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Asymptotic shape of a free-boundary
arising in elliptic boundary value problem
with non-homogeneous linearity

BN KRB FER SR H fH (Masataka Shibata)
Depertment of Mathematics, Tokyo Metropolitan Univ.

1 Introduction and Main Results

In this paper, we consider the following partial differential equation with Dirichlet
boundary condition
p2Au+ K(z)(u — 1)F =0,u>0 inQ,
(1.1)
u=0 on 012,

where 2 is a C! bounded domain in R* (n >3), p>0and 1 <p < (n+2)/(n —2).
We assume K is a nonnegative a-Holder continuous function on  for some o € (0,1)
and K # 0. For a positive solution u, the set A := {z € Q| u(z) > 1} is called its core
and its boundary is a free-boundary which is important in this problem.

This problem is a variant of a plasma confinement problem (see [12] for its physical
background), which was studied by many authors. In [12, 13], the existence of solutions
to (1.1) for the case p = 1 has been established by using an another equivalent formu-
lation (see, e.g. [12, p54] for its equivalence between two problems). Actually, in [13]
Temam obtained solutions as minimizers to a certain minimization problem (see [13, Sec-
tion 1]). When n =2, p =1 and K(z) = 1, for solutions obtained by [13], Caffarelli and
Friedman studied in [2] a precise asymptotic location and a shape of the free-boundary
as u — 0. Especially, they showed that if y is sufficiently small, then the core is approx-
imated by a ball with the center z,, which converges to a harmonic center by passing
to a subsequence if necessary, and its radius is comparable to p. In [5], Flucher and
Wei studied the problem (1.1) for the case K =1,n>3,1<p< (n+2)/(n—2) and
showed that if u is sufficiently small a mountain pass solution u, and its core A, has a
similar asymptotic behavior as the one obtained by [2]. The purpose of this paper is to
study mountain pass solution u, to the problem (1.1) for general K(z) and investigate
the effect of K and the geometry of Q2 on a concentration phenomenon of u, and an
asymptotic location and a shape of its core. : :

Throughout this paper, we assume that  is a bounded C'' domain in R" with
n>3,1<p<(n+2)/(n—2)and K is a nonnegative a-Hélder continuous function in
2 with K # 0. We use the notation:

g(t) = (¢t — )i, f@#) =@ -15"/(+1),
Koy := maxq K, Qk = {2 € Q|K(z) = Kmax}
B(z,r) :={y € R"||ly—z| <r}, B,:=B(0,r).
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We define the energy functional I, on Wy*(f2) by

2
7 2 1 +1

I[u] :=— -—— | K —1)8" dzx.

= [l do - — [ K@)-17" o
Then a critical point u of I, is a solution to (1.1). We say that the critical point u is
a least energy solution if u has the least energy among all nontrivial critical points, i.e.
I,[u] < I,[v] and I)[u] = 0 for all v € Wy*(Q) with v # 0 and I/[v] = 0. Actually, we
can obtain a least energy solution u, to (1.1) for each 4 > 0 as a mountain pass solution
(see Lemma 2.1). We denote the core of u, by A,, namely

A, = {z € Quy(z) > 1}.

From now on, for each x > 0, we denote by u, a least energy solution to (1.1) obtained
Lemma 2.1. We study the asymptotic shape of u, and its core A,. We state our first
result in this paper,

Theorem A. A least energy solution u, to (1.1) has the following properties:
(3) If p is sufficiently small, u, have only one local mazimal point z,,.
(i) lim,_,o dist(z,, Qk) = 0.

(iii) There exist the unique constant R, (see Proposition 8.5) such that for all v, R
withr < Ry < R, B(z,,pr) C A, = {z € Qu,(z) > 1} C B(z,, pR) holds and
A, is convez, if u is sufficiently small.

(iv) As p — 0, the energy E,, is asymptotically given by
2-n
By = L[u,] = u* { Kuke Bo +0(1)}

where Ey ) i3 a constant defined in Definition 2.1.

Theorem A says that if 4 is sufficiently small, u, concentrate on a point z, which
converges to o € (x by taking subsequence if necessary, the core of u,, is approximately
a ball with the center z, and the radius pR;.

However, if Q0 contains more than one point the property (ii) above does not give
us precise information on the behavior of the maximal point z,. For example, consider
the case that K has exactly two maximal points z; and z,, i.e. Qx = {z;,22}. To
which point z, converges as 4 — 0? Theorem A does not answer to this question. To
answer this question, we need to compute a higher order asymptotic of the energy E,, of
uy, as g — 0. The geometry of €2, namely the Robin function for 2, plays an important
role in the higher order asymptotic. The Robin function is defined by

t(z) := Hy(z),

where H,(y) is a solution of

AyH(y) =0 in Q,
H,(y) = (n—2)7' 8By |z —y|*™ on 8.
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Here B, is a ball with radius 1. It is well-known that the Robin function ¢(z) is a positive
continuous function t(z) — oo as £ — 9. A minimal point of ¢(z) is called a harmonic
center. So there exists at least one harmonic center for any bounded domain 2. For
the details of the harmonic center, see e.g. [1]. Now we can answer to the question
above. Under the situation n = 3, K € C2%(2) and t(z;) < t(z2) with Qx = {z1, 2.}, we
can say z, converges to z; as u — 0. This is a consequence of the following our main
theorem. To state our main theorem, we need additional assumptions on K(z):

(K1) K € C*Q), (K2) QxnNQ#0.
We also use the notation: Qx = {z € Qk|t(z) = ming, t}.

Theorem B (Main Theorem). Suppose n = 3 and K satisfies the additional assump-
tions (K1), (K2). Then a least energy solution u, of (1.1) obtained by Lemma 2.1 has
the following properties:

(i) lim,_ dist(z,, Qk) = 0.

1) The energy E, has the following precise asymptotic as p — 0.
n
1
E,= p3 {ngxEo,l + ¢ pming, t + o(u)}

Here E,, is the same constant as in Theorem A and c, is a positive constant
defined by ¢; = {|0B] Ro,Km,x}2 /2.

Theorem B is an extension of the result of [5]. In [5], they treated the case K(z) =1
and showed that a maximal point z, of u, converges to a harmonic center by passing to
a subsequence if necessary. Furthermore, Theorem B has an application. Consider the
case that K =1 and the Robin function #(z) has exactly two local minimal points z(1]
and z, with ¢(z;) < t(z2). In this situation, the result of [5] implies that the maximal
point z, of u, converges to z; as 4 — 0 and u, concentrates near the point z;. Can
we construct a solution u of (1.1) which concentrates near the point z2? We can answer
to this question affirmatively by using Theorem B. We state this result in somewhat
generalized form as Theorem C.

To state Theorem C, we define the local maximal (minimal) point and the local
maximal (minimal) set. Assume g be a continuous function on . We call z the local
maximal point for g if there is a open neighborhood U C R” of z such that z is maximal
point of g on U NQ and g(z) > g(y) for all y € OU N Q. Define the local minimal set
V by V := {z € Q|zis a local maximal point forg}. Here, Similarly, we define the local
minimal point and the local minimal set. we can find K is constant on each component
of the local maximal (minimal) set. Now we state Theorem C.

Theorem C. Suppose that n = 3, M is a component of the local minimal set for Robin
function t(z) and K is constant on some neighborhood of M. Then for any p > 0, there
is a solution u, to

2 _ 17" — -
{,uAu+(u 1) 0,u>0 in €, (12)

u=20 on 09,
which satisfying following properties.
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(i) If p is sufficiently small, u, has only one marimal point z,,.
(i) lim,_,o dist(z,, M) = 0.

(i4) There exists the constant Ry such that for all 7, R with r < Ry < R, B(z,,ur) C
A, = {z € Qlu,(z) > 1} C B(z,, pR) and A, is convez if p is sufficiently small.

(w) The energy E,, have following asymptotic as p — 0.

2—-n

E,= u® {KA?-EO’]_ + ¢ p™ 2 ming, t + o(u"‘z)}
Here Ey, is same constant as in Theorem A and c, is a positive constant defined
by ¢1 = {|0B1| Rok )’ /2.

By using a similar strategy as in the proof of Theorem C, we can construct a solution
of (1.1) which concentrates near a local maximal point of K.

Theorem D. Suppose that M is a component of the local mazimal set for K. Then for
any pu > 0, there is a solution u, which satisfies properties (i) - (iv) in Theorem A with
changing from Qg to M.

The paper is organized as follows. In Section 2, we prove the existence of a least
energy solution and study the ground state to the corresponding problem on R" and on
a ball. In Section 3, we give the proof of Theorem A. In Section 4, we give the proof of
Theorem B. In Section 5, we give the proof of Theorem C and D.

2 Preliminaries

In this section, we establish the existence of a least energy solution to (1.1) and prepare
several facts about the ground state. First, we note the existence of a critical point of
the mountain pass type for I,,.

Lemma 2.1. There ezist 1, € Wy*(Q) which satisfies I,[n,] < 0, and a mountain-pass
solution u, such that

Iu,) =E, >0,I[u,] =0.
Here

E, := inf sup L[y(#)], T,:={yeC([0,1;W5*Q))|+(0)=0,71)=n.}.

~€T, tef0,1)

Note that the mountain-pass solution u, obtained above is non-trivial since I,[u,] >
0. By the following elementary lemma, the core A, of u, is non-empty.

Lemma 2.2. If u € W;?(Q) \ {0} satisfies I'[u] = 0, then
(i) u € C»(Q) NCH(Q) for any B € (0,1).
(i) u>0inQ, (Ku)y #0.



103

(i) A= {z € Qu(z) > 1} #0.

By using standard elliptic regularity theorems and the maximal principle, we can
prove this lemma. We omit the proof of this lemma.

Next, we comment the mountain-pass solution u, is a least energy solution. To see
this, we define M, by

M, [v] := sup I,[tv]
>0

for v € Wp?(Q) with (K(z)v) + # 0. Note that I,[tv] has only one critical point in
(0,00), hence it is unique maximal point.

Lemma 2.3. The energy E, of u, has following property:
E, =inf {M,[v] | v € W;*(Q), (K (z)v), # 0}.

Note that I,[v] = M,[v], if I},[v] = 0. This lemma asserts the mountain-pass solution
u,, is a least energy solution since

E,= u[uu] = Mn[uu] < Mu['”] = Iu[”]

for any critical point v of I,. Because of this, we call E, the least energy. We prepare
several facts for the ground states on R™ and on a ball Bg. In the following Lemma, we
denote by u € C%(B;) the unique positive solution of Au+ u? =0 in B, w1th Dirichlet
zero boundary condition (see [6]).

Lemma 2.4. Let ¢ > 0, R € (0,00] be fized constants. Then a function v € C?*(Bg)
satisfying
Av+c(v—1)8 =0,u>0 in Bp,
v=0 on 0Bg, (2.3)
( lim v(z) =0,Vv(0) =0 if R =00 )
|z]—00

is radially symmetric about the origin, v'(r) < 0 for r > 0, ezists uniquely, and can be
expressed as

2—n R2 n 2

1
R‘Z:—n _ R2—n(

v(z) = (2.4)

|z[>™™ — R2~™) (R. < |z| < R).
Here R, s the constant uniquely determined by

1\ 2-n R
cRE) T W) R - R

The case R = oo of Lemma 2.4 was shown in Flucher-Wei [5]. Similarly, we can
compute the case R € (0,00). we omit the proof of this lemma.
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Definition 2.1 (ground state wg.). For a positive constant c, we denote by wo the
unique solution of

Av+ce(v-1)1 =0,v>0 inR",
lim v(z) =0,Vv(0) =0.
|z|—00

And we define the energy Ey . of the ground state wp . by

Buci=g [ Vwoc(@)f* do = [ cf (wo(a)) de.

It is easy to see expression Fy . by using Ey ;.
Lemma 2.5. wo(7) = wo1(v/Cz) and Ey. = c?™/2Ey; for all ¢ > 0.

Proof. Put v(z) = wp,1(v/cz). Then v is a solution of Av + cg(v) =0in R", v > 0 in
R”, limjg00 v(z) = 0 and Vv(0) = 0. By Lemma 2.4, we obtain v = wy, in R". It
yields this lemma immediately. a

3 Proof of Theorem A

In this section, we give the proof of Theorem A. The following asymptotic formula is a
key to the proof.

Proposition 3.1. The least energy E, has the following asymptotic formula as p — 0.

By = {Imax K (@))% Bos + o(1)}.

The idea to estimate the least energy E,, is similar to [11].

Proof. Fix any zg € (2 such that K(zo) > 0. Take r1, r2 > 0 so that Uy = B(zo,71) C
Q2 C Q C U; = B(xo,72) and min,ey, K(x) > 0. Define I,, and I, by

2

Lfu]:= f;- . |Vul? dz — /Ul [nll]iln K] f(u)dz (u € Wy (L)),

T,[u) = M_2/ |Vul? dz — | Kmaxf(u) dz (u € W (Us)).
2 U Uz

Through a trivial extension, we may write Wy2(U;) C Wy?(Q) € W32 (U,). Let u,,
u, be the mountain-pass solution of I, I, respectively. By the definition of T, and
Lemma 2.3, and u, € WQI_’Z(Q) C Wol’z(Ug),_we have max;>o [u[tu,] > maxeso I,[tu,).
Applying Lemma 2.3 for I,,, we find max;o I,[tu,] > I,[G,]. Consequently, we obtain
I[u,] > I,[@,]. Similarly we have max;so [,[u,] > I,[u,] and hence

Tu[ﬁu] < Lju,) < lu[ﬂp] (3.5)
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We define w, by w,(y) := w, (o + py) in Uy, := B(0,71/p). Then w, is a solution of

Awp + [minz€U1 K(a’.)]g(ﬂp) =0, w, > 0 in Ul,w
w,=0 on Uy ,.
By using Lemma 2.4 and 2.5, we have

1

2 ) ‘ ae
2 /Ux,“ Ivlu__ul dy — - glelll}} K(«'B)f(ﬂ,,) dy = [:16111}: K(z)]= Ep1+o0(1).

So, we obtain
ol 2-n
Llu,] = i"{[mip K(@)]'F" o + o(1)}
Since the argument above is valid for all B(xp, 1) C  with ming(, ) K > 0, we have

T —n . . 2=n 2-n
< = .
lim p™" Ifu,] < B(z;gf)cnlng}ln K]'7 Ep1 = [Kmax] 2 Eoa

Similarly, by using %,, we obtain

. —n . —-nTF [— 2=n
lim p7" I, [u,] > im p™"1,[0,] = [Kmax] 2 Eo,-
p—0 p—0
Combining these estimates, we conclude this Proposition. O

Let z, be the maximal point of u, and put w,(y) = uu(zu + py), Q== (2 —z,)/p,
K,(y) := K(z, + py). Then w, is a solution of

(3.6)

Aw, + g(w,) =0, w, >0 in,.
w, =0 on 05,,.

We consider where w), converges to as s — 0. Define the energy functional J, by
1
Juv] == —2—/ |Vw]? dy ——/ K, f(w)dy.
Q. Q

By using (3.6), we have
1

—n 1
p L w,] = Julwy] Z{'z’ - p+1

[ IVl .

Qﬁ"
So Proposition 3.1 asserts ||Vw#||ig(m is uniformly bounded with respect to p. By
using Moser’s iteration, we can find ||wp||z=(q,) is uniformly bounded (see e.g. [9]).
By using [7, Theorem 8.33], we obtain ||Vw,||r=(,) is uniformly bounded. So the
Schauder estimate and Ascoli-Arzela’s theorem assert that, by passing to a subsequence
if necessary, ’

wy, & Wy in C2(lim ;) as j — oo. (3.7)

j—oo

and AW, + K (limj_,0 Z,,;)9(Wp) = 0 in lim, ,  €,,.. By using these facts, we can show
the following lemma (see e.g. [5],[11]).
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Lemma 3.2. Let z, be a local mazimal point of the least energy solution u,. Then we
have lim,, o dist(z,, 0R) /1 = +o0.

This Lemma implies lim, _,,Q, =R
Lemma 3.3. dist(z,, Qk) = 0.

Proof For any subsequence satisfying lim;_,o z,; = Zo, by using (3.7), we have Wy, —
Wo,K(zo) 10 CZ.(R") as j — oo. Hence, lim, , Jyu,{w,;] > Eo k(). Proposition 3.1
asserts K (zo) = Kmax. So we can obtain this Lemma. O

Proposition 3.4. u, has only one local mazimal point if y is sufficiently small.

For proof this Proposition, see e.g. [5],[11]. The following proposition almost com-
pletes the proof of Theorem A.

Proposition 3.5. Let z, be the unique mazimal point of u, for sufficiently small .
For any subsequence {uj}‘;‘;l of p — 0 with lim;_,o, Tyu; = Zo, To € Qg holds. And for
any constant r,R with r < Ry < R, we have

B(x#j’l‘jr) CAy, = {ze uy;(2) > 1} C B(zﬂj’”‘jR)’

for sufficiently large j. Furthermore the free-boundary 0A,; is of class C? and the core
A, is strictly convex. Here Ry is the radius of Ay = {.’L‘ € R"IWO ) > 1}

Proof. A,; has only one component if x is sufficiently small, because each component
has a maximal point and u,, has only one maximal point if x4 is small. By Proposition
3.4, Wy(y) is radially symmetric and strictly decreasing, and hence there are unique s
and t such that s > 1 > ¢ and

B, = {y € R*|Wo(y) > s} C Ay C {y € R"|Wy(y) >t} = Bp.
By Bg C Q) if p is small, we have
wy, = Wy in C?(Bpg) as j — . (3.8)
So, if p; is small, then |w,; — Wy| < min {s — 1,1 ¢} /2 and |

s+1 . t+1 .
Wy > —5 >1 in B, wy, < — <1 in Bj,.

Since A,; has only one component,
B, C {y € Q,|w,,(y) > 1} C Bg.

Hence B(z,,, uir) C A, C B(zy,, p;R).
Next, we show that 9A,; is of class C? if y is small. Since W)(s) < 0 on (0, 00),
there exists a > 0 such that

IVWo(y)| = Wa(lyl)l > @ in Bg \ B;.
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As (3.8), |[VWo| — |Vw,,|| < a/2 in Bg if p; is small. So we have |Vw,,| > a/2 in
Bg \ B;. Especially Vw,, # 0 on dA,;. Since w,, is of class C?, the implicit function
theorem asserts that A, is of class C? if y; is sufficiently small.

Finally, we show that A, is strictly convex if u; is sufficiently small. It follows from
Ay, C Bg for all small y;, the principal curvature of A, is determined by D?w,; and

(3.8) that A,; is strictly convex for sufficiently small u because of strict positivity of
D2W0. N M

Proof of Theorem A. If Theorem A (ii) is not, i.e. there exist a subsequence {u;}2; of
p — 0 with limdist{z,;, 0k} = ¢ > 0. Then, by passing to a subsequence if necessary,
we can assume I,, — To as j — oco. By using Proposition 3.5, we have 1o € Q. Hence
lim;_,o dist{z,,, 2k} = 0 and it is contradiction. So Theorem A (ii) holds.

Similarly, we can prove Theorem A. O

4 Proof of Theorem B

To prove Theorem B, we need more precise asymptotic formula for E, as p — 0.
Throughout this section, we assume the assumptions (K1) and (K2) for K(z).

4.1 Upper energy bound
First, we establish the following upper energy bound.

Proposition 4.1. The least energy E, has the following estimate as p — 0:
-1 ‘
E, < i (ngxEo,l +c1p Igén t(z) + o(u)) : (4.9)
s€M K

Here ¢, is a positive constant determined by ¢, := {|0B,| R{)}2 /2.

Fix z € QN Qk, R > 0 and put K,(y) := K(z + py). Since (K2) and Lemma 3.2,
we have

Knax — Ku(y) = VK () - y 4+ o(p) = o(p) in Bgy, as p— 0.

By using this formula and similar strategy as in [5], we can prove Proposition 4.1. In
this paper, we omit the proof of Proposition 4.1.

4.2 Lower energy bound

Next, we establish the following lower energy bound. Throughout this section 4.2, we
use following notations:

Qui=Q-zu)/ 1, wu(y) =wu(zu+y), Ku(y):= K#@.ﬂ (v) = K(zu + ny)-

Remark. Here, we note that VK (z,) = 0in Byg, as g — 0. Indeed, if not, there exist
a subsequence {u;}2; such that z,, — z € Qk and it is contradiction. Hence,

K, — K(z,) = py-VK(z,) + o(p) = o(p) in Byg, as p — 0. (4.10)
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Proposition 4.2. Let z, € Q be the uniqgue mazimal point of u,. Then we have the
following asymptotic lower bound as p — 0.

-1
By > i { KudiBos + crt(w)u + o(t(z,)1) } -

Remark. In Proposition 4.2, ut(z,) — 0 as u — 0 holds because of t(z) < ¢/ dist(z, )
(see e.g. [1, p196]) and dist(z,, Q) /u — oo (see Lemma 3.2).

For the proof of Proposition 4.2, we approximate w, by using the unique solution v,
to

Av, + K(z,)g(Ws,,) =0 in Q,,
v, =0 on 0€2,,.

Here, Wy, := wo k(s,,) is the ground state defined in Definition 2.1. We put

W, — v K,g(w,) — K(z,)9(W,
by = _“p £, 9u(B) == G #( £)9(Woy) — K(z,)9' (Wo )Py
Then, it follows from w, and v, tends to Wy as u — 0 and Ry is a core of W) that
9u(9y) =0 in Bgg, . (4.11)

For ¢,, we have the following.

Lemma 4.3. If u is sufficiently small, then we have the following formulas:

w, =W, — buK(a:u)'%uhz” + ud,,
9u(du) + bK(-’”u)%gl(WO,#)hzﬂ
= N_l {K,,g('w“) - K(z,)9(Wo,u) — K(xn)g’(WO,n)(wu - Wou}s

Ludy+9u(du) =0 inQy,
¢/.4 =0 on 69,,.

where L, := A + K(z,)g'(Wo,), b is the constant satisfying ko = bK,;a%x, h, (y) =
H, (24 + py).

Proof. By the definition of wy, v,, @4, 9.(4,) and L,, we have L ¢, = —g,(¢,) in Q.
Let R(u) be the radius of the core of Wy ,,, namely (K (z,)R(u)?)~/*-1 = (-1)/(v'(1))
(see Lemma 2.4). By this formula and K(z,) — Kmax, we have R(u) — Ro as p — 0.

So, it follows from Lemma 3.2 that R(u) < dist(z,, )/ for sufficiently small u > 0.
Therefore, W, — v, satisfies

{A(Wo,u. —v,)=0 in Q,,
Wou(y) — vuly) = R(p)/ |yl on 9%,

by the definition of h;,, we can obtain

v,,(y) = WO,u(y) - k(ll')ll‘h:c,, (y) yE Qu,
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where k(p) = R(u)|0By|. Define b by b = |0B;|((—1)/u'(1))P /2 = koK,%ax then
k(p) = bK(:rp)‘% and we arrive at

Wy =pdy + vy = pdy + Wy, — bK (x#)—%“hxu
This formula yields this Lemma easily. (]

Lemma 4.4. There ezists a positive constant C such that
9u(op) + bK(‘T#)%g (WO,u)hmy <cp! lwy — WO,#|1+J +0(1) as p — 0. (4.12)
Proof of Lemma 4.4. By using the mean value theorem, we have

lg(wu) — 9(Wo,,) — g (Wo,u)(wy — Wo,u)l
=g (Bw, + (1 = 0)Wou) (wu — Wo,u) — ¢'(Wo ) (wu — Wo )l
< |gl(0wy + (1 - O)WO,u) - gl(WO,#)l ‘wu - WU,#I

It is easy to see that |¢'(s) — ¢'(t)] < C|s —t|° on each bounded domain, where o =
min{1, p — 1}. Since w, and Wy, is uniformly bounded, we have

lg(wu) - Q(Wo,u) - g,(WO,u)(wu. - WO,u)' <C Iwu - WO,le-a .

By Lemma 4.3, we have w, — Wy, = p(d, — bK(x“)“%h%). By using (4.10), we obtain
this Lemma. O

Lemma 4.5. There ezists a subsequence {;}32, of p — 0 such that

Bu; = DK (2,) " #t(z) (90 + 0(1)) (j — o).
Here, the convergence is uniformly in R3 and ¢, is the solution to
Lodo = Konaxd (Wo,c0nc) in RS, 0 € L2(B).
Here, Ly = A + Knaxg' (Wo,Kpnay)-

We will prove Lemma 4.5 at the end of this section. To prove Proposition 4.2, we
use this Lemma.

Lemma 4.6.

,lli_r{(l) he, /t(zy) =1  in C°(Bagy)-
In particular, ph,, = pt(z,) + o(pt(z,)) as p — 0 and hy, [t(z,) is uniformly bounded
on Bag, for sufficiently small p.

We can prove this Lemma by using similar way as in [1, p196]. Now we give the
proof of Proposition 4.2.
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Proof of Proposition 4.2. By Lemma 4.3, Lemma 4.6 and Lemma, 4.5, we obtain
Wou — wy = bK (2,) b pt(z,) (1 - 4o) + 0 (ut(,)) = O (ut(s,.)) in Boye  (413)
By using Lemma 4.4 and K(z,) — K(z) = o(u), we have

K(zy) |9(wu) — 9(Wo,u) — 9'(Wo,u) (wy — Wo )|
=|Kug(wu) — K(z4)9(Wou) — K (24)9' (Wou) (wu — Wo,u)| + o) (4.14)
<Culw, - WO,ulHa +o(p) = o (ut(z,)) .

Note that g(w,)— g(Wo,) = o(1) since both w, and W, , tends to Wy on Byg, as u — 0.
Then we have

’ (9(wy) — 9(Wo ) (wy — Wo) = o(ut(z,)) . (4.15)
Since K, — K(z,) = o(1) and (w, — 1)+ = 0 on Bjp , we obtain
=K [ gotmes— Sw)dy+ ol

=K [ 300FouWan— SWos)dy + 7320 [ glw,us = oo o
K@) [ F0¥o,) = Fluw) dy+ olu) = (0 + (D) + (11D + ofs).

By Lemma 2.5, (I) = K(z,)"/2E,, holds. By (4.13), (4.14), we obtain

) =EKEL LG, [ (0 Woys + 9(Was) (B0~ Dy + 0 (t(z).

From the mean value theorem, (4.13) and (4.15), it follows that
(IIT) =bK (z,)? pt(z,) /B 9(Wo,u)(1 = ¢o) dy + o (ut(z,)) -
2Rg
Since Lo¢o = Kmaxg' (Wo,x...,) by Lemma 4.5, it follows that

Kmax / 9 (W0, K oar ) W0, Kinae BY =Kimax / 9’ (W0, K ) W0, Kimax 0 — 9(Wo, K ner ) o dY-
B2R0 B .

2Rg

Consequently, by noting K. — K(z,) = o(1) and Wy, —wp k... = o(1) again, we have

1
E _ bK 2axut(z
8 =K() 4By + T [ gl ay + ofui@,)
H BZEO
-1 Kmaxkopt(z
> Kk + 2 RED) [g(ue)ay+ ofut(z,).

B2R0
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To prove Lemma 4.5, we prepare the following Lemma. For the proof of it, see [5].

Lemma 4.7. For ¢ > 3, we define L by Lv = Av+ ¢’ (wo,c)v for v € W24(R3). Then
we have the following formula ' ’

ker L = Span { Owo,e Owoc } .

0z, '~ Ozs

Proof of Lemma 4.5. Put ¢, := ¢,,/(bK(x,‘)‘%t(a:,‘)). By Lemma 4.3, we have
Lidu+§u(du) =0 inQy, §u(6u) =0 in Bip,.

Here §,(¢,) = 9u(¢u)/ (bK (z,)"7t(x,)). Dividing (4.12) by bK(x,,)—%t(z,,), it follows

hs,
t(z,)

Since h,, /t(z,) is a bounded function by Lemma 4.6, we can find

|gu(‘£u)| <C &u - [y, — Wo,nl +o(1) + K(xu)g (WO,#)

t(z u)

|gﬂ($ﬂ)| < C(l‘h' + 1) |wu - WO,ula +C
for some constant C' > 0. Now, we show the following claim.
Claim. ||q§u|| L=(q,) is uniformly bounded for sufficiently small .

Put M, := ||¢,||z=(a,) and suppose that there exist a subsequence {y;}%2; of 4 — 0

such that M, — oo as j — oo. Put 5#1_ = qguj /M,,. Then _d;”j satisfies the following
properties:

G (Bus)
Ml—‘j .
ERESHEMOIES B Yo% 8., =0 ondQ,,

Luauj + =0 in B2Ro, Aaﬂj =0 1in an \B2Ro’

for some constant C > 0. Here we used the maximal principle to obtain the last
inequality. Since w,, — Wy, — 0 on Bag, as j — oo and

gﬂj (&ﬂj) o C
MI-".i < ¢ (|¢#J| - I‘J) [qu Wo’u| " —MTJ',

we obtain lim;_, |Gy, (q~5,,j )/My; || (0,,) = 0. It follows from standard elliptic estimates

that | @, Il,a; x < Cloreach a € (0,1) and K CC R3. By using Ascoli-Arzela’s Theorem

and the diagonal argument assert that, by passing to a subsequence if necessary, En
@ in C,.(R?). for some ¢0 € C'(R3). By using the standard interior Schauder estimate,

we obtain @, — @in Ce (R®). So we have

Lody =0, 6| <1, |do()| <clyl™ inR?  Af =0 in Big,.
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It follows that ¢ € W24(R?) for some ¢ > 3 and ¢y € kerL,. So we can apply
Lemma 4.7 to obtain that there exist constants a;, az, az such that ¢, = Ef_ Qig,: 8 Wo -
Consequently, we have V@ = 3°3_, a,-Vb%Wo,,,.

Now, we show V@, (0O) = 0. Recall that

WbK (3,,) 3t(z,;) 1)

Here, the right hand side is uniformly bounded for y in Byg, by Lemma 4.6. It follows
from AWy, — vy;) = 0 in ©Q,; and the interior Schauder estimate that |(W0M -

v;)/ (udK (:15,%.)'%t(a;,,j))|2 By 18 uniformly bounded for ;. Hence, there exists a
that] o
constant C' > 0 independent on u; such that
VW, (0) - Vu,,; (0)
I‘l‘ij(mIlj )—%t(zﬂj)

Since Vuw,;(0) = VW, (0) = 0, we have

<C.

VWo,;(0) — Vv, (0) V'wu, (0) — Vv, (0)
Mij(zﬂj)—%t(xl‘j) p,bK(x,,’)'it(a:“,)

Therefore, we obtain |V$“,_ (0)| < C/M,,, which apples V,(O) = 0. It asserts that

I ¢I‘J O)|

3
0= V5(0) = - s 5-o(0).
i=1 t

Since W is radially symmetric about the origin, ij'—Z-IWO (O) # 0 and ay";y Wo(O) # 0 if
i1 # 7, It yields 0 = Z,_ a;e;. Here, , € is some basis of R3. So we havea; = a; = a3 = 0
hence ¢, = 0. On the other hand, ¢“ satisfies |¢“ | <1lon Q, and |¢“ | <ecly™

on €. \ Bag,. So we have 1 = ||¢p,-||b (@) = ||¢”J”Loo(ano) As j — oo, we obtam
liol| L=(B;r,) = 1 and it is a contradiction. Consequently, we establish the uniform

boundedness of ||@,|| L=(Q,)-
Now, we continue the proof of Lemma 4.5. We write

9u(@) + 9 Wou) K (@) = 2 )1_% ) (9(80) + 9/ (Wo, 5K () 4he, K (z1))
he,

+ K (2,)¢ (Wo,u) (1 -~ #(z4)

It follows from Lemma 4.6 that lim,_, (II) = 0. By using Lemma 4.4, we have

) =: (I) + (II).

(D] <C | |<$p| + C' |w, — Wou|” + o(1) in Bsp,.
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Since |¢,| is bounded and w, — Wo, = o(1), we obtain (I) — 0 as p — 0. It asserts
that

lim —Gu(Bu) = ' (W0,Kper) Kmax in C°(Bagy)-
Note 5“(95“) =0 in Bjg, and by using the Schauder estimate, there exists ¢o such that
lim,_, ¢, = ¢o in C2 (R?) and ¢, satisfies

Logo = ¢ Wo ) Kmaxs |¢o] <clyl™ inR3 ¢ € L*(RP).

Especially, we have lim,_,q q~5,, = ¢ in C° (Bzg,)- By using A(q?,‘ — o) =0in Q,; \ Byg,
and the maximal principle, we obtain

sup |<7>u—¢olsa sup |, — do|-

Qu Bgao Q,,uaBmo

It follows from |, — ¢o| < 2¢|y|™" that lim, 0 ¢, = ¢o in C°(R?). It completes the
proof of Lemma 4.5. O

The following Theorem 4.8 and Proposition 4.1, 4.2 completes the proof of Theorem
B.

Theorem 4.8. Let {y, 321 be subsequence of p — 0 which satisfies T,; — To as j — 00.
Then t(xo) = mingeq, t(z) holds.

Proof. By using proposition 4.1 and proposition 4.2, we obtain

1 ) 1
E,  KmiEo, E, KundFEo, :
— = > - = < .
o o 2 M) +olut(za), 5 o Sk mint(z)+ o)
Put p = p; and taking the limit j — oo, we have t(29) < minseq, (). Since zo € 2k
by Lemma 3.3, t(2¢) = mingeq, t(z) holds. O

5 Proof of Theorem C,D

In this section, we give the proof of Theorem C and D.

Proof of Theorem C. Let K € C%() be satisfying K = 1 on some neighborhood U of
M and K = 1/2 on all other local minimal points. From Theorem B, for each p, there
exist a solution u, of p?Au + K(z)(u — 1)} = 0, u > 0 in ©, u = 0 on 99, which
satisfying (i), (ii), (iii) and (iv) of this Lemma. It follows from (ii) and (iii) that the
core of u,, is contained in U for sufficiently small u. So we obtain p?Au+ (u—1)5 =0
in  and it completes the proof of this Lemma. a

Proof of Theorem D. By using similar way to the proof of Theorem C and by using
Theorem A, we can prove Theorem D. O
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