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1. Introduction

Let us consider the Cauchy problem for general nonlinear hyperbolic equations of first order:

(1) $\{$

$\frac{\partial u}{\partial t}+\mathrm{u}(\mathrm{t}, x, u, \frac{\partial u}{\partial x})=0$ in $(0, T)$ $\cross \mathrm{R}^{n}$ ,
$u(0, y)=u_{0}(y)$ on $\mathrm{R}^{n}$

For given initial data $u_{0}\in L_{2}^{\infty}$ we want to construct acontinuous solution $u(t$ , $\cdot$ $)$ in $t$ with
values in $L_{2}^{\infty}(\mathrm{R}^{n})$ , which is called an evolutional solution in $L_{2}^{\infty}(\mathrm{R}^{n})$ whose topology is given
in Definition l,(see also Lemma 3.) Here ameasurable function $v(x)$ is said to belong to
$L_{k}^{\infty}$. $(\mathrm{R}^{n})$ , $k=1,2$ , $\cdot$ , $n$ , if we can find aset $e$ of measure zero so that $v(x)$ is uniformly bounded
for $x\not\in e$ , up to $k$ -th order partial derivatives in the sense of distribution. We assume that,
roughly speaking, $H(t, x, u,p)$ is essentially bounded up to second derivatives in any compact
region in $(t, u,p)\in[0, T)\cross \mathrm{R}\cross \mathrm{R}\mathrm{n}$ . Precise conditions on $H$ are stated in each Theorem.
We simply call the above solution non-smooth classical solution, since derivatives of first order
are verified to be Lipschitz continuous, (see Lemma 1) but second order derivatives may have
discontinuities. In order to discuss that the problem has the property of evolution equation, we
shall show that the problem (1) is equivalent to the following Cauchy problem for the Hamilton
system of ordinary differential equations:

$(1’)$ $\{$

$\frac{dX_{k}}{dt}=H_{pk}$ $(t, X(t)$ , $U(t)$ , $P(t))$ ,

$\frac{dP_{k}}{dt}=-H_{x_{k}}$ $(t, X(t)$ , $U(t)$ , $P(t))-H_{u}(t, X(t),$ $U(t)$ , $P(t))P_{k}(t)$ ,

$\frac{dU}{dt}=-H(t, X(t)$ , $U(t)$ , $P(t))+ \sum_{j=1}^{n}H_{p_{j}}(t,X(t),$ $U(t)$ , $P(t))P_{j}(t)$ , $t\in(0, T)$ ,

$X_{k}(0)=y_{k}$ , $P_{k}(0)= \frac{\partial u_{0}}{\partial x_{k}}(y)$ , $U(0)=u_{0}(y)$ , $y=(y_{1}, \ldots, y_{n})\in \mathrm{R}^{n}$ , $k=1,2$ , $\ldots$ , $n$ ,

where the system of solutions $(X(t;y), U(t;y)$ , $P(t;y))$ , which we call the Hamilton flow, has a
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$n$ parameter $y\in \mathrm{R}\mathrm{n}$ . To show $(1’)$ from (1), we solve the solution $X(t)=X(t;y)$ to the problem

$\{$

$\frac{dX_{k}}{dt}=H_{\mathrm{P}k}$ $(t, X(t)$ , $u(t, X(t))$ , $\frac{\partial u}{\partial x}(t, X(t)))$ , $t\in(0, T)$ ,
$X_{k}(0)=yk\in \mathrm{R}^{n}$ , $k=1,2$ , $\ldots$ , $n$ .

Then we can verify that $U(t;y)=u(t, X(t;y))$ and $P(t;y)= \frac{\partial u}{\partial x}(t, X(t;y))$ satisfy other equa-
tions in $(1’)$ , (see Theorem 1and Remark 3.) For this purpose, we rely upon the fact that
the curve integral in $(t, x)$ space can be also represented by the integral along the related
curve in $\mathrm{R}^{2n+1}$ with values $(t, x,p)$ . This is one of the universal lifting principle, which we
will explain alittle more in Introduction. By virtue of this principle we are in aposition to
apply the Stokes theorem to the integral of simple monomials $pk$ and the Hamilton function
$H(t, x, u(t, x),p)$ along the closed curve in $[0, T)$ $\cross \mathrm{R}^{2n}$ . Especially we consider the curve 10
cated on the two dimmensional surfaces spanned by the flow $(X(t;y), P(t;y))$ . Then we employ
Lebesgue’s density point theorem about each point on the surfaces to obtain the Hamilton
system of equations in $(1’)$ . In order to obtain (1) from $(1’)$ , we need to show the fundamen-
tal relation $\frac{\partial U}{\partial y_{j}}=\sum_{k=1}^{n}P_{k}\#_{y_{j}}\partial X$, together with the regularity of the solution $(X, U, P)$ . This
argument requires us long calculus. However we can say that at the same time this process
enables us to encounter the potential mechacism of the Hamilton flow. Then we proceed to
understand that the Hamilton flow is an inevitable notion, which is intimately related to the
infinitesimal fundamentanl formula for $v\in L_{1}^{\infty}(\mathrm{R}^{n})$ . Note that for the local argument for
smooth data it suffices to follow the traditional formalism of the Hamilton flow. However we
need aglobal analysis for the treatment in the space $L_{1}^{\infty}(\mathrm{R}^{n})$ , and occationally the lifting prin-
ciple takes out the cover of some mysterious parts of the Hamilton mechanism. In order to
obtain the estimate of evolution type, conversely we need to collect the Hamilton flow using
the homeomorphism $yarrow x=X(t;y)$ for each $t\in(0, T)$ . After these consideration we can
arrive at the evolutional apriori estimate of the solution in function spaces $C^{0}([0, T);L_{1}^{\infty}(\mathrm{R}^{n}))$

for $u\in L_{2}^{\infty}([0, T)\cross \mathrm{R}^{n})$ . Asuitable comparison theorem gives us an estimate of the lifespan
$T$ , (see Theorem 2.) After obtaing these results we can exhibit the existence theorem for the
evolutional solution $u\in C^{0}([0, T);L_{2}^{\infty}(\mathrm{R}^{n}))$ , (see Theorm 3.)

Now we mention to our motivations. Theorems in this paper will be applied elsewhere to
construct the solution to the nonlinear diagonalized system of hyperbolic equations. The typical
example is the following problem for the system of equations in the domain $(0, T)$ $\cross \mathrm{R}$ :

(2) $\{$

$\frac{\partial r}{\beta_{S}^{t}}+c_{1}(r, s)\frac{\partial r}{\partial x}=0$
,

$\overline{\partial t}+c_{2}(r, s)\frac{\partial s}{\partial x}=0$ ,

with the initaial data
$r(0, x)=r_{0}(x)$ , $s(0, x)=s_{0}(x)$ .

B. Riemann[l] derived this diagonarized system (2) in 1860 from equations of gas dynamics
with unknown variables the density $\rho$ and the velocity $u$ , introducing new variables $\{r.s\}$ which
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are called Riemann invariants nowadays. Using the relations

$r=(u+f(\rho))/2$ , $s=(-u+f(\rho))/2$ , $f( \rho)=\int_{1}^{\rho}\frac{1}{\sqrt{\rho}}d\rho$,

he obtained (2) if the pressure $\varphi(\rho)$ depends only on $\rho$ . we can expect that the solution $(r, s)$ of
this system are constructed in the space $L_{1}^{\infty}$ or $L_{2}^{\infty}$ depending on the initial data. The problem
(1) for the larger class of general nonlinear equation, will find much more applications. For
this purpose, as we describe precisely later, the Hamiltonian $H$ in (1) should have minimum
regularity, so that we can use the successive approximation method for the construction of
solutions to various problems for nonlinear systems of equations.

As for Cauchy problems for nonlinear equations of first order, many special cases were studied.
For example equations of conservation law and Hamilton Jacobi equations are treated in the
framework in $L^{2}$ or $L^{1}$ . The local uniqueness and existence theorems in $C^{2}$ class for the quasi-
linear equation of one space dimension are considered by the Hamilton flow. To the knowledge
of author, the global theory for general nonlinear equations of first order was thought to be
too complicate to state, in asystematic way, some results which concern with both equations
of consevation law and Hamilton Jacobi equations simultaneously. Here in order to make this
statement possible, we employ, besides the fundamental Hamilton flow adevice concerning the
comparison method. This enable us to obtain also areasonable concrete estimate of the lifespan
$T$ . Since the lifespan of the solution must be estimated uniformly in $x\in \mathrm{R}\mathrm{n}$ , in this paper we
try to compare the lifespan with that of asystem of simple ordinary differential equations as in
Theorem 3.

It is rather well-known See references M.Tsuji and Li Ta-tsien [2] T.Warzewski [3] R. Courant
-D. Hilbert [5], F. John [6] and R. Courant-P. Lax [7], we may understand that the difficulty
for global theorem exists not only in developing the technique but also in constructing the
theoretical foundation. It is also necessary for us to detemine asuitable function space in $\mathrm{R}^{n}$

for the global problem (1), which is related to the decomposition of the non-smooth solution
$u(t, x)$ into the $n$ parameter family of solutions to the problem $(1’)$ . Consequently we are led to
the above space stated in the beginning of Introduction. Moreover the detailed proof requires
us to prepare various mathematical devices for the analysis. Especially we use the infinitesimal
formula of the Lebesgue integral developed in the space $L_{1}^{\infty}$ , which is extended also to the
Stokes theorem in Lemma 1. by virtue of this lemma theoretical difficulties in the detailed
demonstration will be overcome.

There is always aserious question why the Hamilton flow play aspecial role even in nonlinear
cases. It is aproblem to answer this question. If we intend to attack to this problem in front,
we are oblized to introduce the definition of the notion of general flows, (see Definition 2.) This
notion corresponds to the variable $z$ in the identity given below. Let us consider how to look
for all solution of $x^{2}+3x-10=0$ in the situation that we know only one solution $x=2$ but
do not knnow the formual of solutions. Then we can introduce avariable $z\in \mathrm{C}$ to consider the
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identity $(2+z)^{2}+3(2+z)-10=z(z+7)$ , which gives us another solution $x=2-7=-5$ .

Here we give some comments concerning the lifting principle which plays an important role
in many parts of the proofs.

Lifting principle for partial differential equations. Let $fj(x)$ , $j=1,2$ , $\ldots$ , $m$ be a

continuous function defined in $\mathrm{R}^{m}$ . The integral of the one form $\omega$ $= \sum_{j=1}^{m}fj(x)dxj$ along a

given pieacewise smooth curve $C=\{x(s)=(x_{1}(s), \ldots, x_{m}(s));0\leq s\leq 1\}$ in $\mathrm{R}^{m}$ can be
represented also by the curve integral in the higher dimensional space $\mathrm{R}^{m+k}$ with variable
$(x_{1}, \ldots, x_{m}, p_{1}, \ldots,p_{k})$ , where $k$ is anatural number less than $m$ . Namely

$\int_{C}\sum_{j=1}^{m}f_{j}(x)dx_{j}=\int_{C^{(k)}}\sum_{i=1}^{k}pidx_{i}+\int_{C(k)}\sum_{j=k+1}^{m}\tilde{f}j(x,p)dxj$

holds, where the curve $C^{(k)}$ i $\mathrm{s}$ defined by

$C^{(k)}=\{(x(s),p_{1}(s), \ldots, p_{k}(s))\equiv(x_{1}(s), \ldots, x_{m}(s), fi(x(s)), \ldots, f_{k}(x(s)));0\leq s\leq 1\}$,

and $\tilde{f}_{j}$ , $j=k+1$ , $\ldots$ , $m$ is an arbitrary continuous function satisfying

$\tilde{f}_{j}(x_{1}(s), \ldots, x_{m}(s),p_{1}(s), \ldots,p_{k}(s))=f_{j}(x_{1}(s), \ldots, x_{m}(s))$ , $s\in[0,1]$ .

We can verify this fact by virtue of very definitions of curve integrals in $\mathrm{R}^{m}$ and $\mathrm{R}^{m+k}$ . Note
that $p:$ , $i=1,2$ , $\ldots$ , $k$ , is asimple monomial and $\tilde{f}j$ , $j=k+1$ , $\ldots$ , $m$ , is an extension function
of $fj$ into the domain $\mathrm{R}^{m+k}$ . In each actual problem, $\tilde{f}j$ may be naturally determined in $\mathrm{R}^{m+k}$

as an analytic continuation as we see in the remark below. We consider mainly the case where
$\omega$ is closed and $C$ is also aclosed curve, which implies that $C^{(k)}$ i $\mathrm{s}$ also closed. Apply the $\mathrm{S}\mathrm{t}\mathrm{o}\mathrm{k}\dot{\mathrm{e}}\mathrm{s}$

formula to the one form $\sum_{i=1}^{k}pidx_{i}+\sum_{j=k+1}^{m}\tilde{f}j(x,p)dxj$ on a2-dimensional surface in $\mathrm{R}^{m+k}$ whose

boundary is the curve $C^{(k)}$ , then we can obtain some relations described by simple differential
equations, since we can take the closed curve $C$ in $\mathrm{R}^{m}$ arbitrarily as we see later in the proofs
of Theorems. In this paper we consider the case where $m=n- l$ $1$ , $k$ $=n$ and

$(x, t)=(x_{1}, \ldots, x_{n}, t)=(x_{1}, \ldots, x_{n}, x_{n+1})$ .

Let $u(t, x)$ be asolution to $\tau_{t}(\partial ut, x)+H(t, x, u(t, x), \frac{\partial u}{\partial x}(t, x))=0$. Then putting

$f_{j}= \frac{\partial u}{\partial x_{j}}$ , $\dot{\gamma}=1$ , $\ldots$ , $n$ , $f_{n+1}= \frac{\partial u}{\partial t}(t, x)$ ,

we can take
$\tilde{f}_{n+1}$ $(t, x_{1}, \ldots, x_{n},p_{1}, \ldots,p_{n})=-H(t, x, u(t, x),p)$ .
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As above we can expect to arrive at asytem of differential equations, which lead us to the
Hamilton system. Besides the Hamilton flow, the terminology “lifting principle” is quated from
K.Oka’s work. The lifting principle is his main thema in the theory of functions with several
complex variables, (see T.Nishino [8].)

Note that the regularity loss of the solution does not permit us to rely on the usual traditional
method as in Carath\’eodory [9]. Therefore, by the above lifting principle, we are led into the
study of apotential mechanism concerning the Hamilton flow. Then, we are able to see that
two kinds of important tools in mathematical analysis, the Hamilton flow and the Lebesgue
integral, are combined intimately in the proof of the estimate of evolution type for the solution
in the function space $L_{2}^{\infty}(\mathrm{R}^{n})$ . Formerly it seemed to the author that these two mathematical
theories are too different from each other to work jointly.
Remark that the function space $L_{k}^{\infty}$ is suitable from the following viewpoint. The product of
two $L^{\infty}$ functions belongs to $L^{\infty}$ , and the composite function $f(g(x))$ of bounded continuous
function $f(y)$ and $L^{\infty}$ function is also in $L^{\infty}$ . On the other hand we note that, in $H^{k}$ space, it
seem difficult for us to construct the evolution solutions, since Sobolev’s lemma, which we use
$\mathrm{i}\mathrm{n}$ $H^{k}$ space, does not work well if we consider the product operation of functions. We can refer
M.E.Taylor [10] and literatures in Mathematical Reviews [11] in 1993-2000.

2. Statement of results

2.1. Statement of Definitions and Lemma 1

First we give Notations, Definitions and their remarks concerning the function spaces related
to $L_{k-}^{\infty}k=1,2$ , $\cdots$ , $n$ .

Notation 1.
1) $v\in B^{k}(\mathrm{R}^{n})$ , $k=0,1,2$ , $\ldots$ , means that $v$ is continuous and bounded in $\mathrm{R}^{n}$ up to k-th
order derivatves. $B$ stands for $B^{0}$ . The space $B^{k}(\mathrm{R}^{n})$ is aBanach space with norm defined by

$|v|_{k,\Omega} \equiv\sum_{|\alpha|\leq k}\sup_{x\in\Omega}|\frac{\partial^{|\alpha|}v}{\partial x^{\alpha}}(x)|$ .

2) Let $B$ be afunction space with topology. $u(t, \cdot)\in C^{k}([0, T);B)$ means that $u(t$ , $\cdot$ $)$ is $k$ times
continuously differentiable in $t\in[0, T)$ with values in $B$ .

$\mathrm{e}\mathrm{x}\mathrm{a}\mathrm{m}\mathrm{p}11\mathrm{e}\frac{\partial v\mathrm{n}}{\partial x}\in L^{\infty}(\mathrm{R}^{n})\mathrm{m}\mathrm{e}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{s}3)\mathrm{W}\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{e}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\frac{\mathrm{s}_{\partial v}\mathrm{p}}{\partial x_{J}}\in L^{\infty}(\mathrm{R}^{n})\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}111j=1,$

$2.n\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\mathrm{d}\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

by the same notation, for

4) For $v\in L_{1\mathrm{o}\mathrm{c}}^{1}$ , $[\mathrm{v}]\mathrm{t}(\mathrm{x})$ stands for the mean value of in the $\epsilon$ neighborhood of $x\in \mathrm{R}^{n}$ given by

$[v]_{\epsilon}(x)= \frac{1}{|D(\epsilon)|}\int_{D(x,\epsilon)}v(y)dy$ , $\epsilon>0$ ,

where $|D(\epsilon)|$ is the volume of $D(x, \epsilon)=\{y;||y-x||\equiv(\sum(yi-xi)^{2})^{1/2}\leq\epsilon\}$. The density theorem
of Lebesgue says that $\lim_{\epsilonarrow 0}[v]_{\epsilon}(x)$ equals the given $v(x)$ almost everywhere and $\lim_{\epsilonarrow 0}[v]_{\epsilon}=v$ in the
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topology of $L^{\mathrm{o}\mathrm{o}}$ .
5) For convenience we call $\mathrm{l}\mathrm{i}\mathrm{m}[v].(\mathrm{z})$ the standart pointwise representation and denote it by
$[v](\mathrm{z})\ovalbox{\tt\small REJECT}$

$\mathrm{c}\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT} \mathrm{o}\ovalbox{\tt\small REJECT} \mathrm{I}}(_{1}\ovalbox{\tt\small REJECT}_{\mathrm{c}}\mathrm{J}_{D(x_{\ovalbox{\tt\small REJECT}}\mathrm{e})}v(y)\ovalbox{\tt\small REJECT}$

Definition 1. $v\in L^{\infty}(\mathrm{R}^{n})$ means that the function $v$ is an essentially bounded measurable
function defined in $\mathrm{R}^{n}$ , namely there exists aset $e\subset \mathrm{R}^{n}$ whose measure is zero, such that $v$ is
bounded in $\mathrm{R}^{n}-e$ . If $v$ belongs to $L^{\infty}(\Omega)$ up to $k$-th derivatives in the sense of distribution for
non-negative integer $k$ , we note $v\in L_{k}^{\infty}(\Omega)$ and the norm of $L_{k}^{\infty}(\Omega)$ is defined by $||v||_{L_{k}^{\infty}(\Omega)}=$

$( \sum||\frac{\partial^{|\alpha|}u}{\partial x^{\alpha}}||_{L(\Omega)}^{2}\infty)^{1/2}$ . $L^{\infty}$ means $L_{0}^{\infty}$ .
$|\alpha|\leq k$

Definition 1’. Let us say that $u(t$ , $\cdot$ $)$ is cotinuous in the space $L_{k}^{\infty}(\mathrm{R}^{n})$ , if the following two
conditions are satisfied.
1) the value $||u(t, \cdot)||L_{k}\infty$ i $\mathrm{s}$ continuous in $t$ , i.e. $||u(t, \cdot)||_{L_{k}(\mathrm{R}^{n})}\infty\in C^{0}([0, T);R)$ .
2) $u(t$ . $\cdot$ $)$ is continuous in local $L_{k}^{1}$ . More precisely $u\in C^{0}([0,T);L_{k}^{1}(D_{m}))$ , for any $m\in \mathrm{N}$ ,
where $D_{m}=\{x\in \mathrm{R}^{n};|x|\leq m\}$ .

Later in Lemma 3we see the meaning of the topology in more general case.

Remark 1. We do not regard that $L_{k}^{\infty}(\mathrm{R}^{n})$ , $k=1,2$ , $\ldots$ , is aBanach space with usual norm.
The $L^{\infty}(\mathrm{R}^{n})$ norm of $v$ is given also by

$||v||_{L^{\infty}(\mathrm{R}^{n})}= \sup_{x\in \mathrm{R}^{n}}|\lim_{\epsilonarrow 0}[v]_{\epsilon}(x)|$ .

Here $[v]_{\epsilon}(x)$ is the mean value of $v$ in the $\epsilon$ neighbourhood of $x\in \mathrm{R}^{n}$ given by

$[v]_{\epsilon}(x)= \frac{1}{|D(\epsilon)|}\int_{D(x,\epsilon)}v(y)dy$ , $\epsilon>0$ ,

where $|D(\epsilon)|$ is the volume of $D(x, \epsilon)=\{y;||y-x||\equiv(\sum(yi-xi)^{2})^{1/2}\leq\epsilon\}$ . For any $\epsilon>0$ , $[v]_{\epsilon}(x)$

is Lipshitz continuous in $x$ . The theorem of Lebesgue says that $\lim_{\epsilonarrow 0}[v]_{\epsilon}(x)$ equals the given $v(x)$

almost everywhere and $\lim_{\epsilonarrow 0}[v]_{\epsilon}=v$ in the topology of $L^{\infty}$ . For convenience we call $\lim_{\epsilonarrow 0}[v]_{\epsilon}(x)$

the standart pointwise representation and denote it by $[v](x)= \lim_{\epsilonarrow 0}\frac{1}{|D(\epsilon)|}\int_{D(x,\epsilon)}v(y)dy$. Note

that even if the limit $[v](x)$ does not exist for $x\in e$ , where $m(e)=0$ , we have

$-||v||_{L(\mathrm{R}^{n})} \infty\leq\lim_{\epsilonarrow}\inf_{0}[v]_{\epsilon}(x)\leq \mathrm{J}\mathrm{i}\mathrm{m}\sup_{\epsilonarrow 0}[v]_{\epsilon}(x)\leq||v||_{L^{\infty}(\mathrm{R}^{n})}$, $v\in L^{\infty}(\mathrm{R}^{n})$ ,

for all $x$ . Note also that for $v$ , $w\in L^{\infty}(\mathrm{R}^{n})$

$[vw](x)=v(x)w(x)=[v](x)[w](x)$

holds almost everywhere in Rn. For $v\in L_{1}^{\infty}(\mathrm{R}^{n})$ and $\epsilon>0$ , Lebesgue’s bounded convergence
theorem gives $\frac{\partial[v]}{\partial x_{k}}‘(x)$ $=[ \frac{\partial v}{\partial x_{k}}]_{\epsilon}(x)$ , $k=1,2$ , $\ldots$ , $n,$ . Hence making $\epsilon$ tend to zero we have, for
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$v\in L_{1}^{\infty}(\mathrm{R}^{n})$ , $\frac{\partial[v]}{\partial x_{k}}(x)=[\frac{\partial v}{\partial x_{k}}](x)$ in the sense of distribution, in other word, for almost everywhere

in $\mathrm{R}^{n}$ . For $k\in \mathrm{N}$ , the $L_{k}^{\infty}(\mathrm{R}^{n})$ norm of $v$ is given by $||v||L_{k} \infty(\mathrm{R}^{n})\equiv\sum||\frac{\partial^{\alpha}v}{\partial x^{\alpha}}||L\infty(\mathrm{R}^{n})$. Therefore
$|\alpha|\leq k$

$[v]_{\epsilon}$ converges to $v$ in $L_{k}^{\infty}$ if $v$ in $L_{k}^{\infty}$ . However $||[v]_{\epsilon}-v||_{L\infty}$ does not converges to zero as we
see easily for the Heaviside function $v=H(x)$ . Note also that $[v]_{\epsilon}$ converges to $v$ in $L_{k}^{\infty}(\mathrm{R}^{n})$

space , if $v$ belongs to $L_{k}^{\infty}(\mathrm{R}^{n})$ . Remark also that $v\in L_{1}^{\infty}(\mathrm{R}^{n})$ implies that $[v](x)$ is Lipschitz
continuous, (cf. Lemma 1below.)

Now we state the key lemma in this paper.

Lemma 1. Let $v$ belong to $L_{1}^{\infty}(\mathrm{R}^{n})$ . Then we have the following three assertions.
1) The standart poin rwise representation $[v](x)= \lim_{\epsilonarrow 0}v_{\epsilon}(x)$ is a Lipschitz continuous function

defined on $\mathrm{R}^{n}$ , where the Lipschitz constant is less than $\sum_{j=1}^{n}||\frac{\partial v}{\partial x_{j}}||_{L^{\infty}(\mathrm{R}^{n})}$ .

2) Let $C=\{(x_{1}(r), x_{2}(r), \ldots, x_{n}(r));0\leq r\leq 1\}$ be a curve defined by $Xj\{r)\in L_{1}^{\infty}([0,1])$ , $j=$
$1$ , ‘2, $\ldots$ , $n$ , satisfying $||1/ \sum_{j=1}^{n}|_{\vec{d\mathrm{r}}}^{dx}|||_{L}\infty<\infty$ . Then we have the formula

(.3) $[v](x(1))-[v](x(0))= \lim_{\epsilonarrow 0}\int_{0}^{1}\sum_{j=1}^{n}[\frac{\partial v}{\partial x_{j}}]_{\epsilon}(x(r))\frac{dx_{j}}{dr}(r)dr\equiv\lim_{\epsilonarrow 0}\int_{C}\sum_{j=1}^{n}\frac{\partial[v]_{\epsilon}}{\partial x_{j}}(x)dx_{j}$.

3) Let $S$ be a two dimensional surface $S=\{x(s, t)=(x_{1}(s, t), \ldots, x_{n}(s, t));(s, t)\in D\}$ satisfy-
ing $x_{k}(s, t)\in L_{1}^{\infty}(D)$ and $||1/ \sum_{j,k}|\frac{\partial(x_{J},x_{k})}{\partial(s,t)}|||_{L\infty}<\infty$, where $\partial D$ is piecewise smooth. $C$ is $a$

closed curve defined by $C=\{x(r)=x(s(r), t(r));r\in[0,1], (s(0), t(0))=(s(1), t(1))\}$ . ’ which
satisfies $as=C$, $s(r)\in L_{1}^{\infty}([0,1])$ , $t(r)\in L_{1}^{\infty}([0,1])$ ayid $||1/(| \frac{ds}{d\mathrm{r}}|+|\frac{dt}{d\mathrm{r}}|)||_{L}\infty<\infty$ . Then we
have, for any $j\in\{1,2, \ldots, n\}$ ,
$(3’)$

$\int_{C}[v](x(.\mathrm{q}))dxj=\lim_{\epsilonarrow 0}\int\int_{S}d[v]_{\epsilon j}\wedge dx\equiv\lim_{\epsilonarrow 0}\int\int_{D}(\frac{\partial[v]_{\epsilon}(x(s,t))}{\partial s}\frac{\partial x_{j}}{\partial t}-\frac{\partial[v]_{\epsilon}(x(s,t))}{\partial t}\frac{\partial x_{j}}{\partial s})$ dsdt,

Note that, in (3) and $(3’)$ , we can replace $[v]_{\epsilon}$ by $v_{\epsilon}=v([x]_{\epsilon}(t, s))$ if $v$ , which is continuously
diffe rentiable.

Definition 2. Acontinuous function $\Phi(t, y)$ defined on $[0, T)$ $\cross \mathrm{R}^{n}$ is said to be a(general)
flow in $R^{n}$ , if the following conditions are satisfied :
(1) $\Phi(0, y)\equiv y$ for all $y\in \mathrm{R}^{n}$ .
(2) $\frac{\partial}{\partial t}\Phi(t, \cdot)\in L_{1}^{\infty}([0, T)\cross(\mathrm{R}^{n}))\cap C^{0}([0, T)$ : $L_{1}^{\infty}(\mathrm{R}^{n}))$ .
(3) $x=\Phi(t, y)$ is homeomorgh from $y\in \mathrm{R}^{n}$ to $x\in \mathrm{R}^{n}$ for any $t\in[0, T)$ .
(4) The inverse $y=\Phi^{(-1)}(t, x)$ satisfies also (2) replaced $y$ by $x$ .

Lemma 2. Suppose that $\Phi(t, y)$ is a flow satisfying the conditions in Definition 2. Then we
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$( \frac{\partial\Phi}{\partial y}(t, y))(\frac{\partial\Phi^{(-1)}}{\partial x}(t, \Phi(t, y)))=1$,

where Iis the identity matrix almost everywhere in $\mathrm{R}^{n}$ for $t\in[0, T)$ .

Lemma 3.
1) Suppose that $U(t;y)$ is a continuous function of $t\in[0, T)$ with values in $L^{\infty}(\mathrm{R}^{n})$ , namely
$U(t;y)\in C^{0}([0, T);L^{\infty}(\mathrm{R}^{n}))$ , where the topology of $L^{\infty}(\mathrm{R}^{n})$ is given in Definition 1. Assume
that $\Phi(t, y)$ is a general flow given by Definition 2. Then $u(t, x)$ defined by $U(t;\Phi^{(-1)}(t, x))$ is
a contimuous function of $t$ in the space $L^{\infty}(\mathrm{R}^{n})$ .
2) The space $L_{k}^{\infty}(\mathrm{R}^{n})$ , $k=1,2$ , $\ldots$ , is complete in the following sense. If asequence $\{v_{m}\}_{m=1}^{\infty}$

in $L_{k}^{\infty}$ satisfy two conditions:
1) $\{||v_{m}||_{L_{k}(\mathrm{R}^{n})}\infty\}_{m=1}^{\infty}$ is auniformly bounded sequence in R.
2) $\{v_{m}\}_{m=1}^{\infty}$ is aCauchy sequence in $L_{k}^{1}(D_{m})$ for any $m\in \mathrm{N}$ .
Then there exists alimit $v_{0}\in L_{k}^{\infty}(\mathrm{R}^{n})$ of $\{v_{n}\}$ in the above topologyin the above topology,
more precisely we have $||v_{0}||L_{k}\infty\leq\varliminf||v_{k}||L_{k}\infty$ and $\lim||v_{0}-v_{k}||_{L_{k}^{1}(D_{m})}$ for all $m\in \mathrm{N}$ .

2.2. Statement of Theorems

Now we introduce anotation of the domain:

$G(\nu, \mu)=\mathrm{R}^{n}\cross(-\nu, \nu)\cross(-\mu, \mu)^{n}$ , $\mu>0$ , $\nu>0$ ,

and note also
$\mathrm{G}(\mathrm{N})=\mathrm{G}(\mathrm{N})N)$ , $N\in \mathrm{N}$ , $G(\infty)=\mathrm{R}^{n}\cross$ $\mathrm{R}\cross \mathrm{R}^{n}$

Here we point out two examples which serve our convenience of explanation.

(Example 1) $H(t, x, u,p)= \sum_{k=1}^{n}p_{k}^{2}$ ,

(Example 2) $H(t, x, u,p)= \sum_{k=1}^{n}ak(x)p^{2}k+b(x)u^{2}$ ,

where $ak(x)$ and $b(x)$ are bounded and smooth.

Now we state

Theorem 1.

Let $H(t, x, u,p)$ be a real valued function defined in $\Omega\equiv[0,T)\cross G(\infty)$ . And suppose that
$H(t, x, u,p)$ , $\frac{\partial H}{\partial x}(t, x, u,p)$ , $\frac{\partial H}{\partial u}(t, x, u,p)$ and $\frac{\partial H}{\partial p}(t, x, u,p)$ belong to $L_{1}^{\infty}((0, T)\cross G(N))$ for any
natural number N. Assume that $u(t, x)\in L_{2}^{\infty}((0, T)\cross \mathrm{R}^{n})$ is a solution to the Cauchy proble
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Let $\Phi(t, y)=(\Phi_{1}(t, y)$ , $\ldots$ , $\Phi_{n}(t, y))$ be an arbitrary general flow introduced in Definition 2.
We denote this flow also by

$X^{(\Phi)}(t;y)=(X_{1}^{(\Phi)}(t;y), \ldots, X_{n}^{(\Phi)}(t;y))\equiv\Phi(t, y)$ .

Now put

$P^{(\Phi)}(t;y)=(P_{1}^{(\Phi)}(t;y), \ldots, P_{n}^{(\Phi)}(t;y))\equiv(\frac{\partial u}{\partial x_{1}}(t,X^{(\Phi)}(t;y)),$
$\ldots$ , $\frac{\partial u}{\partial x_{n}}(t, X^{(\Phi)}(t;y)))$ .

Then we can verify that $X^{(\Phi)}(t)=X^{(\Phi)}(t;y)$ and $P^{(\Phi)}(t)=P^{(\Phi)}(t;y)$ satisfy the following
relations: For almost everywhere $y\in \mathrm{R}^{n}$ , there exists a subset $e_{y}$ of $[0, T)$ with measure zero so
that, if $t\not\in[0, T)-e_{y}$ , we have for $k=1,2$ , $\ldots$ , $n$

(4) $\frac{dP_{k}^{(\Phi)}}{dt}=-(\frac{\partial H}{\partial x_{k}}+\frac{\partial H}{\partial u}P_{k}^{(\Phi)})+\sum_{j=1}^{n}\frac{\partial^{2}u}{\partial x_{k}\partial x_{j}}(t, X^{(\Phi)}(t;y))(\frac{dX_{j}^{(\Phi)}}{dt}-\frac{\partial H}{\partial p_{j}})$ ,

where $\frac{dP_{k}^{(\Phi)}}{dt}=\frac{\partial P_{k}^{(\Phi)}}{\partial t}(t;y)$ , $\frac{dX_{k}^{(\Phi)}}{dt}=\frac{\partial X_{k}^{(\Phi)}}{\partial t}(t;y)$ and $\frac{\partial^{2}u}{\partial x_{k}\partial x_{j}}(t, X^{(\Phi)}(t;y))$ are bounded measurable

in $t$ , and other functions in the right side $\frac{\partial H}{\partial x_{k}}=\frac{\partial H}{\partial x_{k}}(t, X^{(\Phi)}(t;y)$ , $U^{(\Phi)}(t;y)$ , $P^{(\Phi)}(t;y))$ , etc. are
continuous in $t$ .

Now we give aspecial flow which is intimately related to the problem (1).

Proposition 1. Suppose that $H(t, x, u, p)$ satisfies the conditions in Theorem 1. Let $u(t, x)\in$

$L_{2}^{\mathrm{c}\mathrm{o}}((0, T)\cross \mathrm{R}\mathrm{n})$ be a solution to the problem (1). Assume that $X(t;y)$ solves the initial value
problem with parameters $(y_{1}, y_{2}, \ldots, y_{n})=y\in \mathrm{R}^{n}$ for the following system of ordinary differen-
tial equations :

(5) $\{$

$\frac{dX_{k}}{dt}=H_{pk}$ ($t$ , $X(t)$ , $u(t, X(t))$ , $\frac{\partial u}{\partial x}(t, X(t))$ ) : $t\in(0, T)$ ,

$X_{k}(0)=y_{k}$ , $y_{k}\in \mathrm{R}$ , $k=1,2$ , $\ldots$ , $n$ .

Then $\Phi(t, y)\equiv X(t;y)$ satisfies the conditions of the general flow given in Definition 2.

In order to state Theorem 2concerning the apriori estimate, we introduce the following

notations.

(6) $\nu(t)=||u(t, \cdot)||_{L_{0}^{\infty}(\mathrm{R}^{n})}$ , $\mu(t)=\max_{k}||\frac{\partial u}{\partial x_{k}}(t, \cdot)||_{L_{0}^{\infty}(\mathrm{R}^{n})}$ ,

which means the quantity of the solution in $L_{1}^{\infty}$ norm, and

$(6’)$ $\{$

$M_{1}(t, \nu, \mu)=||-H(t, x, u,p)+\sum_{j}p_{j}H_{p_{j}}(t, x, u,p)||_{L_{0}^{\infty}(G(\nu,\mu))}$
,

$M_{2}(t, \nu, \mu)=\sum_{j}||H_{x_{j}}(t, x, u,p)+p_{j}H_{u}(t, x, u,p)||_{L_{0}^{\infty}(G(\nu,\mu))}$
,
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that stand for the maximum of the rate of increase of $||\mathrm{t}\mathrm{z}(\mathrm{X},$
$\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}|_{\mathrm{Z}(\mathrm{R}^{\mathrm{n}})}\ovalbox{\tt\small REJECT}\circ$ . Under the assumption on

H in Theorem 2below, we can verify, by virtue of Lemma 1, that the function $M_{;}(t,$ li, P) , i $\ovalbox{\tt\small REJECT}$

1,2, is verified to be continuous in t and Lipschitz continuous in $\#$ and p.

Theorem 2.

Suppose that $u\in L_{2}^{\infty}([0, T)\cross \mathrm{R}^{n})$ is a solution to the Cauchy problem for nonlinear hyper-
bolic equation in (1). The real valued function $H(t, x, u,p)$ and its derivatives $\frac{\partial H}{\partial u}(t, x, u, p)$

$\frac{\partial H}{\partial x_{J}}(t, x, u,p)$ and $\frac{\partial H}{\partial p_{f}}(t, x, u,p)$ , $j=1,2$ , $\cdots$ , $n$ , are assumed to belong to $L_{1}^{\infty}([0, T)\cross G(N))$ for
any natural number N. Then the solution $u(t$ , $\cdot$ $)$ and its first order derivatives $\frac{\partial u}{\partial x_{J}}(t, \cdot)$ , $j=$
$1,2$ , $\ldots$ , $n$ , are estimated as follows:
$(E_{1})$ $\nu(t)\leq \mathcal{U}(t)$ , $\mu(t)\leq \mathcal{P}(t)$ , $0\leq t<T’$ ,

where $(\mathcal{U}(t), \mathcal{P}(t))$ is the unique solution to the comparison Cauchy problem for the following
system of $o$ rdinary differential equations:

$(C-P)$ $\{$

$\frac{M(t)}{dt}=M_{1}(t,\mathcal{U}(t),$ $\mathcal{P}(t))$

$\frac{d\mathcal{P}(t)}{dt}=M_{2}(t,\mathcal{U}(t),$ $P(t))$

$\mathcal{U}(0)=\nu(0)$ , $\mathcal{P}(0)=\mu(0)$ ,

Here $T’$ stands for the estimate of the lifespan of the solution $(\mathcal{U}(t), \mathrm{G}(\mathrm{N}))$ . $M_{1}=M_{1}(t, \nu, \mu)$

and $M_{2}=M_{2}(t, \nu,\mu)$ are given in $(6’)$ . We have also the precise estimate

$(E_{1}’)$ $|\nu(t)-\nu(t’)|\leq|\mathcal{U}(t, t’)-\nu(t’)|$ , $|\mu(t)-\mu(t’)|\leq|\mathcal{P}(t, t’)-\mu(t’)|$ , $0<t’<t<T’$ ,

where $(\mathcal{U}(t, t’)$ , $\mathcal{P}(t, t’))$ is the solution to the problem $(C-P)$ replaced the intial plain $t=0$ and
the initial data $(\nu(0),\mu(0)$ respectively by $t=t’$ and $(\mathcal{U}(t’, t’),$ $\mathcal{P}(t’, t’))=(\nu(t’), \mu(t’))$ . We have
the similar result even if we replace $M_{1}$ and $M_{2}$ by larger functions $\overline{M}_{1}$ and $\overline{M}_{2}$ .

Corollary. Note that the above apriori estimate involves the uniqueness of the solution $u$

belonging to $L_{2}^{\infty}((0, T)\cross \mathrm{R}^{n})$ for the problem (1). The continuous dependence of the solution
on the intial data is verified also at the same time.

For the statement of the existence theorem, we introduce the notation

(S) $S(t)= \sum_{k,j=1}^{n}||\frac{\partial^{2}u}{\partial x_{k}\partial x_{j}}(t, \cdot)||_{L_{0}}\infty$ .

Theorem 3.

Assume that the real valued function $H(t,$x, u,p) belongs to $L_{2}^{\infty}([0, T)\cross G(N))$ for any nat-
ural number N. Assume that the initial data $u_{0}(x)$ belongs to $L_{2}^{\infty}(\mathrm{R}^{n})$ . Then there exists $a$
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positive constant $T$ depending on $||u_{0}||_{L_{1}}\infty$ and $H(t, x, u,p)$ , such that the Cauchy problem (1)

has the unique solution $u(t, x)$ belonging to $k=0\cap^{2}C^{k}([0, T);L_{2-k}^{\infty}(\mathrm{R}^{n}))$ . Moreover we can estimate

the second derivatives with respect to $x$ as follows. For any $T’$ smaller than $T$ , there exists $a$

number $M$ such that
$(E_{2})$ $e^{-M(t-s)}\mathrm{S}$ (sj $\leq S(t)\leq e^{M(t-s)}S(s)$ , $0\leq s<t\leq T’$ .
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