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0Introduction

Hyperfunctions and microfunctions with holomorphic parameters of form $u(x’, z”)$ have
been considered in classical microlocalization and they play an important role in second
microlocalization. It is standard to define them in acohomological way: cf. in particular
(1.1) and (1.2) below. The reason why they are not just defined as “holomorphic functions
in the variables $z’$ with values in hyper- or microfunctions in the variables $x’”$ , is that
spaces of hyperfunctions, respectively microfunctions, admit no natural topology. On
the other hand, it is quite easy to associate avalue $u(\cdot, z’)$ with $u$ for every fixed $z’$ .
Since hyper- and microfunctions with holomorphic parameters share many properties in
common with standard, complex-valued holomorphic functions, the following problem
arises:

Problem 0.1. Do the “values” $u(\cdot,\dot{z}’)=u|_{z’=\dot{z}’}$ of u with respect to the $z’$ -variable
detemine the original $u^{\mathit{9}}$

It is aresult of K. Kataoka and T. Oshima that the answer to this problem is affirmative
in the hyperfunction case and we shall show in this note that the same is true also in the
case of microfunctions: see Theorem 2.1 below. Actually, Kataoka and Oshima considered
aslightly more general situation in which the parameter is assumed to be “real-analytic”,
rather than “holomorphic”. For this reason we shall also consider aresult similar to
Theorem 2.1 for the case of real-analytic parameters: see Corollary 1.2 and Theorem 2.8.

Remark 0.2.. K. Kataoka and T. Oshima did not publish their result themselves, but
A. Kaneko included it (with proof) in his book [3] as Theorem 4.4.7’.

1Statement of the results

1. Let us fix the situation in which we work
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Let $M’$ be areal analytic manifold with complexification $X’$ and let $X’$ be acomplex

manifold. Local coordinates of $\mathrm{M}’$ , $X’$ , and $X’$ are denoted by $x’$ , $z’$ , and $z’$ respectively.

We consider the embedding $N:=M’\cross X’\mathrm{c}arrow X:=X’\cross X’$ and identify the conormal

bundle $T_{N}^{*}X$ along $N$ with $T_{M}^{*},X’\cross X’$ . The canonical projection from $T_{N}^{*}X$ to $N$ (resp.

$T_{M}^{*},X’$ to $M’$ ) is denoted by $\pi_{N}$ (resp. $\pi_{M’}$ ). We introduce the sheaf $\mathrm{C}\mathcal{O}_{N}$ of microfunctions

with holomorphic parameter $z$
” on $T_{N}^{*}X$ by

$\mathrm{C}\mathcal{O}_{N}:=\mu_{N}(\mathcal{O}_{X})\otimes or_{N/X}[\dim_{\mathbb{R}}M’]$ (1.1)

and the sheaf $B\mathcal{O}_{N}$ of hyperfunctions with holomorphic parameter $z’$ on $N$ by

$B\mathcal{O}_{N}:=\mathrm{C}\mathcal{O}_{N}|_{N}$ . (1.2)

Here $\mathcal{O}_{X}$ denotes the sheaf of holomorphic functions on $X$ , $\mu_{N}$ Sato’s microlocalization

functor along $N$ , and $or_{N/X}$ the relative orientation sheaf. For any fixed point $\dot{z}’\in X’$ ,

we can define the restriction morphisms

$B\mathcal{O}_{N}|_{\{z’=\dot{z}’\}}arrow B_{M’}$ , $u\mapsto u|_{z’=\dot{z}’}$

and

$\mathrm{C}\mathcal{O}_{N}|_{\{z’=\dot{z}’\}}arrow \mathrm{C}_{M’}$ , $u\mapsto u|_{z’=\dot{z}’}$

under the identifications $M’\cross\{\dot{z}’\}\simeq M’$ and $T_{M}^{*},X’\cross\{\dot{z}’\}\simeq T_{M}^{*},X’$ . Here we denote

by $Bm1$ the sheaf of hyperfunctions on $M’$ and by $\mathrm{C}_{M’}$ that of microfunctions on $T_{M’}^{*}X’$ .

Now we state our main theorem:

Theorem 1.1. Let $\dot{q}’\in T_{M}^{*},X’$ be a point, $U’\subset X^{n}$ an open subset and $u\in \mathrm{C}\mathcal{O}_{N}(\{\dot{q}’\}\cross$

\"U ) a microfuntion with holomorphic parameter $z’$ defined in a neighborhood of $\{\dot{q}’\}\cross U’$ .

Assume that for any fixed $\dot{z}’\in U’$ , the restriction $u|_{z’=\dot{z}’}$ is 0at $\dot{q}’$ . Then $u=0$ in $a$

neighborhood of $\{\dot{q}’\}\cross U’$ .

We give explicitly two corollaries of Theorem 1.1.

Corollary 1.2. Let $\dot{x}’\in M’$ be a point, $U’\subset X’$ an open subset and $u\in B\mathcal{O}_{N}(\{\dot{x}’\}\cross$

\"U ) a hyperfunction with holomorphic parameter $z’$ defined in a neighborhood of $\{i’\}\cross$

$U$”. Assume that for any $\dot{z}^{n}\in U’$ , the restriction $u|_{z=\dot{z}’}=0$ at $i’$ . Then $u=0$ in $a$

neighborhood of $\{\dot{x}’\}\cross U’$ .

Corollary 1.3. Let $\Omega’\subset M’$ and $U’\subset X’$ be two open subsets and $u\in B\mathcal{O}_{N}(\Omega’\cross U’)a$

hyperfunction with holomorphic parameter. Assume that for any $\dot{z}’\in U’$ , the restriction
$u|_{z=\dot{z}’}\in B_{M’}(\Omega’)$ is real analytic. Then $u$ itself is an analytic function on $\Omega’\cross U_{f}’i.e.$ ,

there exist a neighborhood $\tilde{U}\subset X$ of $\Omega’\cross U’$ and a holomorphic function $f\in \mathcal{O}_{X}(\tilde{U})$ with
$u=f|_{\Omega’\mathrm{x}U’}$ .
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We remark that Corollary 1.2 can be obtained from aresult due to Kataoka and
Oshima given in Theorem 2.8, in which $u(x’, x’)$ is assumed to have $x’$ as real analytic
parameters.

Let us consider moreover the case where $X’$ is the complexification of some real
analytic manifold $M’$ . In this situation, we give astronger result:

Theorem 1.4. Let $\dot{q}’\in T_{M}^{*},X’$ be a point, $U’\subset X’$ a connected open subset and $u\in$

$\mathrm{C}\mathcal{O}_{N}(\{\dot{q}’\}\cross U’)$ a microfunction with holomorphic parameters defined in a neighborhood of
$\{\dot{q}’\}\cross U^{u}$ . Assume that $M’\cap U’$ is non-empty and that $u|_{z’=i’}=0$ for any $\dot{x}’\in \mathrm{M}" \mathrm{n}$ \"U.

Then $u=0$ in a neighborhood of $\{\mathrm{q}’\}\cross U’$ .

Note that since we can argue locally, Theorem 1.1 will be aconsequence of Theorem
1.4.

2. Let us next consider the sequence of embeddings

$M:=M’\cross M’rightarrow Narrow X$,

which defines the sheaf

$A_{\Sigma}^{2}:=\mathrm{C}\mathcal{O}_{N}|_{\Sigma}$

of second analytic functions defined on the real regular involutive submanifold

$\Sigma:=T_{M}^{*}X\cross\tau*\mathrm{x}T_{N}^{*}X$.

It is again aconsequence of Theorem 1.4 that the sections of $A_{\Sigma}^{2}$ are determined point-
wisely:

Corollary 1.5. Let $\dot{q}’\in T_{M}^{*},X’$ be a point, $\Omega’\subset M’$ an open subset, and $u\in A\mathrm{j}(\{\dot{q}’\}$ $\cross$

$\Omega’)$ a second analytic function. Assume that $u|_{x’=i’}=0$ for any fixed $i’\in\Omega’$ . Then
$u=0$ .

The following particular case of Theorem 1.4 will be the main intermediate step in the
argument. We denote in it by $\dot{T}_{M}^{*},X’=T_{M}^{*},X’\backslash M’$ the conormal bundle to $M’$ with the
zero section removed and by $\dot{\pi}_{M’}$ the canonical projection from $\dot{T}_{M}^{*},X’$ to $M’$ .
Theorem 1.6. Let $\Omega’\subset M’$ be an open subset, $U’\subset X’$ a connected open subset with
$U’\cap M’\neq\phi$ , and $Z\subset\dot{\pi}_{M}^{-1},(\Omega’)$ a closed conic subset such that for each base point $\dot{x}’\in\Omega’$

the intersection $Z\cap\dot{\pi}_{M}^{-1},(i’)$ consists of only one direction. Also consider a fixed point $\dot{q}’$

in $Z$ .
Assume that a section $u\in \mathrm{C}\mathcal{O}_{N}(\dot{\pi}_{M}^{-1},(\Omega’)\cross\text{\"{U}})$ satisfies the condition

$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(u)\subset Z\cross U’$

and that $u|_{z’=\dot{x}’}=0$ at $\dot{q}’$ for any $i’\in U’\cap M’$ . Then we have $u=0$ in a neighborhood
of $\{\dot{q}’\}\mathrm{x}$ $U’$ .
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2Local forms of the main results

1. The theorems above in Section 1are of alocal nature. We may argue therefore in local
coordinates and assume that $X’=\mathbb{C}^{d}$ , $X’=\mathbb{C}^{n-d}$ for some $d$ and $n$ . We shall identify
$X’\cross X’$ with $\mathbb{C}^{n}$ in anatural way: if $z=$ $(z_{1}, \ldots, z_{n})$ are the coordinates in $\mathbb{C}^{n}$ , we write
$z’$ for {zl $\ldots$ , $z_{d}$ ) and $z’$ for $(z_{d+1}, \ldots,z_{n})$ . Thus, $z=(z’, z’)$ and $X’=\{z\in \mathbb{C}^{n};z’=0\}$ ,
$X’=\{z\in \mathbb{C}^{n};z’=0\}$ . We denote $M=\{z\in X;{\rm Im} z=0\}=\mathbb{R}\mathrm{n}$ , regarded as areal
analytic submanifold in $\mathbb{C}^{n}$ and consider its partial complexification $N=\{z\in X;{\rm Im} z’=$

$0\}=\mathbb{R}^{d}\cross \mathbb{C}^{n-d}$ . Variables in $M$ shall be written as $x=(\mathrm{x}\mathrm{f}, x’)$ , $x’=(\mathrm{x}\mathrm{f}, \ldots, x_{d})$ ,
$x’=$ $(x_{d+1}, \ldots, x_{n})$ . Coordinates of $T_{N}^{*}X=T_{\mathrm{R}^{d}}^{*}\mathbb{C}^{d}\cross \mathbb{C}^{n-d}$ are denoted by $(x’, z’;\xi’\cdot \mathrm{d}\mathrm{x}\mathrm{f})$

or $(x’, z’;\xi’)$ under the identification $T_{\mathbb{R}^{d}}^{*}\mathbb{C}^{d}\simeq\sqrt{-1}T^{*}\mathbb{R}^{d}\simeq T^{*}\mathbb{R}^{d}$ .
It is instructive to rewrite Theorem 1.1 in local variables and in terms of defining

functions:

Theorem 2.1. Assume that $h\in \mathrm{O}(\{\mathrm{z}\in \mathbb{C}^{n};|z’|<\epsilon,$ ${\rm Im} z’\in G’,z’\in \mathbb{C}^{n-d}$ , $|z’|<$

$\delta\})$ and denote by $u$ the hyperfunction with holomorphic parameters on $\{(x’, z’);|x’|<$

$\epsilon$ , $|z’|<\delta\}$ associated with $h$ . Also $consider\dot{\xi}’\in G^{\prime[perp]}and$ assume that $(0, (’)\not\in \mathrm{W}\mathrm{F}_{A}u(\cdot,z’)$ ,
for any $z’$ with $|z’|<\delta$ . Then there are $\epsilon’>0_{f}\delta’>0$ , open convex cones $G_{1}’$ , $\ldots$ , $G_{s}’$

in $\mathbb{R}^{d}$ so that $\dot{\xi}’\not\in G_{j^{[perp]}}’and$ holomorphic functions $h_{j}$ defined on $\{z\in \mathbb{C}^{n};|z’|<\epsilon’$, $y’\in$

$G_{j}’$ , $|z’|<\delta’\}$ so that $u$ is for $|z’|<\delta’$ equal to $\sum_{j=1}^{s}\dot{b}(h_{j})$ .

Theorem 2.1 may be considered as amicrolocal variant of atheorem of Malgrange-
Zerner. For the classical situation, see H. Komatsu [6]. We also give aversion of Theorem
1.6 in local coordinates:

Theorem 2.2. Let $G’\subset \mathbb{R}^{d}$ be an open convex cone and $h$ a holomorphic function defined
on $\{z\in \mathbb{C}^{n};|z’|<\epsilon, y’\in G’, |z’|<\epsilon\}$ . Assume that for every $i’\in \mathbb{R}^{n-d}$ with $|i’|<$

$\epsilon$ , the holomorphic function $h(\cdot,\dot{x}’)=h|_{z’=\dot{x}’}$ defined on $\{z’\in \mathbb{C}^{d};|z’|<\epsilon, y’\in G’\}$

extends holomorphically to a neighborhood of $0\in \mathbb{C}^{d}$ . Then $h$ extends holomorphically to
a neighborhood of the set $\{z\in \mathbb{C}^{n};z’=0, |z’|<\epsilon\}$ .

Remark 2.3. As a consequence of Corollary 1.2 it is possible to recast the definition
of hyperfunctions (respectively microfunctions) with holomorphic parameters considered
above as follows. Let again $U’\subset \mathbb{C}^{n-d}$ be some open subset. A function $h:U’arrow B_{0}(B_{0}$

denotes the set of germs of hyperfunctions at the point $0\in \mathbb{R}^{d}$) is then a hyperfunction
with holomorphic parameter $z’$ precisely iffor any $\tilde{z}’\in U’$ there is an open neighborhood
$\tilde{U}\prime\prime=\tilde{U}_{\overline{z}}$”of $\tilde{z}’$ , $\epsilon>0$ , a finite collection of open convex cones $G_{j}’\subset \mathbb{R}^{d}$ , $j=1$ , $\ldots$ , $s$ , and
holomorphic functions $\tilde{h}_{j}\in \mathcal{O}(z;|z’|<\epsilon, {\rm Im} z’\in G_{j}’, z’\in\tilde{U}’)$ , so that for any $z’\in\tilde{U}’$ ,
$h(z^{JJ})$ is equal to $\sum_{j=1}^{s}b(h_{j}(\cdot, z’))$ .

Likewise, afunction $h$ : $U’arrow \mathrm{C}_{(0,\dot{\xi})},(\mathrm{C}_{(0,\dot{\xi})}$,denotes here the set of germs of microfunc-
tions at the point $(0, \dot{\xi}’))$ will be amicrofunction with holomorphic parameter $z’$ precisely
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if for any $\tilde{z}’\in U’$ there is an open neighborhood $\tilde{U}\prime\prime=\tilde{U}_{\overline{z}}$”of $\tilde{z}’$ , $\epsilon>0$ , an open cone
$G’\subset \mathbb{R}^{d}$ which contains 4’ and aholomorphic function $\tilde{h}\in \mathcal{O}(z;|z’|<\epsilon,$ ${\rm Im} z’\in G’$ , $z’\in$

$\tilde{U}’)$ , so that for any $\dot{z}’\in\tilde{U}’$ , $h(\dot{z}’)$ is the microfunction defined by the microfunctional
boundary value of the holomorphic function $z’arrow\tilde{h}(z’,\dot{z}’)$ , $|z’|<\epsilon$ , ${\rm Im} z’\in G’$ . We shall

call $\tilde{h}$ alocal defining function for $h$ (near $\tilde{z}’$ ). When we want to make the dependence

of $\tilde{h}$ on $\tilde{z}’$ explicit, we shall occasionally write $\tilde{h}_{\tilde{z}’},$ .

Remark 2.4. It is a significant fact that the local defining functions $\tilde{h}_{\overline{z}}$”associated with

the various $\tilde{z}’$ do not always admit a common holomorphic extension for all $z’\in U’$ .

(I. $e.$ , in general there will exist no $f\in \mathcal{O}(z;|z’|<\epsilon, {\rm Im} z’\in G’, z’\in U’)$ with $(0, \dot{\xi}’)$ $($

$\mathrm{W}\mathrm{F}_{A}\theta[f(\cdot, z’)-h(z’)]$ , $\forall z’\in U’.)$

Remark 2.5. Let us consider Corollary 1.3 again. This corollar$ry$ says that the real an-

alyticity of $u(x’, z’)|_{z’=\dot{z}’}$ for each $\dot{z}’$ implies the real analyticity of $u$ . It is important in

this result that $z’$ is allowed to vary in an open set in $\mathbb{C}^{n}$ . Indeed, there is no analogous

result when we only have assumptions for $z’$ real. This is the content of the following

Example 2.6. Let $u$ be the hyperfunction on $\mathbb{R}^{2}$ defined by

$u(x_{1}, x_{2})= \frac{x_{2}}{x_{1}+ix_{2}^{2}+i0}$.

Then

$\mathrm{W}\mathrm{F}_{A}(u)=\{(0,0;1,0)\}$ .

In particular the restrictions of $u$ with respect to the $x_{2}$ variable are well-defined. All these

restrictions are real analytic (in one variable), but $u$ itself is not real analytic.

We remark that asimilar example was already obtained in A. Kaneko [2].

We also give the following

Example 2.7. Consider a holomorphic function

$h(z_{1}, z_{2})= \sum_{j=1}^{\infty}\frac{i(-iz_{2})^{j}}{j^{j}(z_{1}+i(z_{2}^{2}+j^{-3j}))}$

on $\{(z_{1},z_{2})\in \mathbb{C}^{2};{\rm Im} z_{1}>({\rm Im} z_{2})^{2}-({\rm Re} z_{2})^{2}\}$ . The boundary value $u(x_{1}, x_{2})$ of $h$ satisfies

(1) for any i2 and any $k=0,1,2$ , $\ldots$ , $\partial_{x_{2}}^{k}u|_{x_{2}=\dot{x}_{2}}$ is well-defined and real analytic,

(2) $\mathrm{W}\mathrm{F}_{A}(u)=\{(0,0;1,0)\}$ .

2. We give aremark. In view of Theorem 4.4.7’ in A.KanekO[3] mentioned in the introduc-
tion, we have the following result due to Kataoka and Oshima concerning hyperfunctions

with holomorphic parameters
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Theorem 2.8 (K.Kataoka and T.Oshima). Let $\Omega’$ and $\Omega$” be open subsets of $M’$ and

$M’$ respectively. Let $u(x’, x^{u})\in BA(\Omega’\cross\Omega’)$ and assume that

$u(x’, x’)|_{x’=x_{\acute{\acute{0}}}}=0$ (2.1)

for any $x_{0}’\in\Omega’$ . Then it follows that $u=0$ .

Here we have used the notation

$BA$ $:=H_{M}^{d}(\mathcal{O}_{X}|_{X’\mathrm{x}M’},)$ , (2.2)

and recall that the sheaf $BA$ was considered by M.Sato[lO]. (We remark that M. Sato

used the sheaf $BA$ to discuss restriction of hyperfunctions in [10], before the notion of

singular spectrum came into being.)

3. It follows from the above dicussion that all results mentioned so far will be reduced to

Theorem 2.2. We shall therefore give the proof of this theorem in the next section.

The reduction of 1.6 to 2.2 will be done by using the characterization of real-analyticity

of hyperfunctions with single defining functions and the unique continuation property

along holomorphic parameters. Likewise, the reduction of Theorem 1.4 to Theorem 1.6

will be done by using two morphisms due to Kashiwara and which were used in the proof

of the flabbiness of the sheaf of microfunctions. We omit these two steps in this note.

3Proof of Theorem 2.2.

1. In this section, we give abrief sketch of the proof of Theorem 2.2. The argument will

be based on several tools: acharacterization of extendibility of holomorphic functions

by duality, Baire’s principle, atheorem of Hartogs’ type, and the unique continuation

property of singularities along holomorphic parameters.
First we shall give avery simple result on extendibility of holomorphic functions.

Before we can state the result we need to introduce some additional notations and con-

ventions. We shall in fact denote by $B’(\delta)$ the polydisc $\{z’\in \mathbb{C}^{d};|z_{j}|<\delta,\forall j\}$ in $\mathbb{C}^{d}$ and

shall use, for subsets $U’$ , $V’\subset \mathbb{C}^{d}$ , the conventions:

$H_{U’}( \zeta’):=,\sup_{z\in U}$,
${\rm Re}(-i\langle z’, \zeta’\rangle)$ , $U’+V’:=\{z’+\tilde{z}’;z’\in U’,\tilde{z}’\in V’\}$ . (3.1)

It is immediate that $H_{U’+B’(\mathit{5})(\zeta’)=H_{U’}(\zeta’)}+ \delta\sum_{j=1}^{d}|(_{j}|$ . Finally, if $U’\subset \mathbb{C}^{d}$ is an open

set, we denote by $\mathcal{O}_{\mathbb{C}^{d}}’(U’)$ the space of analytic functionals on $\mathcal{O}_{\mathbb{C}^{d}}(U’)$ . For simplicity

we shall assume that $U’$ is convex. It is well-known that analytic functionals $v$ in $\mathcal{O}_{\mathbb{C}^{d}}’(U’)$

are characterized by the fact their Fourier-Borel transform

$\zeta’arrow\hat{v}(\zeta’)=F(v)(\zeta’)=v(\exp[-i\langle z’, \zeta’\rangle])$
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satisfies an estimate of form
$|\hat{v}((’)|\leq c\exp$ $[H_{Q}(\zeta’)]$

for some constant $C$ and some compact set $Q\subset U’$ .

Theorem 3.1 (Holomorphic extensions and Duality). Let $U’\subset \mathbb{C}^{d}$ $be$ a bounded
open convex domain and $h\in \mathcal{O}_{\mathbb{C}^{d}}(U’)$ a holomorphic function defined on $U’$ . Then $h$

extends holomorphically to $U’+B’(\delta)$ if and only iffor any $\delta’$ with $0<\delta’<\delta$ there exists
a constant $c_{\delta’}$ satisfying

$\forall v\in \mathcal{O}_{\mathbb{C}^{d}}’(U’)$ , $|\hat{v}(\zeta’)|\leq\exp\{H_{U’+B’(\delta)},(\zeta’)\}\Rightarrow|v(h)|\leq c_{\delta’}$ .

We next prove amodified version of Hartogs’ theorem. We only consider the case of
convex sets.

Theorem 3.2 (Hartogs-type theorem). Let $U’\subset \mathbb{C}^{d}$ and $U’\subset \mathbb{C}^{n-d}$ be bounded open
convex domains with $0\in\partial U’$ , $U^{n}\cap \mathbb{R}^{n-d}\neq\emptyset$ and $h\in \mathcal{O}_{\mathbb{C}^{n}}(U’\cross U’)$ a holomorphic function
defined on $U’\cross U’$ . Assume that for any $x’\in U’\cap \mathbb{R}^{n-d}$ , there exists a positive number
$\delta(x’)>0$ for which the function $h(\cdot, x’)\in \mathcal{O}_{\mathbb{C}^{d}}(U’)$ extends holomorphically to $B’(\delta(x’))$ .
Then we can find an open ball $B’\subset U’$ centered at some point $i”\in U’\cap \mathbb{R}^{n-d}$ and $a$

constant $\delta>0$ in such a way that $h$ extends holomorphically to $B’(\delta)\cross B’$ .

Before we enter the proof of Theorem 3.2, we recall alocal variant of the Phragm\’en-

Lindel\"of principle.

Lemma 3.3. Let $B’$ be the unit disc in $\mathbb{C}^{n-d}$ and let $\rho:B’arrow \mathbb{R}$ be a plur isubharmonic

function on $B’$ . Assume that $\rho(z$
”$)\leq 1$ on $B’$ and that $\rho(x’)\leq 0$ for $x’\in \mathbb{R}^{n-d}\cap B’$ .

Then there is a constant $C$ independent of $\rho$ satisfying $\rho(z’)\leq C|{\rm Im} z’|$ for $|z’|\leq 1/2$ .

For aproof of this result cf. e.g. Meise-Taylor-Vogt Note that the lemma implies
in atrivial way the following remark:

Remark 3.4. Assume that $\rho$ : $B’(\epsilon)arrow \mathbb{R}$ is plurisubhar monic but assume now that
$\rho(z’)\leq c$ on $B’(\epsilon)$ whereas $\rho(x’)\leq d$ for $x’\in \mathbb{R}^{n-d}\cap B’(\epsilon)$ for some constants $c$ , $c’$ .
Then $\mathrm{p}(\mathrm{z}")\leq c’+cC|{\rm Im} z’|$ for $|z’’|\leq\epsilon/2$ . In particular it follows that if we fix $c’>c’$

that there is $\epsilon’$ (which depends on $c$ and $C$ but not on $\rho$) so that $\rho(z’)\leq c’if|z’|<\epsilon’$ .

Proof of Theorem 3.2. Take any compact convex set $K’$ CC $U’$ whose interior Int If’ is
non-empty and denote by $\hat{K}’$ the convex hull of the set {0} $\mathrm{U}K’$ in $\mathbb{C}^{d}$ . Then we have:

\bullet
$0\in\partial\hat{K}’$ ,

\bullet h is holomorphic in Int $\hat{K}’\cross U’$ ,
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$\bullet$ for any $x’\in U’\cap \mathbb{R}^{n-d}$ , $h(\cdot, x’)$ extends holomorphically to aneighborhood of $\hat{K}’$ .

Thus by shrinking $U’$ to Int $\hat{K}’$ and by also shrinking $\delta(x’)$ suitably, we may assume, from
the beginning, that for any $x’\in U’\cap \mathbb{R}^{n-d}$ , the function $h(\cdot, x’)$ extends holomorphically
to $U’+B’(\delta(x’))$ .

Set

$E_{j}’:= \bigcap_{v\in \mathcal{O}_{\acute{\mathfrak{c}}^{d}}(U’),|\hat{v}(\zeta’)|\leq\exp H_{U’+B’(1/j)}(\zeta’)}\{x’\in U’\cap \mathbb{R}^{n-d};|v(h(\cdot, x’))|\leq j\}$

.

By Theorem 3.1, we have that $U’ \cap \mathbb{R}^{n-d}=\bigcup_{j}E_{j}’$ . We can also see that every $E_{j}’\subset$

$U’\cap \mathbb{R}^{n-d}$ is closed. Thus from Baire’s principle, some $E_{j_{0}}’$ must include an open ball
$E^{JJ}:=\{x’\in \mathbb{R}^{n-d};|x’-\dot{x}^{n}|<\epsilon\}$ . By shrinking $\epsilon$ , we can assume that $\dot{x}’+B’(\epsilon)$ CC $U’$ .
We define $\delta$ by $\delta=1/(4j_{0})$ , take apoint $\dot{z}’\in U’$ with $|\dot{z}’|<\delta$ , and also take apositive
constant $\delta’$ with $\dot{z}’+B’(\delta’)$ CC $U’$ . From the considerations above, our function $h$ satisfies
the following two properties.

(PI) $h$ is holomorphic in aneighborhood of the closure of $(\dot{z}’+B’(\delta’))\cross(i’+B’(\epsilon))$ ,

(P2) each $h(\cdot, x’)$ satisfies $|v(h(\cdot, x’))|\leq j_{0}$ for any $v\in \mathcal{O}_{\mathbb{C}^{d}}’(\dot{z}’+B’(\delta))$ with $|\hat{v}(\zeta’)|\leq$

$\exp H_{\dot{z}’+B’(3\mathit{5}\rangle}(\zeta’)$ .

Take the Taylor expansion of $h$ in the variables $z’$ around $z.’$ :

$h(z)= \sum_{\alpha}a_{\alpha}(z^{n})(z’-\dot{z}’)^{\alpha}$ . (3.2)

Now we will estimate the functions $z’arrow|a_{\alpha}(z’)|$ in two ways. Our aim is to show that
$a_{\alpha}(z’)$ satisfy estimates which are good enough to ensure that the function $h$ is analytic
on alarger domain than its initial domain of definition.

First we apply Cauchy’s integral formula to the functions $h(\cdot, z’)$ in the variables $z’$

for all $z’\in\dot{x}’+B’(\epsilon)$ . Using the property (PI), we obtain:

$|a_{\alpha}(z’)|\leq C_{1}\delta^{\prime-|\alpha|}$ for any $z’\in\dot{x}^{u}+B’(\epsilon)$ and any $\alpha$ , (3.3)

where $C_{1}:= \sup_{z\in(\dot{z}’+B’(\mathit{6}’))\mathrm{x}(\dot{x}’+B’(\epsilon))}|h(z)|$ .
On the other hand, the expression:

$a_{\alpha}(z’)=v_{\alpha}(h(\cdot, z’))$ ,

where $v_{\alpha}$ is the analytic functional va: $f\mapsto v_{\alpha}(f):=(1/\alpha!)((\partial/\partial z’)^{\alpha}f)|_{z’=\dot{z}’}$ , and the
property (P2) give us the following estimate:

$|a_{\alpha}(x’)|\leq C_{2}(3\delta)^{-|\alpha|}$ for any $x’\in B’(\epsilon)\cap \mathbb{R}^{n-d}$ and any $\alpha$ , (3.3)
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where $C_{2}:=j_{0}e^{-d}$ .
In this situation we apply Remark 3.4 to the plurisubharmonic functions

$z’ arrow\frac{1}{|\alpha|}(\log|a_{\alpha}(z^{u}+i’)|-\log\max(C_{1}, C_{2}))$ ,

From the estimates (3.3) and (3.4) we obtain

$|a_{\alpha}(z’)|\leq C(2\delta)^{-|\alpha|}$ for any $z’\in i’+B’(\epsilon’)$ ,

with some constant $\epsilon’$ . This estimate shows that for any $z’\in i’’+B’(\epsilon’)$ , the Taylor series
(3.2) converges at least on $\dot{z}’+B’(2\delta)$ and that our function $h$ extends holomorphically

to the domain $(\dot{z}’+B’(2\delta))\cross(i’+B’(\epsilon’))$ , which includes $B’(\delta)\cross(\dot{x}\prime\prime+B’(\epsilon’))$ . Thus

we have the desired result if we take $i’+B’(\epsilon’)$ for $B’$ . $\square$

2. Now we give aproof of Theorem 2.2.

Proof of Theorem 2.2. Let us assume that $h$ is aholomorphic function satisfying the as-

sumption of Theorem 2.2. For each $i’\in \mathbb{R}^{n-d}$ with $|i’|<\epsilon$ , the restriction $h(\cdot,\dot{x}\prime\prime)$

extends holomorphically to aset of type $\{z’;|z’|<\delta(i’)\}$ with some positive number
$\delta(i’)$ .

Then from Theorem 3.2, we can take apositive constant $\delta$ and an open ball $B’\subset\{z’\in$

$\mathbb{C}^{n-d};|z’|<\epsilon\}$ centered at some point $i’\in \mathbb{R}^{n-d}$ such that $h$ extends holomorphically to
$B’(\delta)\cross B’$ . Let us consider the boundary value $u=\dot{b}(h)\in B\mathcal{O}(\{(x’, z’);|x’|<\epsilon,$ $|z’|<$

$\epsilon\})$ . From the domain of holomorphy of $h$ , we can see that $u$ is real analytic on the domain
$\{(\#’, \mathrm{z}");|x’|<\delta, z’\in B’\}$ . Then from the unique continuation property for the analytic

wave front sets along holomorphic parameters, we can conclude that $u$ is real analytic on

the domain $\{(x’, z’);|x’|<\delta, |z’|<\epsilon\}$ . Since there is only one defining function $h$ in the

boundary value representation $u=\dot{b}(h)$ , the real analyticity of $u$ asserts that $h$ extends
holomorphically to the domain $\{(x’, z’);|x’|<\delta, |z’|<\epsilon\}$ . This completes the proof. $\square$
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