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Explicit formulas for the reproducing kernels of the
space of harmonic polynomials in the case of real rank 1

Ryoko Wada,
Kure University

Introduction.

Let H,(CP) be the space of homogeneous harmonic polynomials on CP of degree n
(p € N, p > 2). It is well known that the restriction mapping f — f|sp-1 is a bijection
from H,(CF) onto H,(SP~1), where H,(S?~!) is the space of spherical harmonics of degree
n in dimension p. This fact can be extended to the following form:

- Theorem 0.1 (cf. [2], [5], [7], [11]). Let O(# {0}) be any SO(p)-orbit in CP. Then, the
-restriction mapping ro : f — flo is a bijection from H,(CP) onto H,(CP)|o.

In addition, we can express the inverse formula of this map rq explicitly as an integral on
the orbit O, by using the Legendre poynomials (for details, see [2], [5], [7], [11]).

On the other hand, according to the formulation in [4], classical harmonic polynomials
on CP can be canonically identified with the harmonic polynomials on the space p, where
so(p,1) = g + pr is the Cartan decomposition of the Lie algebra so(p,1) and p is the
complexification of pg. In this situation, any SO(p)-orbit in CP corresponds to a Kgr-
orbit in p, where Kr = expad tr. Therefore, Theorem 0.1 can be reformulated in this
Lie algebraic form, and we can express the inverse formula 1'51( f) explicitly fromi this
standpoint (Theorem 1.2).

In this note we shall give explicit reproducing formulas of harmonic polynomials on each
single I{g-orbit O for two remaining classical real rank.1 cases gr = su(p, 1) and sp(p, 1)
(p > 1), and show that the similar results as in Theorem 0.1 hold for these cases. This
is an extension of our previous note [10], where we expressed the inverse formula as an
integral on every nilpotent I{g-orbit in p.

§ 1. Harmonic polynomials on p.

In this section we fix notations which we use in this note and recall the definitions and
the results on harmonic polynomials on p.

Let g be a complex semisimple Lie algebra, gr be a noncompact real form of g, and let
g = £+ p be the complexification of the Cartan decomposition gp = g + pr. We put G
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=expadg and Ky = {g € G; g = g0}, where @ : g — g is defined by § =1 on ¢ and
6 = —1 on p. Let K be the identity component of I{y. Then we have I = expad &.

Now we define harmonic polynomials on p. S and S,, denote the spaces of polynomials on
p and homogeneous polynomials on p of degree n, respectively. For f € S and g € Iy, gf
is defined by (9f)(X) = f(¢~'X) (X € p). J denotes the ring of K-invariant polynomials
on p and we put J; = {f € J; f(0) = 0}. It is known that J is also I(p-invariant.
According to the definition in [4], f € S is harmonic if and only if (OP)f = 0 for any
P € J;. H, denotes the space of homogeneous harmonic polynomials on p of degree n.
We put Z, = {0,1,2,---}. The following results are known:

Theorem 1.1 (cf. [1}, [4]). (i) For any n € Z we have
Sn = (J+S)n @ g{n’

where (J.S), = S, N J,4S.

(ii) We put N = {X € p; P(X) =0 for any P € J,} and h(X,Y) = Tr (‘XY) for
X,Y € p. Then K, is generated by {h( ,Z)"; Z € N}.

(iii) Let I" be a mazimal dimensional Kg-orbit in p. Then the restriction mapping f —
flr is a bijection from 3(, onto H,|r.

For harmonic polynomials on p for general semisimple Lie algebras g, see [4].

From now we consider the case where gg is classical real rank 1, i.e., gr = s0(p, 1),
su(p,1) or sp(p,1). In this note we assume that p € N, p > 2, unless otherwise stated.
Let Kr be the adjoint group of ¢g. We consider g C K and pr C p. Let B(X,Y")
(X,Y € g) be the Killing form of g. Then, J is generated by B(X,X) (X € p). We put
E={X€p; B(X,X) =1} and g = ZNpr. In this case we see that Tr consists of
one Kg-orbit and that 3, ~ H,|g, (see [5], 8], [9])-

Now we recall the results in the case of s0(p,1). When gr = so(p, 1), J is generated by
P(X)=Tr(*XX) (X € p). We put

_on hX,Y)
@) =" Gty
where P,, is the Legendre polynomial of degree n and dimension p. Then the following
results hold:

) (PX)P(T)™* (XY €p).

Theorem 1.2 (cf. [2], [5], [7], [11]). Assume that gr = so(p,1) (p > 2).

(i) Let O(# {0}) be a Kn-orbit in p. Then the restriction mapping ro : f — flo is a
bijection from H,, onto H,|o-

(i) We have for f € H,|o

rgl f(X) = dim J'C,,/of(Y)Q,,,,,(X, Y)dpo(Y) (X €p),
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where dpy 1s the normalized I(g-invarint measure on 0.

§ 2. Integral formulas of harmonic polynomials: The case of su(p,1).

In this section we give the reproducing kernel of H,, on any Kgr-orbit in p in the case
of g=sl(p +1,C) and gr =su(p,1) (p € N, p > 2).
In this case, we have

tr = (‘3 2) ;AEu(p),QEu(l),TrA+a=0},

0
Pr = (t-i;g)*xecp}v

E={(f)1 2) ;AGA’I(P»C),TI‘A-Fa:O},

0 =«
pz{(tyo);x‘lyecp}s

and Kp = AdS(U(p) x U(1)) = {Ad( A 0) ;A€U@E) Fr X = (0 o) e

0 1 0
P(X) = $Tr(X?) = 'yzx gives a generator of J. We put N = {X € p; P(X) = 0},
S={Xep;P(X)=1}and Zg = ZNpr. Hp = {f € Sn; 30, 55— = 0} is the

j=1 dx;0y;

space of homogeneous harmonic polynomials on p of degree n. For X = ( f;/ 0 ) € p we

define the bijection ¥ : p — C? by ¥(X) = -;-( i(’;t’i) ) Then f € 3, if and only if

foV¥~! € H,(C?) and we have dim 3(,, = dim H,,(C?) = 2("+’: ;!‘(’2);2;32!” =3)!

Remark that the mapping ¥ : Tp — S2~!is bijective and H,(X,Y) = Qn,(¥(X), ¥(Y))
is the reproducing kernel of 3, on Xg (see [8] Proposition 2.1).

For X = ( t‘; 0 ) € pand g = Ad( a0 ) € Kn (A € U(p)) we have gX =

0 1
0 Az
( Ay 0 ) We put

Er=(\/r_—_97,—2tez 1‘81>EN (0<r<1),
Bo=(,,,." L) e (r>0,q>0)
g t((l/f')el—i-qez) 0 A *
where e; = (10---0), and e = *(01---0). Then we have

KrEy=3p and p=NU (] AL
AeC\{0}
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Remark that
L= |J KB, and N= |J KEr(oE)
q20,r>0 p2>0,0<r<1

give the Kgr-orbit decompositions of £ and N, respectively.

We put A = {(n,k);n € 2,0 < k < n}. F‘orX:(,‘L ;’)and}’=(3’ g) €Pp
we put I, x(X,Y) = (z -@)*(y - B)"* ((n,k) € A), where z - w = *zw for z,w € CP. It
is clear that f&',,,k( ,Y) € 3, (Y € N). Let H, s be the space which is spanned by the
elements IK,.( ,Y) (Y € N). The equality K,(gX,gY) = I?,,,k(X,Y) holds for any
9 € Kr, X,Y € p. From [6] Theorem 14.4 we can easily see that 30, = @}_, H. gives

the Kg-irreducible decomposition of 3, and dim 3, s = Et==ti{cte-Splo-kip=2! W, put

Ey = ( O ) Then we have the following proposition.

e 0

Proposition 2.1 (cf. [10]). (i) For any f € H, 1 and X € p we have

(2.1) SnmOkaf(X) =dim Iy [ F(9B0)Kmi(X, gEo)dyg.
. Kr
(ii) For any f € H,x and h € H,,; we have
S _ o \-! -
22) [ F(oBMGEMg = bumbes( “*272) ("2 ) [ f(gE0)WgEaNd.
R

Kn

Now we define H, x(X, Z) (X, Z € p) by

~ -1 ~ ~
H.4(X,Z) = dim %n'k( ntp-2 ) ( ktp-2 ) Eoui(X, 9Eo) Kn (9 Eo, Z)dg.
Kn

Clearly we have H,x( ,Z) € K, (Z € p) and

H,ok(X, 2) = Hop(Z, X),
H.1(9X,9Z) = Hap(X,Z) (g € Kn).

We shall show that the reproducing kernel of 3, on each Kgr-orbit can be expressed in
terms of H,x( ,Z) (Z € p, (n,k) € A). Our main theorem in this section is the following

Theorem 2.2. Let O = KrXo, Xo € p and H,1(Xo, Xo) # 0 (Y(n, k) € A).
(i) The restriction mapping 1o : f — flo is a bijection from H, onto H,|o.
(i) For f € H,|o we have

(2.3) ol ((X) =Y =Tk [ o0 (X, 9 Xo)dg.

k=0 En,k(X[hXO) Kn
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To prove Theorem 2.2 we need the following lemma.

Lemma 2.3. Let Ky be the tsotropy group of Ey in Kp and 3, , = {f € Hop;9f = f
for any g € Ko}. If f € 3, we have

(2.4) f=fE)H..( ,E).

Sketch of Proof. From [8] Lemmas 2.4 and 2.5 and the definition of 3(, ; we can prove
(2.4). ’ q.e.d.

Proof of Theorem 2.2. From (2.1)-(2.4) we have for any X € p
(25)  dim 3., f Ho (90, Ex) Ho (X, 9X0)dg = Sro it Hop(Xo, Xo) Ho (X, ).
Kg
(2.5) implies that for any f € 3, ; and any X € p

(26) dim g{n,k f(_g"‘(ﬂ)ﬁn,k (X7 QXO)dQ = 6n,m6k,lﬁn,k(X0~. XO)f(X)
Kr

because I?I,,,k( , E) is a generator of H, ;. (2.6) gives Theorem 2.2. q.e.d.

Remark 2.4. From the definition it is valid that

~

Ho(Xo, Xo) =0 iff / |k (90, Eo)Pdg (X € p).
Kn

Therefore the following two conditions (2.7) and (2.8) are equivalent.

~

(2.7) ' H, (X0, Xp) =0,
(2.8) Hon kel xo = {0} :
This implies that H, (X0, Xo) # 0 if and only if Xy ¢ AKrE) and X, ¢ Mg Ey (A € C).

§ 3. Integral formulas of harmonic polynomials: The case of sp(p,1).

In this section we consider the case sp(p,1) (p € N, p > 2). From now we put g =
sp(p+1,C), gr = sp(p, 1),

( A 0 B O
by — 4 0 a 0 b | Aculp)acu(l),beC
R —-B 0 A 0 |’ Bispx psymmetric '
LK 0 -b 0 @
r( 0 2 0 i
: T 0 'y 0
= ,xr, Cp
Pr < 0 il. 0 5 y T TIE
\\ty 0 -tz
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Then we have

)
A0 B 0
( 0 0 A,B,C € M(p,C)
B « P 1, wB=Bc=c
C 0 -A 0 ’ 5 G,C ’
. a? Y
{ \ 0 0 - 7
( ( 0z 0 w
t ¢
p=4 éj (2) :;) _Oy ;LL‘,y,Z,’lUECp ’
(\‘z 0 'z 0
and
A 0 B - =
0 o 0 ;(6) ‘AA+'BB = I,
Kp={Ad B o Ao € AdU(2p+2); '‘AB ="'BA,
0 70 a aa+ =1
‘0 z '0 w
For X =]} 0 0 _oy € p, P(X) = {Tr X? = 'zy + 2w gives a generator of J and
tz 0 -tz 0
= {f € Sn; E]-’l (Oz,ay, 0:,510 )f 0}
z+y
For X € p we define the mapping ¥ : p — C* by ¥(X) = 3 ,(’y“;) ) We
i(w — z)

can see that f € ¥, if and only if f o ¥~! € H,(C*) and from this fact, we have
dim K,, = dim H,(C%) = Hot2-lintlp=9  we pyt N = {X € p; P(X) =0}, T =

nl(4p—2)! _
{X €ep; P(X) =1} and Zg = ENpg. _Remark that ¥ : Tp o~ S4-1 and H,(X,Y)

= Qn 4p(¥(X), ¥(Y)) is the reproducing kernel on g (see [9] Theorem 2.2).
A0 B o

Let g = Ad _OF 8‘_ ’ g) € Kg. If we put ®(X) = ( y ) € C*, we have
0 -8 0 @ w
A(@z + fw) + B(az — By)
. B(- z 4+ aw +Za + pz
a(x) = | BCPo+aw)+ Ao+ p2)

—B(air + fw) + A(az — By)
A(—fz + aw) — B(ay + B2)

rej rey

We put E, = &1 ’ ) ENO<Lr<1),E,= Q‘l( (l/”"(‘)+"” ) €X (r>0,
VI=trley 0

PN
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It is clear that p = NU U,ec\ () AZ- Remark that

N= U Kr(gE,) and T = U KnE,,

9>0,1/vV2<r<1 q20,r>0

S ew y

~

give the orbit decompositions of N and L, respectively. We put E; = El,o € Yr. Then
we have g = KpFE) ([9] Lemma 2.1). For X = @“1(

),Y:@"l(g ) € p we put
(X,Y)=1Tr (*XY) = &(X) - 8(Y),

X, Y)=( - 2+2-2)y-y+w-v)+(z- v -2-¥)(y-7 —w-7),
Ko (X,Y) =8 [ (9B, Y)™(X, gEr)"dg,

Ko (X,Y) = Ko (X, Y){IG(X, V)P (n€Zy,0< k< [n/2)).

In [10] we showed that K ak( ,Y) €3, ifY € N. K, denotes the subspace of J,, spanned

by {Knx( 2); Z € N}. Tt is valid that dim 3(,), = (=2l Ceta o 2tk -3)Gpin-l)

and 3, = Q)‘[I":/:] Hnq gives the I{g-irreducible decomposition of I, (cf. [3], [10]). From

€1

now we put A = {(n,k);n € Z;,0 < k < [n/2]} and Ey = &} g
ez

) € N. Then we

have the following

Proposition 3.1 (cf. [10]). For any f € H, we have

(3.1) SnmOr i f(X) =dim o [ F(9E0) Kmi(X,gEy)dg (X € p).
Kn

Now we define for X,Y € p

~ _ _ -1 fayd - ~

H,,,’k()(, }'r) = dim .'H.-,,,,k< nt 2k_p 2 ) ( 2p +: 3 ) / I(n,k(‘xa gEO)I‘n,k(gEOa Y)dg
Kn

((n, k) € A). From (3.1) I?,,_,k( ,Y') belongs to H,, . for any Y € p and we have

H, o(X,Y) = H, i (V. X),
H,1(9X,g9Y) = H.+(X,Y) (g€ Kn),

—~ . -1 ~ 7
H(X,Y) = ( n2p-2 )( k-3 ) Kox(X,¥) (X €NorY eN).

The purpose of this section is to show that FI,,’,C( ,Y) gives the reproducing kernel of I, x
for each Kg-orbit. Our main theorem is the following
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Theorem 3.2. (i) For any f € H,x and any Xy € p such that fI,,,k(Xo,XO) # 0 we
have
dim K,

= - F(9Xo0)Hmi(X, 9Xo)dg.
H, (X0, X0) Jxn

(32) 6n,m(sk,lf(‘x’) =

(ii) Assume fIn,k(Xo,Xo) # 0 (Xo € p, Y(n,k) € A), and put O = KrXy. Then the
restriction mapping ro : f — flo is a bijection from I}, onto H,|o. And for f € H,lo
we have

BA(X) =Y =

- g FgXo)H, 1(X,9Xo)dg.
k=0 Hn,k(-YOaXO) Kr

To prove this theorem we need some lemmas.

Lemma 3.3 (cf. [10}). For any f € Hyux, h € H,my and X € p we have

(3.3) f(9E ) h(gE)dg =Chx | f(9Eo)h(gEs)dyg,

Kr Kr
-1
1vhean‘k=(k+i?—3) (n-l-2kp—2) .

Lemma 3.4. Let Ky be the isotropy group of E| in Kp and let 1], , = {f € Hoss 9f =
f for any g € Ko}. If f € K, ., we have

(34) f f(El) nk( El)

Sketch of Proof. From (3.1) and [9] Lemma 2.5 we can prove (3.4) with some calculations.
q.e.d.

Proof of Theorem 3.2. Using (3.1), (3,3) and (3.4), we can prove (i) and (ii) in the same
way as the proof of Theorem 2.2. g-e.d.

Remark 3.5. H,(Xo,Xo) = 0 if and only if H,x|xax, = {0}. Therefore we have
H, (Xo0,Xo) # 0 for any (n,k) € A if and only if Xo ¢ AKgE; and Xy ¢ AKmEy
(A € C).

Appendix.
Combining Theorems 1.2, 2.2, and 3.2, we have the following

Theorem. Assume that gr is a classical real simple Lie algebra with real rank 1, i.e.,
gr = 50(p,1) (p € N, p > 2), su(p,1) or sp(p,1) (p € N). Let H, = @r- Hos be the
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Kgr-trreducible decomposition of H,,, where N(n) is the number of irreducible components.
Then we have .

(i) If O is any Kn-orbit in p and I, 1|0 # {0}, then the restriction mapping ro : f —
flo is a bijection from I, onto I, klo- v

(ii) Let Ef,,(X, Y) be the reproducing kernel of H,, on Zr and let I?,,,k(X ,Y') be the H,, x-
component of %E,,(X, Y). Assume X € p salisfies fIn'k(Xo,Xo) #0 (Y(n,k) € A),
and put O = KpXy. Then the restriction mapping ro : f — flo is a bijection from X,
onto Hy,lo. And for f € H,|o we have

, - dim H,, ¢ ~ . |
ot X)= _— Xo)H, (X, 9Xp)dg.
o' ())(X) ;Hn‘km X i, T Hoa(X, 9 Xo)dg
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