy-valued
extension of real random variables, and they have been studied by many authors. In
the rest of this section, we give some mathematical notations regarding fuzzy random
variables.

Let (2, M, P) be a probability space, where M is a o-field and P is a non-atomic
probability measure. R denotes the set of all real numbers, and B denotes the Borel
o-field of R. Let C(R) be the set of all non-empty bounded closed intervals, and let § be
the Hausdorff metric on C(R). A fuzzy number is denoted by its membership function
@ : R+ [0,1] which is normal, upper-semicontinuous, fuzzy convex and has a compact
support (Kurano et al. [6]). Refer to Zadeh [12] regarding fuzzy set theory. R denotes the
set of all fuzzy numbers. In this paper, we identify fuzzy numbers with its corresponding
membership functions. The a-cut of a fuzzy number a(€ R) is given by

do ={z €R|d(z) > a} (@€ (0,1) and & :=cl{z € R|a(z)> 0},
where cl denotes the closure of an interval. In this paper, we write the closed intervals by

o :=[ag,at] for @ €10,1].

Hence we introduce a partial order >, so called the fuzzy maz order, on fuzzy numbers

R([2]): Let &,b € R be fuzzy numbers. Then
@>b meansthat &7 > b and af > bt forallac [0,1].
A fuzzy-number-valued mapping X :0+ Riscalled a fuzzy random variable ([8]) if

{(wz) e AxR| X(w)(z) >a} e M xB forall a € [0,1]. (1.1)
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where X (w) is a fuzzy number in R and its a-cut is written as X, (w) = [X (w), X (w)] =
{z € R| X(w)(z) > o} for w € Q. Therefore, the condition (1.1) is also written as

{(w,z2) €A xR |z € Xy (w)}eMxB forall acl0,1] (1.2)

The following lemma gives a simple characterization of fuzzy random variables.

Lemma 1.1 (Wang and Zhang [9, Theorems 2.1 and 2.2]). For a mapping X : Q — R,
the following (i) and (ii) are equivalent:

(i) X is a fuzzy random variable.

(i) The mappings w + X7 (w) and w — X} (w) are measurable for all a € [0, 1].

From [6, Lemma 3] and Lemma 1.1, we obtain the following lemma regarding the
a-cuts Xa(w) = [X7 (@), XF ()] = {z € R| X(w)(z) > ab.

Lemma 1.2.

(i) Let X be a fuzzy random variable. Then the a-cuts X,(w) = [X:(w), X} (w)],
w € (), have the following properties (a) - (c):

(a) Nurca Xar(w) = Xo(w), weQ ifa>0.
(b) <l (Ua>0 Xo,(w)) = Xo(w), weq.
(c) The mappings w +» X; (w) and w — X} (w) are measurable for a € [0,1].

(ii) Suppose that a family of interval-valued mappings X, = [X7,X}] : @ — C(R)
(o € [0,1]) satisfies the following conditions (a) - (c):

(@) Nurco Xor@) = Xa(w), weQ ifa>0.
(b) el (Upso Xa(w)) = Xo(w), we.
(¢) The mappings w — X7 (w) and w — X} (w) are measurable for a € [0, 1].

Then, a membership function

X(w)(z) := sup min{e,lx,w)(z)}, weQ, z€R, (1.3)
a€l0,1)

gives a fuzzy random variable X and X,(w) = X,(w) for w € Q and a € [0,1].
Next we need to introduce ezpectations of fuzzy random variables in order to describe

an optimal stopping model in the next section. A fuzzy random variable X is called
integrably bounded if both w + X (w) and w + X} (w) are integrable for all « € [0,1].
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Let X be an integrably bounded fuzzy random variable. By classical expectation, we give
closed intervals

B(X). [/x (w)dP(w),/X+(w dP( )}, ae0,1]. (1.4)

Since the mapping a E(X )a is left-continuous by the monotone convergence theorem,
from [6, Lemma 3] the expectation E(X) of the fuzzy random variable X is defined by a
fuzzy number

E(X)(z) := asel[];)pl] ‘min{a, lgx.(2)}, z€R. (1.5)

2. A fuzzy stopping model

In this section, we discuss a new fuzzy stopping model for a prdcess of fuzzy random
variables. Let a fuzzy stochastic process {Xt}t>0 be a process of integrably bounded
fuzzy random variables such that the mapping ¢ — X, is continuous on [0, 00) almost
surely and E(sup;»q XtO) < 00, where Xt'"o(w) is the right-end of the 0-cut of the fuzzy
number Xt( ). {Mt}t>0 denotes a family of the smallest o-fields on Q generated by all
random variables X +o and f(j‘a (s < t;a € [0,1]) such that ¢ = M, is right continuous,
and M., denotes the smallest o-field containing | J,,, M:. A mapping 7 : Q — [0, 00] is
said to be a stopping time if -

{w]|r(w)<t}eM, forallt>0. (2.1)

Now we introduce new fuzzy stopping times by mappings 7 : [0,00) x £ ++ [0, 1] such that
7(-,w) are fuzzy numbers for each w € Q. The a-cut of the fuzzy number #(-,w) is given
by

Falw) == {t 20| #(t,w) > a} (@ € (0,1]) and Fo(w):=c{t > 0| F(t,w) > 0}, (2.2)

where cl denotes the closure of an interval. Then we write the a-cut (2. 2) as a bounded
closed interval

To(w) == [Fy (w), 7F (w)] for o €1]0,1]. | (2.3)

Definition 1. (A new fuzzy stopping time). A mapping 7 : [0, 00) x 2 + [0,1] is called
a fuzzy stopping time if it satisfies the following (i) and (ii): '

(i) 7(-,w) is a fuzzy number for each w € Q.

(i) 77 and 7} are stopping times for each a € [0,1], where 7% is defined by (2.3).

Remark. We cannot replace Definition 1(ii) with the following condition (ii’):

(ii’) The mapping w +> 7(t,w) is M;-measurable for ¢t > 0
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since it holds that (ii) = (ii’) but the reverse does not hold from

{w]#(t,w) 2 o} ={w| 77 (w) <t} N{w |t <77 (W)}

Then the following lemma is trivial.
Lemma 2.1.

(i ) Let 7 be a fuzzy stopping time. Define a mapping 7o : Q — [0,00) by (2.2) and
(2.3). Then, we have:

(a) 75 and 7} are stopping times for each € [0,1];
(b) Narca (W) =Ta(w), weQ ifa>0;
. (c) cl (Ua)O 710:(‘-‘))) = 7~'0("-"), w € Q.

(ii) Let {74}aeo,y) be interval-valued mappings 7, :  + C(R) satisfying the above (a)
— (c). Define a mapping 7 : [0,00) x Q — [0,1] by

F(t,w) := sup min{a,l{,pera(w)}(w)} fort>0andw € Q. (2.4)
a€l0,1]

Then 7 is a fuzzy stopping time.

We can define the stochastic process stopped at a fuzzy stopping time 7 by
 Xs(w)(e) = sup min{ Ke(w)(2), 7(t,)). (25)
The reason is as follows. Fix w € Q and ¢ € R. By considering a mapping
| X.(w)(z) : [0,00) + [0,1] (2.6)

is a fuzzy set on the time space [0,00), the fuzzy random variable (2.5) gives a type 2
extension ! of (2.6), a.nd therefore (2.5) means the stochastic process stopped at a fuzzy
stopping time 7.

Since the mapping t — X, is continuous on [0, 00) almost surely, by taking the a-cut
in (2.5) we obtain a bounded closed interval

U Kool = | amin, (o), o X5a)]. (2.7)

te7a(w) ‘tET (w) tE€Fa(w)

1 Fuzzy sets of type m are defined inductively as follows.
(fuzzy sets of type m) are mappings : (fuzzy sets of type m — 1) — [0, 1].

This extension is also called Zadeh’s support fuzzification ([2]).
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where X ,(w) is the a-cut of X;(w)(+) and X, ,(w) = [X{a(w),X{':a(w)] is the a-cut of
Xu(w)(:). | o

Lemma 2.2. Let 7 be a fuzzy stopping time. Then X; is a fuzzy random variable.

Proof. X: 2(w) is a bounded closed interval and the mappmgs W > Minsez, (w) X (W)
and w > MaXsez, (w) Xta(w) are measurable since ¢ —+ X, is continuous on [0, 00) almost
surely. O v

Now we introduce an estimation of the fuzzy random variables X;. Fix a parameter
A € [0,1]. Put a mapping g : C(R) — R by

9([a,b]) := da + (1' — )b, | [a,b] € C(R), (2.8)

and give the ranking method of a fuzzy number @ by (see Campos and Munoz 1)
1
/ 9(d,) da.
0

[ atBa) da = [ Bo(%e ) o o 9)

for fuzzy stopping times 7, and in this paper we discuss the following problem.

We note that

Problem 1. Find a fuzzy stopping time #* such that

| BaXea)da> [ Bo(%s) do (2.10)

for all fuzzy stopping times 7, where ) is called a pessimistic-optimistic indez for decision
makers.

Remark. If E(X;.) > E(X;), then (2.10) holds, where > is the fuzzy max order on R.

3. An optimal fuzzy stopping time

In this section, we consider about the construction of an optimal fuzzy stopping time for
Problem 1. For a fuzzy stopping time 7, from (2.7) and (2.8)' we have

9(Xraw) =X  min X (w)+(1-2) max Xt(w), we, aclo,l].
telfs (w),7d (W) te[7a (w),7d (W)] s
(3.1)

Fix a € [0,1] for simplicity, and define

Y -ty (w) i= A min X (w)+ (1 =2 max X"’aw, weN (3.2
Ot @W=A By @) T =N, K@) (32)

for pairs of finite stopping times (7=, 7%) satisfying 0 < 7~ < 7. Then we consider the
following optimal stopping problem.
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Problem 2. Find a pair of finite stopping times (7=, 7%) satisfying 0 < 7= < 7+ which
maximizes the expected value E(Y,- ,+).

First we deal with an optimal stopping with respect to 7+, and next we discuss an
optimal stopping with respect to 7.

Problem 3. Fix a constant time s;. Find a finite stopping time 7, which maximizes the
expected value E(Y;, ).

Define Snell’s envelope for Problem 3 by

Us s, := esi:up E(Y,, ++()()Ms,) (3.3)
T _33

for pairs of constant times (s, s;) satisfying s; > s; > 0. Define
Q(s1,w) :=inf{sz | 52 > $1,U,, 5p(w) = Yoy 5, (W)}, we€EN, (3.4)

where the infimum of the empty set is understood to be +oo. If Q(s;,") is finite almost
surely, then it is an optimal stopping time for Problem 3.
Next we consider Problem 2. Define Snell’s envelope for Problem 2 by

L,, := ess sup E(Y;- g(r-(),) (") Ms,) (3.5)

T=28
for constant times s;. Put a pair of stopping times (6=, 0%) satisfying 0 < 0~ < ot by
0'_((.«.)) = inf{sl I L-!l (w) = E(Yol.Q(Jl,')(')an)(w)}a w e, (3'6)
and
ot (w) = Q07 (w)w), we, (3.7)

where the infimum of the empty set is understood to be +oo.
If 0% is finite almost surely, then we obtain

E(Ys-0+) = E(Yo- go-())(") = E(Y7- @(r-(1,)(*)) = E(Yr-1+) (3.8)

for all pairs of finite stopping times (77, 7%) satisfying 0 < 7= < 7. Therefore (67,07)
is optimal for Problem 2. :

Theorem 3.1. Let a € [0,1]. Put a pair of stopping times (¢~ ,0%) by (3.6) and (3.7). If
o* is finite almost surely, then (¢~,0%) is an optimal pair of stopping times for Problem
2.

Put 0% = o for a € [0,1]. In order to construct an optimal fuzzy stopping time from
the a-optimal stopping times {02 },¢[o,1}, We need the following regularity condition.
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Assumption A (Regularity). The mapping a — o, (w) is non-decreasing and left
continuous and the mapping o — o} (w) is non-increasing and left continuous for almost
all w € Q.

Under Assumption A, we can define a mapping & : [0,00) x Q — [0,1] by

&(t,w) := sup min{a, 1o - )<icot@p(w)} fort>0andw e Q. (3.9)
a€[0,1] » -

We also write its a-cut of by &.(w) (see (2.2)), then we have G,(w) = [0 (w), oF (w)]-

Theorem 3.2 (Optimal fuzzy stopping time). Suppose Assumption A holds. If P(of <
o0) =1, then & is an optimal fuzzy stopping time for Problem 1.

Proof. From Assumption A and Lemma 2.1, & is a fuzzy stopping time. By (3.1), (3.8)
and Theorem 3.1, we have

E(9(Xs4)) = E(Y,= 1) > E(Ysz 24) = E(9(X2,0))

for all fuzzy stopping times 7 and all a € [0,1]. Therefore, & is optimal for Problem 1.
(]

The following result implies a comparison between the optimal values of the ‘classical’
stopping model and the ‘fuzzy’ stopping model (Problem 1). Then we find that the fuzzy
stopping model is more better than the classical one.

Corollary 3.1. It holds that, under the same assumptions as Theorem 3.2;

AEM&MMZAEM&wNm (3.10)

where & is the optimal fuzzy stopping time and 7* is an optimal stopping time in the class
of classical stopping times.

Proof. Triviall. O
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