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We study the scattering theory in the nonrelativistic limit for the nonlinear Klein-
Gordon equation:

$\dot{v}/c^{2}-\Delta v+c^{2}v+f(v)=0$ , (1)

where $v=v(t, x)$ : $\mathbb{R}^{1+n}arrow \mathbb{C}$ is the unknown function, $c\gg 1$ denotes the propaga-
tion speed, namely the speed of light, and $f(u)=|u|^{p}u$ is agiven nonlinearity with
$p>0$ . Actually we can deal with the power $p\in(4/n, 4/(n-2))$ (without the upper
bound when $n\leq 2$). We can easily anticipate from the simpler equation

$\dot{v}/c^{2}+c^{2}v=0$ , (2)

that the nonrelativistic limit $carrow\infty$ causes time oscillation of the form $e^{\pm ic^{2}t}$ . So we
first eliminate this time oscillation by putting $u:=e^{-ic^{2}}{}^{t}v$ , which obeys the following
modulated equation:

$\text{\"{u}}/c^{\mathit{2}}+2\mathrm{i}\mathrm{v}-\triangle u+f(u)=0$ . (3)

Then we can take the singular limit as $carrow\infty$ to the nonlinear Schr\"odinger equation:

$2\mathrm{i}\mathrm{v}-\triangle v+f(v)=0$ . (4)

Our main goal is to see if we can describe the asymptotic behavior of solutions
to (3) via nonrelativistic approximation by (4). It was proved in [4] that every
finite energy solution to the Cauchy problem for (3) converges to the corresponding
solution of (4) in the energy space, locally uniformly in time. The nonrelativistic
limit can not approximate solutions globally in time for the free equation, neither for
the nonlinear one in case every solution behaves asymptotically free. Nevertheless,
we can show that the wave operators, their inverses and the scattering operator for
(3) converge to those for (4). This means that the time-asymptotic behavior can be
approximated through the nonrelativistic equation
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Now we breifly recall the most important conserved quantities, namely the energy
and the charge, for (3) and (4). The energy for (3) and (4) is given respectively by

$E^{c}(u)= \int_{\mathrm{R}^{n}}|\dot{u}/c|^{2}+|\nabla u|^{2}+F(u)dx=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.$ ,
(5)

$E(v)= \int_{\mathrm{R}^{n}}|\nabla v|^{2}+F(v)dx=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.$ ,

where $F(u):=2|u|^{p+2}/(p+2)$ . The charge for (3) and (4) is given by

$Q^{c}(u)= \int_{\mathrm{R}^{n}}|u|^{2}+\Im\dot{u}\overline{u}/c^{2}dx=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.$ ,
(6)

$Q(v)= \int_{\mathrm{R}^{n}}|v|^{2}dx=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}$ .

For any space-time function $u$ , we denote
$\tilde{u}$ $:=(u,\dot{u}/c)$ , (7)

and define $E:=H^{1}\oplus L^{2}$ . Then the above conservation laws ensure global bound of
solution $u$ to (3) in $\tilde{u}\in E$ .

Next we define the wave operators for (3) and (4).

Definition 1. The wave operators $W_{\pm}^{c}$ for (3) are maps from $E$ into itself which
map the initial data $\tilde{u}_{0}(0)$ of any finite energy solution $u_{0}$ of the free modulated
Klein-Gordon:

$\dot{u}_{0}/c^{2}+2\mathrm{i}\mathrm{i}\mathrm{i}0-\Delta u_{0}=0$, (8)

into the initial data $(u_{\pm}(0),\dot{u}_{\pm}(0))$ of the solution of (3) satisfying

$\lim_{tarrow\pm\infty}||\overline{u}_{\pm}(t)-\tilde{u}_{0}(t)||_{E}=0$, (9)

respectively. Similarly, the wave operators $W_{\pm}$ for (4) are defined as maps from
$H^{1}$ into itself which map the initial data of any finite energy solution of the free
Schr\"odinger:

$2\mathrm{i}\mathrm{v}-\Delta v=0$ , (10)

into that of (4) asymptotic as t $arrow\pm\infty$ . We denote $M_{*}^{*}:=(W_{*}^{*})^{-1}$ , $S^{c}:=M_{+}^{c}W_{-}^{c}$

and $S:=M_{+}W_{-}$ .

We review the known results about these wave operators. If $4/n<p<4/(n-2)$ ,
then $W_{\pm}^{c}$ and $W_{\pm}$ are well defined as bijections, which was proved in $[2, 3]$ for $n\geq 3$

and in [6] for $n\leq 2$ . In the lower critical case $p=4/n$, it is known that $W_{\pm}^{c}$ and
$W_{\pm}$ are well defined as injections (see [3]). In the upper critical case $p=4/(n-2)$ ,
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$W\ovalbox{\tt\small REJECT}$ is well defined as bijections [5], while W. is known to exist only for radially
symmetric data [1] (the nonsymmetric case is an open problem).

Now we can state our main result.

Theorem 2. Assume $n\in \mathrm{N}$ and $4/n<p<4/(n-2)$ . Let $\Phi^{c}\in E$ and $\varphi\in H^{1}$ .
Suppose

$\Phi^{c}arrow(\varphi, 0)$ in $E$ , (11)

as $carrow\infty$ . Then we have
$W_{\pm}^{c}\Phi^{c}arrow(W_{\pm}\varphi, 0)$ in $E$ ,
$M_{\pm}^{c}\Phi^{c}arrow(M_{\pm}\varphi, 0)$ in $E$ , (12)
$S^{c}\Phi^{c}arrow(S\varphi, 0)$ in $E$ .

Key ingredients in our proof are auniform decay estimate in the sense of space-
time norms for (8), compactness argument combined with the conservation laws and
the uniform Strichartz estimate derived in [4]. We use the space-time norms of the
following form:

$||u||_{S|W\cap K}:=||\chi^{c}*u||_{S}+||\chi_{c}*u||_{W\cap K}$ , (13)

where $\chi^{c}$ smoothly cuts off the higher frequency part $|\xi|_{\sim}>c$ , which is carried by
the latter term $\chi_{c}*u=u-\chi^{c}*u$ . $S$ , $W$ and $K$ denote the space-time norms
of Strichartz type for Schrodinger, wave and Klein-Gordon equations, respectively.
The following linear estimate of Strichartz type plays acrucial role.

Lemma 3([4]). Let $U^{c}(t):=e^{\pm ic\langle\nabla)_{c}t}$ . For any c $>0$ , we have

$||U^{c}(t)\varphi||_{S_{0}|(W_{0}\cap K_{0})}\leq C||\varphi||_{L^{2}}$ , (14)

$|| \int_{0}^{t}U^{c}(t-s)f(s)ds||_{S_{0}|(W_{0}\cap K_{0})}\leq C||f||_{S_{1}’|(W_{1}’+K_{\acute{1}})}$ , (15)

where $C$ is a positive constant independent of $c$ , $\varphi$ and $f$ . $S_{i}$ , $W_{i}$ , and $K_{i}$ denote
arbitrary spaces of the form $c^{-\mu}L^{p}(\mathbb{R};\dot{B}_{q,2}^{\sigma})$ satisfying the following conditions. Here

$\dot{B}_{**}^{*}$

, denotes the $ho$ omogeneous Besov space. Let $b:=1/p$ and $\alpha:=1/2-1/q$ . All
the spaces $S_{i}$ , $W_{i}$ and $K_{i}$ must obey

$-2b+n\alpha+\sigma+\mu=0$ , $0\leq 2b<1$ , $0\leq 2\alpha\leq 1$ , (11)
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and each space should satisfy

$S_{i}$ : $\mu=0$ , $2b\leq n\alpha$ , (17)
$W_{i}$ : $\mu=b$ , $2b\leq(n-1)\alpha$ , (18)
$K_{i}$ : $\mu=(1+2/n)b$ , $2b\leq re\alpha$ , (19)

respectively. $X’$ denotes the dual space of $X$ .

(16) shows that we have the same scaling both for the lower and the higher
frequency parts. Apart of regularity is transferred to the weight of $c^{-1}$ in the higher
frequency, compared with the lower part. We can recover this lost regularity because
we have akind of regularization property for the higher frequency in the associated
integral equation:

$u=u_{0}- \int_{\infty}^{t}e^{:c^{2}(t-s)}\sin\{c\langle\nabla\rangle_{c}(t-s)\}\frac{c}{\langle\nabla\rangle_{c}}f(u(s))ds$ , (20)

where $u_{0}$ is the free solution asymptotic to $u$ as $tarrow\infty$ and the regularization is
caused by the operator $c/\langle\nabla\rangle_{c}$ , where $\langle\xi\rangle_{c}:=\sqrt{|\xi|^{2}+c^{2}}$ and $\varphi(\nabla):=F^{-1}\varphi(i\xi)F$

denotes the Fourier multiplier.
We demonstrate the outline of the main estimate in asimple case where $n=3$

and $p=2$ (for the general case, see [7]). Then we can choose the norm $S$ for the
lower frequency and $K$ for the higher frequency as

$S:=L_{t}^{4}(W^{1,3})$ , $K:=c^{-5/12}L_{t}^{4}(B_{3,2}^{7/12})$ , (21)

where $W^{**}$, and $B_{**}^{*}$, denotes the inhomogeneous Sobolev and Besov spaces, respec-
tively. We do not need the space of wave type, since the cubic nonlinearity is quite
regular for $H^{1}$ solution when $n=3$ . Using the Sobolev embedding $W^{1,3}\subset L^{6}$ and
$B_{3,2}^{7/12}\subset L^{6}$ , we can estimate the nonlinearity as

$|||u|^{2}u||_{L^{4/3}}(W^{1,3/2}+c^{-5/12}B_{3.2}^{7/12})\sim|<|u||_{L^{4}(L^{6})}^{2}||u||_{S|K}\sim|<|u||_{S|\kappa}^{3}$ . (22)

Then we can use the regularizing property of $c/\langle\nabla\rangle_{c}$ as

$||c\langle\nabla\rangle_{c}^{-1}f(u)||_{L^{4/3}}(W^{1,3/-\epsilon/\sim}2|cB_{3,2}^{7/12}12)|<|f(u)||_{L^{4/3}}(W^{1.3/2}+c^{-b/12}B_{3,2}^{7/12})$. (23)

Finally, we obtain by the Strichartz estimate

$||u-u_{0}||_{S|K(T,\infty)}\leq||u||_{S|K(T,\infty)}^{3}$ . (24)

Thus, we deduce uniform estimates for $u$ and large $T$ from the estimate for the free
solution $u_{0}$ , which can be derived from linear decay estimates
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Then the convergence of $M_{+}^{c}$ can be proved as follows. Let $u$ be the solution of
(3) with $\vec{u}(0)=\Phi^{c}$ , $u_{0}$ be the free solution of (8) asymptotic to $u$ as $tarrow\infty$ , $v$ be
the solution of (4) with $v(0)=\varphi$ and $v_{0}$ be the free solution of (10) asymptotic to $v$

as $tarrow\infty$ . What we want to prove is $\tilde{u}_{0}(0)arrow(v_{0}(0), 0)$ in $E$ as $carrow\infty$ . Prom the
above argument, we can uniformly approximate $u$ by $u_{0}$ and $v$ by $v_{0}$ in the energy
spaces for $t>T$ and $c>c_{0}$ with some $T$ and Co. If we take $c>c_{0}$ sufficiently large,
then, by the time-local convergence result in [4], $\tilde{u}(T)$ is very close to $(v(T), 0)$ , so
is $\vec{u}_{0}(T)$ to $(v_{0}(T), 0)$ . Taking $c$ large again if necessary, we can approximate $\tilde{u}_{0}(0)$

by $(v_{0}(0), 0)$ , as desired.
For the proof of $W^{c}$ , we use the compactness argument for the sequence $K^{c}(-t)\tilde{u}(t)$ ,

where $K^{c}(t)$ denotes the matrix valued free propagator for $\vec{u}_{0}$ .
Our result reflects that the nonrelativistic limit converges globally in space-time

norms and that high-frequency modification does not effect the nonlinearity so much.
It is also possible to retrace the argument in [6] to derive auniform global estimate
for space-time norms in terms of the energy only. It would be interesting if we could
get the same result in the Sobolev critical case $p=4/(n-2)$ , where we know only
the estimate dependent on $c$ and global wellposedness for (4) with general data is
still open (see [1] for radial data).
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