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Abstract

Constructions of invariant hyperfunction solutions of invariant linear differential equations with
polynomial coefficients on some vector spaces V' with actions of Lie groups G are discussed in this
talk. We shall deal with the vector space of n x n real symmetric matrices, and those of complex
and quaternion Hermitian matirices, on which the real, the complex and the quaternion general
linear groups of degree n naturally act on these vector spaces, respectively. For a subgroup G in
the general linear group, we observe in the main theorem that every invariant hyperfunction solution
is expressed as a linear combination of Laurent expansion coefficients of a complex power of the
determinant function with respect to the power parameter. Then the problem can be reduced to the
determination of Laurent expansion coefficients which are needed to express the solution. We can
give an algorithm to determine them. By applying the algorithm, we can prove that every invariant
hyperfunction solutions to det(z)u(z) = 0 is written as a sum of invarinat measures on the G-orbits
in the set S := {x € V' | det(z) = 0} as one example. Some other examples are also given.

1 Introduction.

Let V be a real vector space on which a real algebraic subgroup G in GL(V) acts. Let D(V') be the
algebra of linear differential operators on V' with polynomial coefficients and let B(V') be the space of
hyperfunctions on V. We denote by D(V)F and B(V)€ the subspaces of G-invariant linear differential
operators and of G-invariant hyperfunctions on V', respectively. For a given invariant differential operator
P(z,8) € D(V)S and an invariant hyperfunction v(z) € B(V)F, we consider the linear differential
equation

P(z,d)u(z) = v(z) (1)

where the unknown function u(z) is in B(V)€. In particular, our problem of this paper is the following:
let P(x,8) € D(V)C be a given G-invariant and homogeneous (see Definition 2.1) differential operator.
Construct a basis of G-invariant hyperfunction solutions u(z) € B(V)€ to the differential equation

P(z,0)u(x) = 0.

In this talk, we consider the problem in the following three cases. We prove Theorem 4.1 and determine
the G-invariant kernel of P(z,d) in some typical cases. Similar problems were considered by P.-D. Methée
[5], [6] and [7] for Lorentz group invariant differential equations.

1. real symmetric matrix space: Let V := Sym, (R) be the space of n x n symmetric matrices over
the real field R and let GL,(R) be the general linear group over R of degree n. Then the group
GL, (R) acts on the vector space V by the representation

plg) :z—>g-z-'g, (2)
with z € V and g € GL,,(R). Then the subgroup
G = {g € GLn(R) | det(g -'g) = 1} (3)

acts on V naturally. Here g means the transposed matrix of g.
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2. complex Hermitian matrix space: Let V' := Her,(C) be the space of n x n Hermitian matrices
over the complex field € and let GL,(C) be the special linear group over R of degree n. Then the
group GL, (C) acts on the vector space V' by the representation

plg) :z—rg-z-'g, (4)
with 2 € V and g € GL,(C). Then the subgroup
G := {9 € GL,(C) | det(g - ‘g) = 1} (5)

acts on V naturally. Here !g means the transposed matrix of the complex conjugate of g. The
determinant function P(z) := det(z) on z € Her,(C) is a real-valued irreducible polynomial.

3. quaternion Hermitian matrix space: Let V' := Her,(H) be the space of n x n Hermitian matrices
over the quaternion field H and let GL,(H) be the general linear group over H of degree n. Then
the group GL,, (H) acts on the vector space V' by the representation

p(g) :z—rg-z-'7, (6)
with z € V' and g € GL,(H). Then the subgroup
G :={g € GLn(H) | det(g-‘g) =1} (7

acts on V naturally. Here ‘g means the transposed matrix of the quaternion conjugate of g. The
determinant function P(z) := det(z) on z € Her, (H) is defined as a Pffafian of a 2n x 2n complex
alternating matrix and it is a real-valued irreducible polynomial.

2 Algebra of Invariant Differential Operators.

First we consider the case of V := Sym,,(R). Let z € Sym,(R). By using the upper half entries of z, we
denote by

0
T = (Zij)n>j>i>1, 0= (Gij)n3j>i>1 = (6—)
%ij / n2j2ix1
the coordinte and the prartial differentials on Sym, (R), and by
2% = H x?jij, 88 = H 65_-‘1‘
n2j2i21 n2j2i21
their integer powers where

a = (aj) €ZT,, |a|= Z o
n2iziz1

B=(8;) €23, I18l= D B

n2iziz1
and m = n(n + 1)/2. The symbols z and 9 also express
z = (Zij)n>ji>1 € Sym,(C[V]) C Sym,, (D(V)),
0 = (8ij)n3j,i>1 € Sym, (D(V)),
respectively, by consdering z;; = z;;. On the other hand, we also define 8* € Sym,, (D(V')) by

a‘i' i:],

0* = (0;;)n>i,j>1 where 0j; = Y
( _7) 24,521 J {%aij 2#].
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Next we consider the cases of V' := Her,(C) and V' := Her,(H). Let £ = (2ij)1<i,j<n € Hern(C)
where

Tij = x,(-(.)) + \/:—l:c,(l-) €C and T; =1z 9)

with xfj), S) € Rfor 1 <4< j < nin the complex case and let z = (;;)1<i,j<n € Her,(H) where
rij = x(o) + :c(l)z + I(Z)J + :c(s)k €EH and Tj=cj (10)
with x(;)), 8 ),:l:,(;), ,(?) ERfor1<i<j<mnin the quatermon case. Here v/—1 is the imaginary unit

in C and ¢, 7, k are the imaginary units in H i.e., =3 =k?=ijk=-1. Z;; means the complex and
quaternion conjugate of z;;, respectively.
In the complex case, by using the upper half triangular entries of z, we denote by

= ((x,(g))nzjzi31, (‘c;(;))nzj»zl)a
0= ((a,(Jp))anZiZl: (ai(jl))n?_j>l'21)

with 6fjk ) = ( ) , the coordinte and the partial differentials on Her, (C), and by

(0 oD
= [ @H* = I @,

0
(k)
Oz;;

n>j>i>1 n>j>i>1
#= T[ © BY « I ((1))/3“’
n>j>i>1 n>j>i>1

their integer powers where

a= (af.?)’ z] ) € Z>0) |a| = Z a(o) + Z a(l)

n>j>i>1 n>j>i>1
0 1 0 1
ﬂ=(ﬂ§j),ﬂ§j))ez>o, 18l = Z ﬁz(j)‘f' Z ,31%)
n>j>i>1 n>j>i>1

with m = (n(n 4+ 1)/2) + (n(n — 1)/2) = n2. The symbols z and & also express the Hermitian matrices
on D(V)
2= (2 )nzjizt + V=1(} )nzjiz1 € Hera (C[V]) C Hera (D(V)),
= (3§9))n>j i>1+ \/—1(3,9))1»]' i>1 € Her, (D(V)),
respectively, by considering x( ) = z(o) and x(l) = x(f). On the other hand, we also define §* €
Her,(D(V)) by
3,~(;~)) i=j,k=0,
= (09" Vnpi 21 + V=1(85 Jnnij>1 where " =40 i=j k=1, (11)
%) i#jk=0,1.
In the quaternion case, by using the upper half triangular entries of =, we denote by
z= ((3.(_?))n2j2i21, (x.(;))ngpigh (ng))ngjxgh (x,(?))nzj>i211 ),

9= ((3,-(](-)))n2j2i21y (38))1123‘»21, (6g))n2j>i21: ((9,(?))712]'»21,)

with 61.(;) = ( 0 ) , the coordinte and the partial differentials on Her, (H), and by

(?IE;)

o al®
2= I @)= x I @5,

n>j>i>1 n>j>i>1

k=1,23
(©) (%)
8% = H (3(0))130 « H (3(") Bs;

n>j>i>1 n>j>i>1

k=1,273
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their integer powers where

a=(@®,0,e?,aP ez, lol= 3 @+ T o

n>j>i>1 nk>11>5231

8= 67.67.60.69) €22, 181= 3 AP+ 3 AY
n>j>i>1 nk>]>1231
=1,2,

with m = (n(n 4 1)/2) + 3(n(n — 1)/2) = 2n? — n. The symbols z and 9 also express the Hermitian
matrices on D(V) @ H

( Nnziizt +i(z] z;; Nniizt +j(xg))n2j,i21 + k(z.('?))an,iZI

€ Her, (H[V]) C Her,—.(D( ) ® H),

= (0D )nziiz1 + 0 szt +3(0F )nziiz1 + k(65 )nzjiz
€ Her,.( (V)®H),

(0 O

ji and z(k) = —:c;-',f) for k = 1,2,3. On the other hand, we also define

respectively, by consdering z;;
8* € Her,(D(V) ® H) by

0" = (a,'(;)')nzi,jZI + i( )n>.,,>1 + .1( )n>:,,>1 + k( ')nzi,jz1 (12)
where

) i=jk=0,
0" =40 i=jk=123,
108 i#4,k=0,1,23.

Definition 2.1 (order and homogeneous degree). For vector spaces V = Sym,, (R), Her,, (C) and Her
any differential operator P(z,0) € D(V') is expressed as

P(z,0) := Z Z aqpz*0P (13)

k€z>o G,ﬁezzo
1B8l=k

We call the order of P(z,3) the highest number k in the sum (13). On the other hand, for

P(z,0):=Y_. Y aapz*d (14)

k€Z a,B€ZT,
lal-|BI=k

The differential operator ) o sezz, a,3z*8° in (14) is called the homogeneous part of P(z,8) of degree
lal-|8]=k
k. A differential operator with only one homogeneous part of degree k is called a homogeneous differential

operator and we say that k is the homogeneous degree.

Example 2.1 (generators of invariant differential operators). Let V' = Sym_,(R) (resp. V =
Her,(C), V = Her,(H)). Then we can construct G-invariant differential operators {Pi(z,0)}x=1,. n
on V', which form a complete set of generaotrs of GLy,, (R)-invariant (resp. GLy,(C)-invariant, GL,, (H)-
invariant) differential operators.

1. Let h and n be positive integers with 1 < h < n. A sequence of increasing integers p = (p1,... ,pn) €
Zh is called an increasing sequence in [1,n] of length h if it satisfies 1 < py < --- < pp < n. We
denote by IncSeq(h,n) the set of increasing sequences in [1,7] of length A.
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2. For two sequences p = (p1,... ,ps) and ¢ = (q1,... ,qn) € IncSeq(h,n) and for an n x n symmetric
matrix z = (z;;) € Sym,(R), (resp. complex Hermitian matrix z = (:c,(-?) + \/—l:cs;-)) € Her,(C),
quaternion Hermitian matrix z = (z,(g) + ia:,(-;) + jxg) + k:c,(?)) € Her,(H) ), we define an h x h
matrix z(p q) by

Z(p,q) = (Tpig; )1<i<i<h
(resp. z(p,q) = (zﬁ,??%. + V—lx,(,li?qj)lgigjgh,
T(p,q) = (z;g??q,— + ’.'"c;(»?q,' + jz}(;‘:?%' + kzl(???qj')lﬁ"ﬁjfh)'
In the same way, for an n x n real symmetric (resp. complex Hermitian, quaternion Hermitian)
matrix 8 = (8;;) (resp. 8 = (85" + vV=193""), & = (83" +i0* + joP" + kOD") ) of
differential operators, we define an h x h matrix 3&’ Q) of differential operators by

0p,q) = (G5, ¢, )1<i<i<h
(resp. 8y, q) = (00, + V=100 N1igizh,
* — 0)= ca(1)* - n(2)* 3)»
a(?ﬂ) = (a}(’.‘,)qi + za}(h,)Q‘ + Jax(m)Qj + kargi,)qj)lﬁ"fjfh)'

;)

3. For an integer h with 1 < h < n, we define

Ph(:t,a) = Z det(.’l:(p,q)) det(a(‘p,q)). (15)
p,g€IncSeq(h,n)

4. In particular, P,(z,d) = det(z) det(0*) and Euler’s differential operator is given by
9 .
Py(z,0) = z x;jt—a-;; = tr(z - 0%). (16)
n>j>i>1
These are all homogeneous differential operators of degree 0 and invariant under the action of

GL(V), and hence it is also invariant under the action of G C GL(V).

5. det(x) and det(d*) are homogeneous differential operators of degree n and —n, respectively. They
are invariant under the action of G, and relatively invariant differential operators under the action
of GL,(R) (resp. GL,(C), GL,(H)), with characters x(g) := det(g-’g) and x~1(g) := det(g-*7) !,
respectively.

Proposition 2.1. Let V = Sym,(R) (resp. V = Her,(C), V = Her,(H)).

1. Every GL,(R)-invariant (resp. GL,(C)-invariant, GL, (H)-invariant) differential operator on V'
can be expressed as a polynomial in Pi(z,0)(i = 1,... ,n) defined in (15).

2. Every G-invariant differential operator on V' can be ezpressed as a polynomial in P;(z,0) (i =

1,...,n—1), det(z) and det(0*).

Proof. We can give the proof almost in the same way as the proof of H. Maass [4] in the case of symmetric
matrices. See also Nomura [13] and [14]. O

3 Complex Powers of the Determinant Functions.

We consider the case of V := Sym,, (R) (resp. V := Her,(C), V := Her, (H)). We denote P(z) := det(x)
and we set S := {z € V|det(z) = 0}. The subset V' — S decomposes into n + 1 connected components,
Vi = {1: € Symn(R) | sgn(x) = (iv n- l)}
(resp. V; := {z € Her,(C) | sgn(z) = (2¢,2(n — 7))} 17)
V; := {z € Her,(H) | sgn(z) = (4¢,4(n — ©))})
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withi =0,1,...,n. Here, sgn(z) for z € Sym, (R) (resp. sgn(z) for z € Her, (C), sgn(z) for z € Her, (H))
is the signature of the quadratic form ¢, (%) := !z -7 on ¥ € R® (resp. 7 € C*, ¥ € H"). We define the
complex power function of P(z) by

P = { PO ee b (18)

for a complex number s € C. We consider a linear combination of the hyperfunctions |P(z)|}

PEsl(g Za. |P(z)|} (19)
i=0
with s € C and @ := (ap,ay,...,a,) € C**!. Then Pl%%)(z) is a hyperfunction with a meromorphic

parameter s € C, and depends on @ € C**! linearly.

Definition 3.1 (Laurent expansion coefficients). Let @ € C"t! and suppose that Pl%*)(z) has a
pole of order p at s = A\. Then we have the Laurent expansion of P#4(z) at s = ),

PlEl(z) = Y~ PEA(z) (s - N)". (20)
w=-p
We often denote by
Laurenti"__i))‘(P[a”](z)) := PlaM(z) (21)

the w-th Laurent expansion coefficient of P(3:*)(z) at s = X in (20).

Proposition 3.1. Let V := Sym,(R) (resp. V := Her,(C), V := Her,(H)). Then P3](z) is holo-
morphic with respect to s € C exzcept for the poles at s = —(k +1)/2 (resp. s = —k , s = —k) with
k=1,2,.... The possible highest order of the pole of P%*)(z) at s = —(k+1)/2 (resp. s = —k , s = —k)
is

|4 (k=1,2....,n-1),

13) (k=n,n+1...., and k + n is odd),

|2] (k=n,n+1...., and k + n is even). (22)
(res E (k=1,2....,n-1), | &£ (k=1,2....,2n—1),)
P 1n (k=n,n+1....). ' |n (k=2n,2n+1....).

Proposition 3.2. Let V := Sym, (R) (nesp V := Her,(C), V := Her,(H)). Let P(z,08) € D(V)C be
a homogeneous differential operator.

1. The homogeneous degree of P(z,0) is in (n - Z). Namely the homogeneous degree is divisible by n.
2. If the homogeneous degree of P(z,0) is nk with k € Z, then we have
P(z,0)(det z)* = bp(s)(det z)*+* (23)
where bp(s) is a polynomial in s € C and z € Sym,, (R) is positive definite. We have also
P(z,8)P3*)(z) = bp(s) det(z)* PL3*](z)
= bp(s)sgn(det(z))* Pl++K](z)
forallzeV -S.

3. If k < 0, then b=E(s — 1)|bp(s) where b=E(s — 1) := b(s — 1)b(s — 2) - -- b(s — (—k)) with b(s) :=
[Ty (s + 552 (resp. b(s) := [Ty (s + ), b(s) := [Tocy (s + 2 — 1).
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Definition 3.2 (bp-function). Let P(z,8) € D(V)€ be a homogeneous differential operator. We call
bp(s) in (23) the bp-function of P(z,8). Namely let P(z,0) be a G-invariant homogeneous differential
operator of homogeneous degree nk (k € Z). (Homogeneous degree of G-invariant differential operator
is divisible by n.) Then we have ‘

P(z,0)(det(x))* = Ibp(s)(det(x))*+*
with s € C and = > 0 ,i.e., positive definite. Here bp(s) is a polynomial in C. We call bp(s) the
bp-function of P(z,d). .

The bp-functions are closely related to the b-functions treated in Kashiwara [3] but they have different
properties. Kashiwara proved that the roots of -functions are negative rational numbers. But the roots
of bp-functions may take any complex numbers.

Example 3.1. Let V := Sym, (R) (resp. V := Her,(C), V := Her,(H)).

1. For the invariant differential operator of homogeneous degree kn =0
P(z,0) = Z det(z(p,q)) det (], q))
p,9€IncSeq(h,n)
defined by (15), we have
1 h—1
bp(s) = const.(s)(s + —2—) (s + T)
(resp. bp(s) = const.(s)(s+ 1) ---(s+ h — 1),
bp(s) = const.(s)(s +2)--- (s +2(h - 1)))
2. For P(z,0) = det(9") (homogeneous degree kn = —n),

n—1

bp(s) = const.(s)(s + %) s+ 22
(resp. bp(s) = const.(s)(s+1)---(s+n—-1),
bp(s) = const.(s)(s+2)---(s+ 2(n —1))).

3. For P(z,0) = det(z) (homogeneous degree kn = n),

bp(s) =1.

4 Main Theorem.

The key theorem of this talk is the following.

Theorem 4.1. Let V := Sym, (R), V := Her,(C) or V := Her,(H) and let P(z,0) € D(V)€ be a
non-zero homogeneous differential operator with homogeneous degree kn. We suppose that

the degree of bp(s) = the order of P(z,0). (25)

The space of G-invariant hyperfunction solutions of the differential equation P(z,8)u(z) = 0 is finite
dimensional. The solutions u(z) are given as finite linear combinations of Laurent expansion coefficients
of Pl&sl(z) at some finite number of points in s € C.

In the following sections, we shall determine the G-invariant hyperfunction kernel of P(z,8) € D(V)€
in some typical examples.
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5 Oerder of poles of complex powers.

From now on, we shall consider only the case of V = Sym, (R). The same arguments are possible for
other cases, V = Her,, (C) and V = Her, (H).
The exact order of pole of the hyperfunction

Plasl(g E a;|P(z)[;

1=0

palys an important role. In order to determine the exact pole of P1*l(z) at s = so, the author [11]
introduced the coefficient vectors

d®)[so] := (d[so), dF)[so), - .., d®) [so]) € ((CPHY)*)n—k+? (26)

with k = 0,1,...,n in [11]. The precise statement is given in Definition 5.1. Here, (C"*!)* means the
dual vector space of C**!. Each element of d(")[so] is a linear form on & € C"*! depending on s € C
Ji.e.,a linear map from C**! to C,

d®[se] : C**1 5 & — (dF[s0),d) € C. (27)
We denote
(d®)[s0], @) = ((d§”[s0], @), (d{[s0], @), .. ., (d}, [s0], @) € C**+1. (28)

Definition 5.1 (Coefficient vectors d®[sg]). Let so be a half-integer, i.e., a rational number given
by ¢/2 with an integer g. We define the coefficient vectors d(k)[so] (k=0,1,...,n) by induction in the
following way.

1. First, we set
d©1[sq] := (d”[s0), d{” [s0], - - -, A [sa]) (29)
such that (dgo)[so],&') =a; fori=0,1,...,n
2. Next, we define d*)[so] and d(®[so] by
dW[s) := (d§"[s0], d{V[so), . .., d%2 [s0]) € ((C™+1)")", (30)
with d(l)[so] = d(o)[so] + €[so)d +1[80], and
d@(se] := (d57[s0], dP[so), . . ., 22, [s0]) € ((C™+1)*)"7, (31)

with d?[so] := di”[s0] + d{,[s0]. Here,

=t e o
A strict half-integer means a rational number given by ¢/2 with an odd integer q.
3. Lastly, by induction on k, we define the coefficient vectors d(k)[so] for k=0,1,...,n by
d® 0 [so) := (df"*Vlsol, dt” Vlsol, ., di15 2 [so]) € (€741, (33)
with d(m“)[ o) = d(m 1)[8 ]1- ﬁzl)[so], and
d®[so] = (dfso], & [so], -, 4 so]) € ((C™*1)7)"=2+1, (34)

with d§2l)[30] = d§2l_2)[so] + dﬁfz 2)[3 .
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By using d*)[so] in Definition 5.1, the author obtained an algorithm to compute the exact order of
poles of Pl%:#](z) in [11]. In this section, we shall characterize the space

A(}, q) := {@ € C"*! | P%%(z) has a pole of order < g at s = A}. (35)
in terms of the coefficient vectors d*)[A].
Definition 5.2. We define the vector subspaces Dﬂ, 15 DY%.n and D((,‘gd in C*1.
1.
D,(.fz,f = {d@ € C**! | (d#*[A], @) = 0 for any strict half-integer A}.

Note that d®*+2[\] does not depend on the choice of ) if it is a half-integer.

DY), = {@e "t | (d#+D[)], &) = 0 for any odd integer A}.

DY) .= {G@e C™* | (d#*+V[A],d) = 0 for any even integer \}.

Note that d(2'+1)[/\] does not depend on the choice of A if it is an odd integer or an even integer,

respectively.
Proposition 5.1. D,(:z,f, D). and D‘(:d)d in C*t! have the following properties.

1. We define a* = ((—1)"ao, (=1)"tai,... ,an) € C**! for @ = (ao,a1,... ,an) € C**1. Then we

have
ie DY), > a*eDY,,
and
@aeDy), < a*eD),.
2. Letl be an integer 0 <1 < PHO(A). The vector subspace A(),1) defined by (35) is characterized as

ae D;:a),f if A is a strict half-integer,
de A\l <= <ade D‘(;‘)d if X is an odd integer, (36)
ae Dg,)en if A 1s an even integer.

In addition, we have A(A\,PHO())) = C**'. Here, we denote by PHO()) the possible highest
order of Pl&*l(z) at s = A\. Namely,

1] A=K (b=12.n- 1)

2] A=-5Ll (k=nn+1...., and k +n is odd),

PHO(M\) =X 2 37
*) 28] A=-%L (k=n,n+1...., and k + n is even), (87)
0 otherwise.

Proof. 1. is a direct consequence of the definition. 2. can be proved by the main theorem of the author’s
paper [11]. O
6 Examples.

We give three examples in the case of V = Sym,, (R). Some homogeneous differential equations generated
by det(z) and det(d*) are daelt with here.
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6.1 The equations det(0*)det(z)u(z) =0 and det(z) det(8*)u(z) =0

First we consider two examples of differential equation of homogeneous degree 0. Let us consider the case
of P(z,0) = det(9") det(z). and P(z,0) = det(x)det(8*). Then the homogeneous degree of P(z,d) is 0
and bp(s) = (s +1)(s+ 3)--- (s + 24) and bp(s) = (s)(s + ) --- (s + 2=1) respectively.

Proposition 6.1. Consider the differential equation det(8*) det(z)u(z) = 0.
1. The SL,(R)-invariant hyperfunction solution space to the differential equation det(9*) det(z)u(z) =
0 is generated by
n
U {Laurenty:)__k_F(P[a"](z)) I Jj=0,1,... ,I_k_;_lj andd € A("“%,J’)} (38)
k=1
Here, A(—"—‘Z!,'—l,j) is a vector subspace of C"*! defined by (35). Similarly, the SL,(R)-invariant
hyperfunction solution space to the differential equation det(z) det(8*)u(z) = 0 is generated by

U {Laurent®_,_, (P#@) | 5=0,1,... 1551 and @ € A(-252,5)} (39)
k=1

2. In particular, fork=1,2,... ,n,n+1,n+2,
{Laurenti)_ (Pl32)(z)) | i=0,1,...,|5¥jendd € A(—"—‘z'l-,j)} (40)

k=1
2

forms an n + 1-dimensional vector space generated by all the relatively invariant tempered distribu-
tions under the action of g € GL,(R) corresponding to the character det(g)~*+!.

6.2 The equations det(z)u(z) =0

Let us consider the case of P(z,0) = det(z). Then the total homogeneous degree of P(z,8) is n and
bp(s) = 1. We can prove by our algorithm that the G-invariant solution space of the differential equation
det(z)u(z) = 0 is generated by the G-invariant measures on all the singular orbits (i.e., G-orbits contained
in det(z) = 0), and hence, it is 1(".A,il-dimensional (= the number of singular orbits). Here the G-
invariant measure on each singular orbit is a relatively invariant hyperfunction. Namely we have the
following proposition.

Proposition 6.2. Consider the differential equation det(z)u(z) = 0.

1. The SLy,(R)-invariant hyperfunction solution space to the differential equation det(z)u(z) = 0 is
generated by

U {Laurentil_k—_t_:dj,l(P[a"l(z)) |aecr+} (41)
k=1 B 3

2. In particular, for k=1,2,... ,n,
{Laurentﬁ":k__;r_;é)_,(P[a"](x)) I de C""'l} (42)
forms an (n + 1 — k)-dimensional vector space generated by the tempered distributions
1) — [f@ad (5= €8v))
(3=0,1,... ,n+1— k) where du;’; is the SL,(R)-invariant measure on

S] = {z € Sym,(R) | sgn(z) = (j,n — k — j)}
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6.3 The equations det(0*)u(z) =0

Similar argument is possible for the case of P(x,0) = det(J). operators. In this case, the total ho-
mogeneous degree of P(z,0) is (—n) and we see that bp(s) = []/.,(s + 5). The solution space of

=1

det(9)u(x) = 0 is just the Fourier transform of that of det(z)u(z) = 0, and hence it is I'1"_2—*'ll-dimension::),l
and generated by relatively invariant hyperfunctions. We can construct them from the complex power of
det(z)

Proposition 6.3. Consider the differential equation det(8*)u(z) = 0.
1. The SL,(R)-invariant hyperfunction solution space to the differential equation det(8*)u(z) = 0 is

generated by

n
U {Lewrent® o (PE(@)) |1=01,... 125  and G € DO} (43
k=1 ?

Here, DY is a vector subspace of C"t! defined by Definition 5.2. The * in DY) is substituted half,
even or odd according as X is a strictly half integer, an even integer or an odd integer, respectively.

2. In particular, for k=1,2,... ,n,

{Laurent® ., (P& (2))) | i=0,1,...,125%] and & € DY (44)

n=k
2
forms an (n + 1 — k)-dimensional vector space generated by the Fourier transforms of the tempered

distributions in (42).

References

(1] L. Garding, The solution of Cauchy’s problem for two totally hyperbolic differential equations by
means of Riesz integrals, Ann. of Math. 48 (1947), 785-826.

[2] I.M. Gelfand and G.E. Shilov, Generalized Functions — properties and operations, Generalized Func-
tions, vol. 1, Academic Press, New York and London, 1964. '

[3] M. Kashiwara, B-functions and Holonomic Systems, Invent. Math. 38 (1976), 33-53.

[4] H. Maass, Siegel’s Modular Forms and Dirichlet Series, Lecture Notes in Mathematics, vol. 216,
Springer-Verlag, 1971.

[5] P.-D. Methée, Sur les distributions invariantes dans le groupe des rotations de Lorentz, Comment.
Math. Helv. 28 (1954), 225-269. ’

[6]

, Transformée de Fourier de distributions invariantes , C. R. Acad. Sci. Paris Sér. I Math.
240 (1955), 1179-1181.

[7]

, L’equation des ondes avec seconde membre invariante, Comment. Math. Helv. 32 (1957),
153-164.

[8] M. Mufo, Microlocal analysis and calculations on some relatively invariant hyperfunctions related to
zeta functions associated with the vector spaces of quadratic forms, Publ. Res. Inst. Math. Sci. Kyoto
Univ. 22 (1986), no. 3, 395-463.

(9]

, Singular invariant tempered distributions on regular prehomogeneous vector spaces, J. Funct.
Anal. 76 (1988), no. 2, 317 — 345.




154

(10]

, Invariant hyperfunctions on regular prehomogeneous vector spaces of commutative parabolic

type, Tohoku Math. J. (2) 42 (1990), no. 2, 163-193.

[11]

, Singular Invariant Hyperfunctions on the space of real symmetric matrices, Tohoku Math.

J. (2) 51 (1999), 329-364.

[12] , Singular Invariant Hyperfunctions on the space of Complex and Quaternion Hermitian

matrices, to appear in J. Math. Soc. Japan, 2001.

[13] T. Nomura, Algebraically independent generators of invariant differential operators on a symmetric
cone, J. Reine Angew. Math. 400 (1989), 122-133.

(14] , Algebraically independent generators of invariant differential operators on a bounded sym-

metric domain, J. Math. Kyoto Univ. 31 (1991), 265-279.

[15) M. Riesz, L’intégrale de Riemann-Liouville et le probléme de Cauchy, Acta Math. 81 (1949), 1-223.



