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Existence of singular solutions with bounds of linear partial
differential equations in the complex domain

KA B (EFK%E)
Sunao OucHI (Sophia Univ.)

80 Introduction

In this paper we consider a linear partial differential equation in the com-
plex domain in C¥*!, L(z,8)u(z) = f(z). L(z,8,) is an m-th linear partial
differential operator with coefficients are holomorphic in a neighborhood U
of z = 0 in C?*!. The inhomogeneous term f(z) has singularities on a com-
plex hypersurface K. The author reported the results concerning the growth
properties and the asymptotic behaviors of solutions, and those concern-
ing the existence of solutions with asymptotic expansion, when f(z) has an
asymptotic expansion, at the conference held here, RIMS of Kyoto Univ.(see
[5],[6],[7] and [8]). In the present paper our concern is the existence of so-
lutions, when f(z) has not necessary asymptotic expansion, but the singu-
larities are tempered, that is, singularities are of the fractional order. The
details will be given elsewhere.

81 Notations and Definitions

In order to state our problem and results more precisely, let us introduce
notations, function spaces and characteristic polygon.

1.1. Notations. 2z = (20,21, ,2d) = (20,2') € C x C?. |2] =
max{|z|; 0 < ¢ < d} and |2/| = max{|z]|; 1 < i < d}. Its dual variables are
6 = (60761) = (60761) e aéd)' 62 = 8/821;, and 0 = (80,61a e aad) = (6(),6/)’
Z is the set of all integers and N is the set of all nonnegative integers. For a
multi-index a = (g, @) € N x N¢, |a| = ag + |&/| = 1%, . For a polydisk
U = Uyx U’ in C**!, where Uy = {2z € C;|2| < Ro} and U’ = {z € G; || <
R}, set Up(6) = {z € Uy — {0}; |arg 20| < 6} and U(8) = Up(8) x U". U(6)
is a sectorial region with respect to zy. K is a complex hypersurface through
z = 0 in U. We choose the coordinate so that {z € U; zp = 0}
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1.2. Function spaces. For a region U in C*, O(U) is the set of all
holomorphic functions on U.

Definition 1.1. (i). Otempc(U(0)) is the set of all u(z) € OU()) such
that for any 0’ with 0 < @' < 6

(1.1) lu(z)| < Clao|® 2 € Q(6)

holds for a constant C = C(¢').
(i), Oemp(U(0)) = U Otemp,c(U(0)). We say that u(z) € Owmp(U(8)) is
ceR

tempered singular, or regular singular, on K in U(6).

Definition 1.2. A (U(#)) (0 < & < +00) is the set of allu(z) € O(U())
such that for any 6 with 0 < 6’ <6

(1.2) 8u(z)| < ABYT(N(L+ ) +1) for z € U(#)

holds for alln € N and for some constants A = A(¢') and B= B(¢).

u(2) € A{100}(U(0)) means that u(z) is holomorphic at z = 0. A (U(6))
is coincident with Asyy,}(U(8)) in the preceding papers [5],[7] and [8], which
consists of all u(z) € O(U(f)) with asymptotic expansion of Gevrey type,
that is, for any #’ with 0 < @' < 6

N-1
(1.3) lu(z) — Z un(2) 28| < ABN|z0|NF(% +1) forzeU(®),

n=0

where u,(2') € O(U’) (n € N), A = A(#') and B = B(¢'). The notation
u(z) ~ 0 in Agy(U(6)) means that u,(z') =0 for all n in (1.3).

1.3. Characteristic polygon. Let L(z,0) be an m-th order linear
partial differential operator with holomorphic coefficients in a neighborhood
of z =0,

(1.4) L(2,0) = ) aa(2)0*.

la|<m

We introduce the characteristic polygon of L(z,d) with respect to hypersur-
face K = {2 = 0}, which is indispensable for our purpose, to study the
existence of solutions with bounds. Let us introduce a notation _l(a,b) :=
{(z,y) € R?;z < a,y > b}, which means an infinite rectangle. Let j, be the
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valuation of a,(z) with respect to zo, that is, if aq(2) # 0, an(z) = zg“ ba(2)
with be(0, 2’) # 0 and set j, = oo for a,(2) = 0. Define

(15) €La = ja — Qp,

where er, o = +00 if ao(2) = 0.

The characteristic polygon of ¥ is defined by

2 := the convex hull of U_l(|a|, €La)-

The boundary of ¥ consists of a vertical half line £(0) and a horizontal
half line X(p*) and p* — 1 segments X(z) (1 < ¢ < p* — 1) with slope 7;,
0= <Y1 <+ <M <70 =+o00.

Let {(m;, e(i)) € R?;0 <4 < p* — 1} be vertices of T, where 0 < my._; <
e <my < My < -+ < mg = m. So the endpoints of £(7) (1 <i<p*—1)
are (m;—1,e(s — 1)) and (m;,e(:)). We call the slope v; of (i) the i-th
characteristic index of L(z,0) with respect to K = {z, = 0}.

2(0)
(m, e(0))

/ 2(1)
O
et
© (lal, er.0) A(z)

o (ma, €(2))

#(mi, e(6))
2(p*-1)

(o (g2 €(5"2)
O] e, (1)

Figure 1: Characteristic polygon
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Let A(i) be a subset of multi-indices and !; € N (0 < ¢ < p* — 1) defined
by

A(Z) = {CY € Nd+1; Ial =M, €La = e(i)}’
(1.6) <

I, == max{|d| : o€ AG)}.

\

Define a subset Ag(z) of A() and a polynomial xz:(2,§') in & (0 <% <
p*—1) by

Do) = {a € A(i); || = L},

(1.7) s ,
xpi(7,€) = D ba(0,2)€7.

. acAo(i)

xr.i(#, &) is homogeneous in &' with degree [;.

§2 [Existence of singular solutions

Let us return to the equation

(Eq) L(z,0)u(z) = f(z) € O(U(6))-

The existence of singular solutions are studied by [2], [4], [10] and other
papers referred in these papers. More generally we have

Theorem 2.1. Suppose that x10(0,&") £ 0. Then there is a solution u(z) €
OV (8)) of (Eq) for some V C U.

In this paper we consider the case f(z) has tempered singularities on K.
We have a solution u(z) by Theorem 2.1, but u(z) has not always tempered
singularities. We can generally show |u(z)| < Aexp(c|zo|™™) for z € V(')
(0 < @ < 6). So our interest is to find a solution u(2) € Oemp,(V(#')) of
the equation

L(z,0)u(2) = f(2) € Otemp(U(6)))

for some polydisc V C U and constants ¢’ and 0 < §' < 6.
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Let us give conditions (C;) (0 < ¢ < p* —1). For fixed 3, 0 <¢ < p*—2
(Ci)  Ja=0 for a € Ap(3) and xr:(0,&') # 0.

Fori=p*-1

(Cp*—l) |a,| < lp*—l fora € {a € Nd+1; €La = e(p*—l)} and XL,p*—l(Oa 5,) #=
0.

Our main existence theorem is

Theorem 2.2. Suppose p* > 2 and (C;) hold for all 0 < i < p* — 1. Let
f(2) € Otempc(U(0)) and @' be a constant with0 < §' < min{f,7/2v,}. Then
there is a solution u(z) € Oemp,(V(0')) of (Eq) for some polydisc V and a
constant c.

We note that the opening angle 6’ of sectorial region is restricted by ~;.
We need two theorems in order to show Theorem 2.2. One is

Theorem 2.3. Suppose p* > 2 and L(z,0) satisfies (Cp»—y). Let f(z) €
Otemp,c(U(0)) and 6’ be a constant with 0 < ¢’ < min{8,7/2vp._1}. Then
there is a v(2) € Otemp,er(V(0')) for some polydisc V and a constant ¢’ such
that (Rf)(z) := (L(z,0)v(2) — f(2)) ~ 0 in Ag,._1(V(6)).

The other is

Theorem 2.4. Suppose p* > 2 and L(z,0) satisfies (C;) fori =0,1,---p*—
2 and let f(2) € Ay,._}(U(8)). Then for any 0 < ' < min{f,7/27} there
is u(z) € Agy._ 3 (V(8')) satisfying L(z,0)u(z) = f(z) in V(€') for some
polydisc V.

Theorem 2.4 is given in (8] and [9], where we considered the existence of
solutions with asymptotic expansion under the condition that f(z) in (Eq)
has an asymptotic expansion. We exclude p* = 1 in the preceding theorems,
however, we have from results in [4]

Theorem 2.5. Suppose p* = 1 and (Co) holds. Let f(z) € Otemp(U(0)).
Then there is a solution u(z) € Oemp,(V(6)) of (Eq) for some polydisc V
and a constant ¢ -

The operators of Fuchsian type (see [1]) satisfy the conditions of Theorem
2.5.

Example. Let

(21) L(z,(?) = 6? + Al(z)af(')o + Az(Z)ag, zZ= (20, Zl) € C2,
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where A;(2) = 28Bi(2), ji € N, B;(0) # 0 for i = 1,2. According to the
values of 7; and j,, several cases occur. However the conditions in Theorem
2.2 or the conditions in Theorem 2.5 hold for any case. So L(z, d)u(z) = f(z)
has always a solution u(z) with tempered singularities in a sectorial region
for f(z) with tempered singularities.

§3 Outline of the proof of Theroem 2.3.

In order to find v(z) in Theorem 2.3 we construct a parametrix of L(z, 9,).
The method of construction of the parametrix is a modification of that in [6].
We may assume e(p* — 1) = 0 and 6, be a constant with 0 < 8y < 7/27y,_;.
v(z) = (Gf)(z) is constructed of the form

(3.1) (Gfi(z):= /SG(z, w)f(w)dw, w = (wp,ws,...,ws) = (w,w"),

where S is a chain in V(6p). The kernel G(z, w) has the form

(3.2) G(z,w) = i_ / zowg T K (2, w', N)d.
Ao

211

We can find K(z,w’, A) with the following:

1. K(z,w', A) is holomorphic {20;0 < |29| < 70, | arg zo| < G0} x{(2', w"); |2l
71 < 719 < |wj| <73, 1 < j < d} and holomorphic in A in some infinite
region.

2. K(z,w',\) has an asymptotic expansion
K(z,w',\) ~ K(z,w',\) = Zk z,w' Az
n=0
where K (z,w', A) is a formal power series of 2.

3. K(z,w', \) satisfies formally

L(z,0)(z K (z,w, X)) zde
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As for G(z,w) we have

(3.3) L(z,0)G(z,w) = §(z,w) + R(z,w),
where
( 1 00 < 1
6(z,0) = e (| 2w ') [[ ——
(3.4) { (2mi) /*° 0 jo1 (Wi — )

|R(z,w)| < Cexp(—c|zg|7*-1).
\

It follows from (3.3) and (3.4) that (Rf)(2) = L(z,9)v(z) — f(z) satisfies the
conclusions of Theorem 2.3.
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