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1. Introduction

We study the discrete velocity models of the Boltzmann equation in one
space dimension. These models describe the motion of particles in a rarefied
gas. To observe the evolution of particles in a thin infinite tube, we take into
account both collisions between particles and reflection over the inner wall of
tube, which are represented by quadratic terms and a linear terms respectively.
The discrete velocity models consist in discretizing the velocity v € R3? and
then the velocity of particles in the models can be taken only in a finite set of
{C: € R3;i € I}. Let the variable z be the direction of the axis of tube and the
variables y and z be transversal to the axis. The thinness of the tube enables us
to suppose that the behavior of the particles is homogeneous and uniform with
respect to the variables y and 2. The distribution of the particles with velocity
C; is then represented by a function u;(z,t). Denoting the z—component of C;
by ¢; € R, we have the system of the hyperbolic partial differential equations
which describes our models :

Bu,- 3‘U,,' _
(1.1) { Tt T — @M,
Ui|e=0 =ul(z), i€l

where Q;(u) and L;(u) represent the terms of binary collisions and the ones of
linear reflection respectively. These terms are in the form of :

(1.2) Qi(u) = Z (Afupug — Auiuy)
.k,Lel

(1.3) Li(u) =) (afux — ajus)
kel
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where the constants satisfy
(1.4) A = AT = A >0, A%, =0 of >0.

In this talk, we prove the time global existence and the uniqueness of the
solutions (u;)ier to the system (1.1) for initial data which are not necessary
bounded but with locally finite entropy, provided that the distinct velocity as-
sumption :

(d’U) i¢j=>ci7écj9

and the weak microreversibility condition :

(ur) Z A;;je = Z Aff for Vi,jel.
kel k,lel

The condition (ur) is weaker than the usual microreversibility condition :
(1.5) A =AY, for Vijktel

It is worthy to remark that, in the mesonic process h, + P — N + ¢, the
condition (1.5) is violated but the condition (ur) is satisfied ([3,4]).

For the bounded data, we [7] obtained more precise results without con-
dition (dv), which show the existence of solution [resp. locally] bounded and
global in time for data positive and [resp. locally] bounded. We [7,8] have
moreover the explicit estimates of solutions for bounded data. For generalized
Broadwell models, we [11] derive a more precise concrete estimates for bounded
and summable data. Nevertheless, for merely summable data, it is necessary
suppose the condition (dv) in order to define a solution to the initial problem
in some sense which is weaker than the distribution sense, as we will see in
Proposition 2.1.

In the case that the right hand side includes only the quadratlc terms,
Toscani [6] showed the global existence of solutions for the data bounded,
summable with weight (1 + |z|)*(a > 0) and with ‘globally’ finite entropy.

2. Bounded data _

To consider the solutions to the initial value problem (1.1), we introduce a
Banach space B(R x [0,T]) and a Fréchet space Bgoc(R % [0,T]) ( T < oo fixed
), the former being introduced by Toscani [6].

Definition.— We denote by B(R x [0,T]) [resp. Beoc(R X% [0,T]) | the Banach
[resp. Fréchet] space of classes of measurable functions u = (u;(x,t));c,; defined
on R x [0,T) such that the following norm [resp. semi-norm] is finite :

2.1 =
@) le=3 [

dx u"(a: t) u,(a: + cit, t),
R t€[0,T)
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uf(z,t)l dz ,VYK compact subset of R |.
te(0,T]

[resp.|lullg x = Z/ ess sup
el VK

Proposition 2.1.— We assume the condition (dv). For u € B(Rx[0,T]) [resp.
u € Byoc (R %[0, T])], we have Q;(u), L;(u) € L*(Rx[0,T]) [resp.L},.(Rx[0,T))].
We denote (Ku)i(z,t) = fot (Qi(u) + Li(u)) (x —ci(t — s), 8) ds. Then we obtain

(2.2) |Kulls < ¢ (lulls® + Tlulls)

(2.3) IKu — Kvllg < C*llu—vllg (lulls + vl + T)

Proof. It is crucial to suppose that the condition (dv) is verified.
We give a proof only for the case that u € B(R x [0,T]). Another case
can be proved similary. We take u € B(R x [0,T]) and denote U;(z) =

€ss SuUP¢o, 7] |ug(m, t)l . Then, using U; € L'(R) and |u§(z,t)’ < Ui(z) for
any t € [0,T] , we have

) |
(2.4) /R /0 Qu(w)dt dz < C* 3 Ukl allUells < C* lul2 < oo,
k#L

T

(2.5) / / Li(u)dt dz < C*'T Jull < o .
RJo

Therefore we obtain

2.6 ess sup |(Ku)!(z,t)|dz < C* (||ul|z2 + T||u .
(2.6) gatew’ﬁ]( (e, 1) (hulls® + Tlul5)

Similarly we have

5 [ e sup | culte, ) - (oo )

< C"lu—vlg(lullg +llvlg+T). n

(2.7)

In order to prove the global existence for data with locally finite entropy, we
define weak solution, so called mild solutions :

Definition.— Let be u? € L} (R) and u € Bgoe(R x [0, T]). We say that u is
a mild solution of the initial value problem (1.1) if

@Y e =ud@+ [ (@e)es) + e o)ds.

Remark : For bounded functions u = (u;), there is an equivalence between the
notion of mild solutions and one of solutions in the distribution sense.
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We obtain, in a classical way, the local results for bounded data :

Proposition 2.2.— We suppose that the data are bounded.

i) (local existence) There exists a unique bounded solution at least up to the
time Ty = C/ (1 + ||u°||...) - Furthermore, for t < Ty , we have |[u(:,t)|| 0 <
C ||u || 1~ Where a constant C depend only on the system. :
i) (uniqueness) If we have two bounded solutions on the same interval [0, T)] for

the same initial data, then they coincide on this interval. We can then define.

the existence time T* as supremum of T such that the solution exists and is
bounded up to the time T . ~

iii) (positivity) If the data are positive, the solution is also positive up to the
time T .

iv) (conservation of the mass) If the data are positive and summable, we have

(2.9) /Zu,(m t)d:c—/ Zu

i€l 1€l

for Vt € [0,T*[ .

v) (finite velocity propagation) If two data u® and v° coincide in the interval
[a,b] , then the solutions u and v coincide in the triangle or the trapezoid
{(z,t) :t€[0,Th[,Th £ T*,a+~t <z < b—~t} where vy = max;es |c;| -

vi) (entropy with controlled increase) If we assume the condition ( ur ), then,
for positive data u® supported in [-R, R) and with its finite entropy i.e.

Yier Jg W logud(z)dr < oo , we have H(t) < H(0) + C,t fort € [0,T1[, Ty <
T* where C, depends only on the system and H(t) = 3, g uilogui(z,t)dz .

Proof. The classical iteration method enables us to show i)-v). For details, we
refer to [8].

On the increase of the entropy H(t) , noting that the support of the solutions
u(-,t) with respect to z is contained in [—R', R'] with R’ = R+~T), we see that
the quantity H(t) = 3, [ uilogu;(x,t)dx is well-defined. It follows from the
system that

0 o)
(2.10) 21: (E + ci%) u;logu; < — ;a i log—
Applying the Jensen’s inequality to the convex function z log x, we have
/uklog—dx /-——log— u; dx
(2.11) R R U i

Z/dem'log/ ug dz.
R R

Integrating the inequality (2.10) on R in z then between 0 and ¢ in ¢, we have

t
H(t) — H(0) S—Zaf/ d’r/ Uk da:-log/ uy dz
e 0 R R
<Eikaf

¢
e

(2.12)
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because we have zlogz > -1 . g

3. Local existence
We show the time local existence for data with small mass :

Theorem 3.1.— We assume the condition (dv) . Then there exists a § > 0
such that, for ||u°||,, < &, there exists a unique solution u in B(R x [0,8))
, and we have |lullgz < 26 . Furthermore, the mapping G(t) : u® v u(-,t) is
continuous from the ball with radius § of L' into the ball with radius 26 of L!
fort <é .

Proof. We write the system in the form u — Ku = f , where f; = ud(z — c;t) .
We put u, 41 = Ku, + f, up = 0. By virtue of Proposition 2.1, for a sufficiently
small §, we have u, € B(R x [0,6]) and

1
luvlip < 26, IKullg < 5 llullp
(3.1) vilg v 31 5 Itvlip
[Kuvs1 = Kuyllg < Slluwsr —uulig -

The fixed point theorem permits us to conclude that u, converges to a solution
u € B(R x [0, 6]) and we have |lu]|g < 26 .

We suppose that v is a solution for data v and we put g; = v?(z — ¢;t) .
Then we have u — v = Ku — Kv + f — g . By virtue of the inequality (3.1), we
have |lu — v||g < &||lu — v||g + ||f — gll therefore ||u — v|lg < 2|luo — vo|| ;1 - It
implies the continuity of the mapping G(t) . g

0

Corollary 3.2.— We suppose the condition (dv) and ||u°||,, < 6 , where § is
brought by Theorem 3.1.

a) (finite velocity propagation) The value u(z,t) depends only on {u°(y) :y €
[ —~t,z +~t]} where v = max;er |¢;| . In particular, if the data are supported
in [a,b] , then the support of u(-,t) is included in [a — vyt,b+ 7t] .

b) (conservation of positivity) If the data are positive, then the solution is also
positive up to the time § .

c) Ifu® is bounded, then u is bounded up to the time § and we have ||u(-,t)|| .« <
2(1+ ||u°| ;) fort e [0,6] .

Proof. a) If u,(z,t) is determined by {u°(y) :y € [z —~t,z + 7t]} , then
Uy+1 = Ku, + f does also. As the solution u is a limit of the sequence v, ,
u(z,t) depends only on {u’(y) :y € [t — ¢,z + 1]} .

b) We approximate the data by the u% = inf(u®, n) . Then the solution u,, which
corresponds to the data ul exists in B(R x [0,8]) and the sequence uy(,t)
converges to u(-,t) by the continuity of G(t) . By virtue of Proposition 2.2, the
u,, are positive, then u is positive.
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c) Let [0,T[ be with T < 6 the supremum of T such that sup, , |ui(z,-)| is
bounded up to the time T. Then, by Proposition 2.2, we have T > 0 . For

€>0,weput M. = sup sup|ui(z,t)] < oo . By the system, we have
te[0,T—¢] i,z

sup|uf(@,8)] < [[u¥] o + O Melfulls + C*ulls + M(T — &)

3.2
(32 < CHSM, + 05+ o], , for t € [0,T — &l

where constants depend only on the system. For § < (26'“)_1 , we obtain

(3.3) M. = sup suplu(z,t)] <2(1+[u’ ) -
t€[0,T—¢] i,z

The right hand side being independent of ¢, we have

(3.4) M = sup suplui(z,t)| < 2(1+[[v°] ;o) -
tef0,T] i,z

This bound depends only on the initial data. Let T™ be the existence time
of bounded solution which is associated by Proposition 2.2. If we had T < é
, taking as initial data the w;(z,T — ¢’) with ¢’ < T* , we would obtain a
contradiction. g

Corollary 3.3.— We assume the condition (dv) . Let u® be positive data in

L' and h a real number such that ), f:"’h ud(z)dz < 6 for anya € R .

a) Then there exists a unique solution v in B(R x [0, 6]) with § = min{é, h/~v}
and 4 = max;e |c;| . Furthermore the value u(z,t) depends only on {u%(y) :
y € |z —~t,z + 4t} .

b) Assume the condition (ur) and we put H(t) = 3 .., [g uilogu;(z,t)dz . If
the data are supported in [—R, R] and verify Y, [ u? logud(z)dz < 0o , we
have, for t € [0,6], H(t) < H(0) + C.t with C, which depends only on the
system.

Proof. a) If we restrict the initial data in [a, a+h] , extending them by 0 outside,
there exists a solution by Theorem 3.1. The restrictions of these solutions in
small triangles with base [a,a + h] and with height min{é, h/v} can be sticked
together by virtue of the finite velocity propagation.

b) For the calculus on the increase of H(t) , we approximate the data by ul =
inf(u®,n) . Then we have Y, [g ud ;logul ;(z)dz < 3, [ u? logu(x)dz < oo
. Then the solutions u, which correspond to data ul exist up to the time 6
. Furthermore, they are bounded and positive up to the time 8 . Moreover,
the solutions have their support in z included in [-R', R'] with R' = R+ 6
. Therefore the quantity Hy(t) = >_; g Un,i10gUn i(z,t)dz is well-defined. By
virtue of Proposition 2.2, we have H,(t) < H,(0) + C.t < H(0) + C,t .
Theorem 3.1. enables us to conclude that the u,(-,t) converge to the solution
u(-,t) in L! for each t € [0,6] . By extracting a sub-sequence if necessary, the
un (-, t) converges to u(-,t) almost everywhere. By the fact that u, ;loguns :(:,t)
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are estimated from below by —1/e and that they are supported in a fixed com-
pact set, the Fatou’s lemma implies that

H(t) =Z/ u;logu,(z,t) dz
. JR

< liminfz / Un,iloguy, i(z,t) dz
~ JR
— liminf Ha(t) < H(0) + Cit .

(3.5)

4. Global existence

In this section, we show the time global existence for the initial data with
locally finite entropy.

Proposition 4.1.— We assume the condition (dv) .

a) We suppose that there exist two solutions u and v in B(R x [0,T)) cor-
responding to the summable and positive initial data which coincide in a in-
terval [a,b] . Then the solutions coincide in the triangle or the trapezoid
{(z,t);t€[0,T,a+vt <z <b-~t}.

b) Let the initial data be supported in [-R, R] , summable and positive. We
suppose that there exists a solution v in B(R x [0,T]) . Then the support of
~u(:,t) is included in [-R — Ct,R + Ct] .

Proof. a) Let to be the infimum of ¢ such that u(:,t) # v(-,t) . We have then
u(-,to) = v(-,to) € L' . As u and v are in L! , there exists a ¢ such that
f{z us(m,t0) 2q) Wi(Tr to)dz < 6/2 for any i € I . Taking h = 6/(2q) , we have, for
anya€R,

a+h 6
(4.1) / wilz,to)ds <5 +hg <5, i€l
a

Using Corollary 3.3, u are v coincide in small triangles with base [a,a+ h] X {t =
to} and with height 8 and we are led to a contradiction.
b) It is sufficient to apply the previous result to u® and 0 as two initial data. g

Lemma 4.2.— We assume the conditions (vd) and (ur) . Let u(z,t) be a
positive solution defined in R x [0, T with its support in [-R, R] . We suppose
that 3. Jg uilogui(z,t) dx are estimated from above for any t € [0,T] by a
constant C' which does not depend ont . Then, for any 6 > 0 , there exists a
h, which depends only on R , C and § , such that )¢, f: +h ui(z,t) dz < 6 for
anya € R and any t € [0,7T] .

Proof. If not, for any h > 0 , there would exist a a, € R and a t, € [0, 7] such

that 3, [ :. ~+h ui(z,ts)dz > 6 . We use the argument owing to Toscani [6] and
Tartar-Crandall [5]. We put, form > 1,

(4.2) By = {z € [as,as + h] :ui(z,ts) > ™}



(4'3) B2,1 - [a*,a* + h] \Bl,l .

Then we would have

a.+h 1
/ ui(z,te)dr < —/ uilogTu;(y, t.)dy + he™
(4.4) a B

1 a.+h

< —/ uilogtu;(y, t.)dy + he™ .
m Jo,

On the other hand, we would have

c 2 Z/ uilogu‘i(y7t*)dy
—~ JR
1
R
(4.5) 2> Z / i (uilogtui(y,te) — 1) dy
. i —R
= Z/ U1108+Uz'(y,t*)dy — 2pR where p = §1.
T J-R

Therefore we would obtain

1 a.+h
ui(y,te)dy < " Z/a uslogtu;(y,t.)dy + phe™
(]

-

< —(C + 2pR) + phe™ .

Choosing a m such that i(C + 2pR) < % , then a h such that phe™ < % , We
would have § < % + % = % , which is a contradiction. g

Corollary 4.3.— We assume the conditions (vd) and (ur) . We suppose that
the initial data are supported in [—R, R] , positive and with finite entropy and
that there exists a solution in B(R x [0,T]) . Then we have

(4.7) H(t) <H(0)+C.t for Vte[0,T)

where the constant C, depends only on the system and where J depends only
on the system, on R and on T .

Proof. The support of u(-,t) in z is contained in [-R', R’} with R’ = R+~T .
Let to be the infimum of t such that the estimates does not hold at the time ¢
. Taking a small € > 0, we have H(to —€) < H(0) + C.(to —€) < H(0) + C.T
. Owing to the fact that u(-,to — €) is positive and supported in [-R’, R'] , the
previous lemma shows that there exists a h independent of € such that we have,
foranyae R, ), f:+h ui(z,tg — €)der < § . By virtue of Corollary 3.3, we
have

H(to—e+60) < H(to—¢)+C.0

(4.8) < H(0) + Cu(to —€) + Cu8 .
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The estimate is then verified up to the time ¢y — ¢ + 8 with § > 0 independent
of € , which is a contradiction. g

We state our main result :

Theorem 4.4.— We assume the conditions (dv) and (ur) . For the initial
data positive and with locally finite entropy, there exists a unique mild solution
to (1.1) defined on R x [0, 00| . :

Proof. By virtue of Proposition 4.1, we are led to the case that the initial
data are supported in [—R, R] and with finite entropy. Let T* be the existence
time for these data. Suppose that T* is finite. By Corollary 4.3, the entropy is
bounded for t < T* : H(t) < Hr < oo . Owing to Lemma 4.2, the solution
u(:,t) being supported in [-R — CT*, R + CT"*] , there exists a h > 0 such
that Zif:+hu,-(x,t)dx < éforanya € Randt <T*. Fort < T*, by
virtue of Corollary 3.3, applied to the initial data u;(-,t) , there exists a § > 0
independent of ¢ such that the solution can be extended in R x [0,t + 4] . It is
sufficient to choose ¢t > T™ — @ for reaching to a contradiction. g
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