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Gevrey Asymptotic Theory for Singular 1st
Order Linear PDE

BB ARES THEME R
(Graduate School of Mathematics, Nagoya University)
H LB B8 (Masaki Hibino)

1 Introduction and Main Results.

We are concerned with the Borel summability of the formal solution for the following first

order linear partial differential equation of nilpotent type:

Lu(z,y) = f(z,y),

1.1
(L1 L =1+ (ay + bzy + cy?)D, + dy’D,,

where z, y € C, D, = 8/0z, D, = 0/0y, and a, b, ¢ and d are complex constants, and
f(z,y) is holomorphic at (z,y) = (0,0). In the following, we always assume that

(1.2) a#0.

By the argument in Hibino [1], we know that (1.1) has a unique formal power series
solution in O[R][[y}]2 for some R > 0. Here we say that the formal power series u(z,y)
belongs to O[R][[y]]2 if u(z,y) can be written as u(z,y) = 352 un(z)y™, where all u,(x)
are holomorphic on {z € C; |z| < R} with the estimates max;<g |un(z)] < CK™nl.
Therefore the formal solution of (1.1) is divergent in general.

Our main problem is the existence of the holomorphic solution which has this diver-
gent solution as an asymptotic expansion. We have two types of asymptotic expansions:
“asymptotic expansion in a small sector” and “Borel summability”. Here we will study
the Borel summability as stated above. We can see the asymptotic expansion in a small
sector in Hibino [2].

Now let us define the concept of our asymptotic expansion which is called the Borel

summability.
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Definition 1.1 (1) For 6 € R and Y > 0, we define the region O(4,Y) by
(1.3) 006,Y)={yeC; ly-Ye? <Y}

(2) Let u(z,y) = 2o un(z)y"™ € O[R][[y]]2- We say that u(z,y) is Borel summable
in f—direction if there exists a holomorphic function w(z,y) on {z € C; |z| < r} xO(8,Y)
for some r > 0 and Y > 0 which satisfies the following asymptotic estimates: There exist

some positive constants C' and K such that

N-1
(1.4) max u(z, ) — 3 un(z)y”| < CKMNilyl?,
T|ST n=0

forye 06, Y)and N=1,2,....

When u(z,y) is Borel summable in §—direction, the above function w(z,y) is unique
(see Lutz—Miyake—Schéfke [4]). Therefore we call this w(z,y) the Borel sum of u(z,y) in
f—direction. ———

Our purpose is to study the conditon under which the formal solution of (1.1) is Borel
summable. In order to consider our problem, we divide the problem into the following
four cases:

Case (1): b=d=0.

Case (2): b=0,d #0.

Case (3): b#0,d=0.

Case (4): b,d #0.

Now in order to state the theorem, let us define some notations. We define the function
®(z,n) by

( xr —an (Case (1))
z - glogu +dn) (Case (2))
(1.5) ®(z,n) = ¢ .
(% + x) e — % (Case (3))
\ (% + z) (14 dnp)~bd — % (Case (4)),

and define the region §,4, C C by

(1.6) Qoo =2({(z,n) € C; |z| <7, n € EL(0,p)}).



Here E, (0, p) is a region defined by

(1.7)

E.(8,p) = {n € C; dist(n,R4e?) < p},

where Ry = [0, +00).
In Case (2) and Case (4), we assume that 6 # arg(—1/d) in order that Q4 , is well-

defined. In Case (3) and Case (4), we remark that Q4 , is a region in the Riemann surface

a
of log (a: + E)'

Our main theorem is stated as follows:
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Theorem 1.1 In any case, assume that f(z,y) can be continued analytically to {(z,y) €
C% x € Qugyp |yl < 7'} for some v, p and 1/, where 8 # arg(—1/d) in Case (2) and

Case (4). Furthermore assume that f(z,y) has a following growth estimate for each case

by some positive constants C and § : For z € Q. 4,

Case (1):
(1.8)

Case (2):
(1.9)
where p = |d/al;

Case (3):
(1.10)

Case (4):
(1.11)

Furthermore in Case (3) and Case (4), we assume the following condition:

Case (3):
(1.12)

Case (4):
(1.13)

ly|<r’

max | f(z,y)| < Cexp

lyl<r’

max|/(a,4)| < Cexp [6

o

max | f(z,y)| < Ce’;

max | f(z,y)| < C exp(ée”™),

ee(e )]

log (:c+ %)'}] .

b

c=0 or R(-be?)>0;

b
c=10 or ?R(——a)>—1.

Then the formal solution u(z,y) of (1.1) is Borel summable in @—direction and its

Borel sum is a holomorphic solution of (1.1).
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2 Formal Borel Transform of Equations.

Before proving Theorem 1.1, we give some preliminaries. First, we remark that if the
formal solution u(z,y) of (1.1) is Borel summable, then it is easily proved from the
uniqueness of the Borel sum that its Borel sum w(z, y) is a holomorphic solution of (1.1).
Therefore in order to prove Theorem 1.1, it is sufficient to prove that the formal solution
u(z,y) is Borel summable under the conditions in the theorem.

In general when we want to check the Borel summability of the formal power series

w(z,y) = T2 o un(z)y™ € O[R][[y]]2, the following theorem plays a fundamental role.

Theorem 2.1 (Lutz, Miyake and Schifke [4]) The necessary and sufficient condi-
tions so that a formal power series u(z,y) = 332 o un(z)y" € O[R][[y]]2 is Borel summable
in @—direction are stated as follows: Let us define the formal Borel transform Bu](z,n) of
u(z,y) by

[e o] ,,’ﬂ
21) Blul(z,m) = > un(m) T,

n=0
which is holomorphic in a neighborhood of the origin. Then Blu|(z,n) satisfies the follow-
ing condition (BS):

(BS) Blu](z,n) can be continued analytically to {x € C; |z| < r} x E,(0,p) for
somer > 0 and p > 0, and has the following exponential growth estimate for some
positive constants C and § :

(22) max |Bul(z,n)] < CeM, € E.(,p)

|zl<r

In this case the Borel sum w(z,y) of u(z,y) in 0-direction is given by

(2.3 w@y) = [, "Bl ndn

Therefore in order to prove Theorem 1.1, it is sufficient to prove that the formal Borel
transform Blu](z, n) of the formal solution u(z, y) satisfies the above condition (BS) under
the conditions in the theorem. In order to do that, firstly let us lead the equation satisfied
by B [4](z,n). By the formal Borel transform, the operators y and D, are transformed to

the operators D l = /0 and D,nD,, respectively. They are easily seen from the following
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commutative diagrams:

yn Borel tr. "_72 yn Borel tr. ﬁ
n! n!
(2.4) yl ln,;l D,,l DynDy,
n+1 n—1
yn+1 N n nyn—l . n

Borel tr. ('n, + 1)' ’ Borel tr. n('n, — 1)'

Therefore we see that Blu](z,n) is the solution of the following equation:
(2.5) {1+ (a+ bx)D;le + cD;zDz + dD;lnD,,}v(a:, n) = g(z,n),

where g(z,7) is the formal Borel tranform of f(z,y) = 32, fu(z)y", that is,
A (o o] ,r'n
9(z,m) =) falz)—.
= n!
Furthermore by operating D, to (2.5) from the left, we see that B[u](z,n) is the solution

of the initial value problem of the following integro—differential equation:

{(1 +dn)Dy + (a + bz) Dz }v(z, 1) = —cD, ' Dv(z,n) + h(z,7),

2.6
(20 v(z,0) = f(z,0),

where h(.’E, 77) = Dng(ma 77)
Therefore Theorem 1.1 is proved by showing that the solution v(z, ) of (2.6) satisfies
the condition (BS).

3 Proof of Theorem 1.1

Let us start the proof of Theorem 1.1. Here we prove the theorem only in Case (1) (on
the other cases, see Hibino [3]). In this case, that is, in the case b = d = 0, the equation

(2.6) is written as follows:

{Dn +aD;}v(z,n) = —cD; ' Dyv(z, 1) + h(z,7),
v(z,0) = f(z,0).

We shall prove that the solution v(z, n) of (3.1) satisfies the condition (BS) in Theorem

(3.1)

2.1. First, we remark that in general the solution w(z,7) of the initial value problem of

the following first order linear partial differential equation

{Dy +aD.}w(z,n) = k(z,n),

(3.2) w(z,0) = I(z)
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is given by
(3.3) w(z,n) = l{z — an) + /0 k(z — a(n — t), H)dt.

Proof of the theorem. In the case ¢ = 0, it follows from (3.3) that v(z,7) has the

following explicit form:

(3.4) v(z,n) = f(z — an,0) + /On h(z — a(n —t), t)dt.

Therefore from the condition, it is easy to prove that v(z,7) can be continued analytically
to {(z,n) € C% |z| < r, n € E,(6,p)} with the estimate

max |v(z,n)| < C'eM, 5 e E, 8,p),
lel<r

for some positive constants C’ and §'. This shows that v(z, n) satisfies the condition (BS).

Let us assume c # 0. In this case, (3.1) is rewritten as follows:

{D, + aD;}v(z,n) = —c /on vz(z, s)ds + h(z,n),
v(z,0) = f(z,0).

First, let us transform (3.5) into the integral equation. It follows from (3.3) that (3.5)

(3.5)

is equivalent to the following equation:

n n rt
v(z,n) = f(z — an,0) +/o h(z — a(n — t), t)dt — c/(; /o vz(z — a(n — t), s)dsdt.
Here we remark that
n rt
/0 /0 vz(z — a(n — t), s)dsdt
n 1
- / / v2(z — a(n — ), 8)dtds
= / / { (z —a(n—1t), )}dtds
1
= g/ v(z, t)dt — —/ v(z — a(n —t), t)dt.
Therefore we know that (3.5) is equivalent to the following integral equation:
"
vzm) = flw—en0)+ [ h(z—aln-1),t)dt
c [7 c M
(3.6) + ;/0 v(z —a(n —t),t)dt — ;/o v(z, t)dt.
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In order to prove that the solution v(z,n) of (3.6) satisfies the condition (BS), we

employ the iteration method. Let us define {v,(z,7n)}32, as follows:

vo(z,m) = f(z — an,0) + /on h(z — a(n — t), t)dt.

For n > 0,

(3.7) Vns1(z,7) = vo(z, 1) + § /0 " va(z — aln — t),t)dt — = /0 " on(, t)dt.

Next we put wo(z,7) := vo(z,n) and wnp(z,n) := va(z,n) — vo_1(z,n) for n > 1, and we

define w,(z,n,t) by
(38) wn(xv n, t) = w‘n(x - 3(77 - t): t)

Now let us take a monotone decreasing positive sequence {¢,}, so that

(3.9) pi=p—) e, >0.

n=0

Then we obtain the following lemma.

Lemma 3.1  d@n(z,n,t) is continued analytically to {(z,n,t) € C3 |z| < r, n €
E (0,0 — Xj-0€;), t € Gir}. Furthermore on {(z,1,t) € C% |z| < r, n € EL(0,p —

> 7=0€5), t € Gy} we have the following estimate: For some positive constants Cy and 6y,

n k
(3.10) (Ba(z,m, Go(R))| < CrettLn 3 (M) L B
Z\k) 5k H

where L = |c|/|a|. Here Gy, is the segment from 0 to 7:
Gy = {Gy(R) = Re™2; 0 < R < |},
and G3, is the e-neighborhood of G, for € > 0.

If we admit Lemma 3.1, the theorem is proved as follows: It follows from Lemma
3.1 that wa(z,n) (= Wn(z,n,n)) is continued analytically to {(z,n) € C% |z| <r, n €
E,(0,p— 37 o€;)} with the estimate

lwn(z,m)| = |@n(z,m, Go(In]))|
s pn s~ ()L Il
< Ge™MD Z(k)&;'-k P

k=0
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for |z| < r and n € E,(0,p — 37_o¢;)- Therefore by taking 6; sufficiently large, we see
that v,(z,n) (= Xhoowk(z,n)) converges to the solution V(z,n) of (3.6) uniformly on
{(z,n) € C?% |z| <1, n € E,.(6,p)} with the estimate

o0

V(z,n)| < Y lwa(z,n)
n=0
[o) n 1 |77|k
< Cleéllnl L (n) —
nz=:0 k2=% k 47 k k!
< ées]ﬂl,

for some positive constants C and . By the uniqueness of the local holomorphic solution,
it is clear that V(z,7n) is the analytic continuation of v(z,n). This shows that v(z,n)
satisfies the condition (BS). The theorem is proved. |

Therefore it is sufficient to prove Lemma 3.1.

Proof of Lemma 3.1. It is proved by the induction. In the case n = 0, we can obtain

the explicit form of @wo(z,n, t):

Wo(z,n,t) = f(z — an,0) + /Ot h(z — a(n — s), s)ds.

Therefore from the condition, it is easy to prove that @e(z,n,t) is well-defined and holo-
morphic on {(z,n,t) € C3; |z| <7, n€ E,(6,p— &), t € G} and has the estimate

|@o(z,m, Gy(R))| < CrehMl

on {(z,n,t) € C3; |z| < r, n € E+(6,p—€0), t € Gy} for some positive constants C; and
8,. This implies the lemma for n = 0. Next, let us assume that the lemma is proved up

to n. Since {wn(z,n)}5% is determined by

(3.11) Wnt1(2,n) = 2 /017 wn(z — a(n —t),t)dt — E/on Wy (z, t)dt,
we have
Wn1(z,m,t) = Wpr(z —a(n —t),t) t
= §/o wy(z — a(n—t) — a(t — s),s)ds — E/O wp(z — a(n —t), s)ds
= 2/0‘ wn(z —a(n - ), s)ds — E/Ot wn(z — a{(n —t + ) — s}, s)ds

c [t _ . c (M _
= ;/0 wn(x,n,s)ds—;/o Wn(z,m —t+ s,8)ds

= Il(xa n, t) + IZ(:L" 1, t)
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Let us prove that each I;(z,7,t) is well-defined on {(z,n,t) € C3; |z| < r, n €
E.(6,0 - S}Hey), te Gpn).

On Ii(z,m,t): It is clear that n € E (6,0 — Tj25¢;) C E4(0,p — Ti—o€;). By
taking an integral path as the segment from 0 to ¢, it holds that s € G3*+* C G;». Hence
Wn(z, 7, s) is well-defined and I (z,n,t) is well-defined.

On Iy(z,n,t): By taking an integral path as the segment from 0 to ¢, it holds that
n—t+s € E(0,p— ] o¢;) and s € G4y, C Gieys. Hence wn(z,n —t +s,5) is
well-defined and I5(z, 7, t) is well-defined.

Therefore Wn41(z, 1, t) is well-defined and holomorphic on {(z,7,t) € C3; |z| <, n €
Ei (6,0 — X3 €5), t € Gt} Moreover on {(z,n,t) € C®% |z] <1, n € EL(6,p—

Z?:& €j), t € Gy} we have the following representations:

c (R _ .
Ii(e,1,Gn(R) = < [ @ale,n, Gol(Br) PRy,

c (R _ i ar; %
Ix(z,n,Gy(R)) = —g'[) Wn (2, (I1] = R+ R1)e'* 8, G1_p1py)essrsen (Ry))e B dR,.

Let us estimate each I;(z,n, G,(R)).
On Ii(z,n,Gn(R)): It follows from the assumption of the induction that

B n 1 Rk
|in(z,m, Go(R1))| < CrePMIr 3 (M) 2,
= \k) &7 * k!

which implies that

G 5 cumirn () L R,

n 1 Rk+1
— O il -+ n .
1€ ,g(k 57 (& + 1)

On Iy(z,n,Gy(R)): By the assumptioh of the induction, we have

|@nt1(z, (In] — R+ Rl)eiarg("), G(inj—R+Ry)esorsn (R1)))]

n k
b ~8§1R_51R ny 1 R
< Cehlnle=0iReh 1L"I;)<k) 61"kk_!1’

which implies that

n R k
12,7, Go( R)| < Crerle=a L1 3 (Z) e [enmBap,
far 1 0 k!
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Here it holds that

R Rk R d (1 RE
51R1 1 — el 51R1 1
/o Pl /0 {de {51 }} Chaid

: g
o k! Ri=0
1 JIRR
= 55w
Hence we obtain

. 1 R
1@, 1, Go(R))| < ML Y ( )a T

k=0
Therefore it holds that

I’Dn+1($’ 7, Gn(R))I

o n n 1 Rk+1 n n 1 Rk
< {3 () e mrm (k)= )

k=0

- CletsllnlL'IH'l {Z (

) +
_1 n n 1 Rk Rn+1
— Siln] rn+1 il
et [6"* +Z{ ) (k }a?ﬂ-kk!*(nﬂ)!l
— Silnl 7 n+1 ~(n+1\_1 Rt R™!
= C1e""L {5n+1+2( )5?+1—kk! +(n+1)!
_ Cehlprny- (P _1 RE
= Cle”’L ,;,( k )6{1"-1—,‘ k',

which implies the lemma for n + 1. The proof is completed. [
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