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NONOSCILLATION THEOREMS FOR SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS
OF EULER TYPE

RARKY BRI 4;1 %88 (JITSURO SUGIE)
BiEAY BATETISHEA LM MA (YAMAOKA NAOTO)

1. INTRODUCTION

The purpose of this paper is to improve nonoscillation criteria for the nonlinear differ-
ential equation

22" + g(z) = 0, t>0, (1.1)

where g(z) satisfies a suitable smoothness condition for the uniqueness of solutions of the
initial value problem and the signum condition

zg(z) >0 if z#0. (1.2)

As already has been shown in [3], under the assumption (1.2), every solution of (1.1) is
continuable in the future. Thus, we may investigate the oscillatory behavoir of solutions of
(1.1). A nontrivial solution z(t) of (1.1) is said to be oscillatory if there exists a sequence
{tn} tending to oo such that z(t,) = 0. Otherwise, it is said to be nonoscillatory. Equation
(1.1) is said to be oscillatory (resp., nonoscillatory) in case all nontrivial solutions are
oscillatory (resp., nonoscillatory).

When g(z) = Az, equation (1.1) becomes the famous Euler differential equation and it is
well known that (1.1) is oscillatory if A > 1/4 and is nonoscillatory if A < 1/4. In this case,
equation (1.1) does not allow the coexistence of oscillatory solutions and nonoscillatory
solutions.

On the contrary, in the case that g(z) is nonlinear, it is possible that equation (1.1)
has both oscillatory solutions and nonoscillatory solutions at the same time because of
lack of Sturm’s separation theorem. However, Sugie and Hara [3] showed that there is no
possibility of the coexistence, that is, if g(z)/z > A with A > 1/4, then equation (1.1)
is oscillatory; and if g(z)/z < 1/4, then (1.1) is nonoscillatory (see also [5]). They also
pointed out that all nontrivial solutions of (1.1) have a tendency to be oscillatory as g(z)/z
grows larger in some sense and the most delicate case in the oscillation problem for equation
(1.1) is

g(z) 1

T . 4

Recently, transforming equation (1.1) into a system of Liénard type and using phase

plane analysis of the Liénard system, Sugie and Kita [4] discussed the delicate problem
and extended the results above as follows:

as |z| = oo. (1.3)

THEOREM A. Assume (1.2) and suppose that there exists a A with A > 1/4 such that
9(z) 1 A

>4
z ~ 4 (2log|z|)?
for |z| sufficiently large. Then equation (1.1) is oscillatory.



225

THEOREM B. Assume (1.2) and suppose that
g(z) _1 1
IV el -
z =17 T6(log[a])?
for £ >0 or z <0, |z| sufficiently large. Then equation (1.1) is nonoscillatory.

Theorems A and B can be applied to the most part of (1.3). Unfortunately, however,
they are inapplicable to the case

1 1
(21og |z|)? {g(“’) - Z} N7 as ol = oo (1.4)
Note that (1.4) implies (1.3). Thus, the subcase (1.4) of (1.3) remains unsetted. Our
problem has become more and more delicate.

In this paper, we give an infinite sequence of nonoscillation theorems which is applied
even to the case (1.4). To this end, we introduce some condensed notation. Write

Li(z) =1, Lpi(z) = Ln(x) la(z), n=12---,
where
li(z) = 2log z, Lo (z) = log{l.(2)},
and set
0= 2 iy

Define ey = 1 and e, = exp(e,—1). Then we have

lnsi(z) =log{l,(z)} >0 for z > \/e,,

and therefore, the function sequences {L,(z)}, {ln(z)} and {S,(z)} are well-defined for a
sufficiently large . Our main result is stated in the following:

THEOREM 1.1. Assume (1.2) and suppose that there ezists a positive integer n such
that

T 1
19 < Zsu(lel) (1.5)
for >0 or z <0, |z| sufficiently large. Then equation (1.1) is nonoscillatory.

Remark 1.2. If n = 1, then condition (1.5) becomes g(z)/z < 1/4 for |z| sufficiently
large. Also, Theorem 1.1 coincides with Theorem B when n = 2.

2. GENERAL SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS OF EULER TYPE

Consider the Riemann-Weber version of Euler differential equation

" 1 1 ) .
(refer to [1]). Then we see that equation (F); has the general solution
o {\/E{Kl(log ) + Ka(logt)' ) if 8#1/4,
y(t) =

Vitlogt{K; + K4log (logt)} if 6 =1/4,
where K; (i = 1,2, 3,4) are arbitrary constants and z is the root of
z(1—-2z)=4. (2.2)

(2.1)
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From (2.1) we see that all nontrivial solutions of (F), are nonoscillatory when § < 1/4.
In case & > 1/4, the characteristic equation (2.2) has conjugate roots z = 1/2 £ ia/2,
where a = /48 — 1. Hence, by Euler’s formula, the real solution of (E); can be written as

y(t) = \/Zgg_t- {k1 Ccos (‘—21- log (log t)) + kg sin (% log (log t)) } .

If (ky, k2) = (0,0), then y(t) is the trivial solution. On the other hand, if (ki, k2) # (0,0),
then

y(t) = k3y/tlogtsin (% log (logt) + ,3),
where k3 = \/k?+k # 0, sinf8 = ki/ks and cos 3 = ky/ks. Thus, equation (E); is
classified into two types as follows:

PROPOSITION 2.1. If § > 1/4, then equation (E), s oscillatory, and otherwise it is
nonoscillatory.

Let us regard the most simple Euler differential equation

0
v+ 7y = 0 (E),

as the first stage. Then equation (E). corresponds to the second stage. We go on to the
nth stage of linear differential equations of Euler type. For this purpose, let

log,t =t, log, t = log (log,,_, t), n=12---,

and consider
1n=2 k -2 n—1 -2
y”+{22( 10g.-t) +5(Hlog,-t) }y=0- (E)n
k=0 “i=0 1=0

Then we have the following formula.

PROPOSITION 2.2. Equation (E), with n > 2 has the general solution

= {( n2log, 1)/ Ky (10g,_, )" + Kallog,_, )17} if 67 1/4,
( 2o log; t)l/z{Ka + K, log, t} if 6=1/4,

where K; (i = 1,2,3,4) are arbitrary constants and z is the root of the characteristic
equation (2.2).

Proof. We use mathematical induction on n. Let n = 2. Since logyt = ¢, log, t = logt
and log, t = log (logt), equation (E), becomes (E),; and the function y(t) satisfies (2.1).
Hence, the assertion is true for n = 2.

Assume the assertion is true for n = p > 2 and consider equation (E), with n =p + 1.
Changing variable ¢ = e*, we can rewrite equation (E)p41 as

ii(s) — a(s) + tﬁ{%’f ( f[ log; t)_2+ 6( ﬁ log; t)_z}u(s) =0,

k=0 “i=0 =0
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where "= d/ds and u(s) = y(e®) = y(t). Arranging the left-hand of the above equality, we
have

ii(s) — i(s) +t2[ {(Hlog, ) +Z(f[10g, ) 2}+6(ﬁlog,.t)_2]u(s)

i=0 =0

= ii(s) — u(s) + { + = z (Hlog, ) +5(i=f{log,-t)_2}u(s)

p—l

= ii(s) — u(s) + —u(s) + { Z ('H log;_, s) 2+ t5(i=]:"’lllogi_1 s)_2}u(s)
= ii(s) — u(s) + u(s) + { }: (.I:Io log; ) + 6<Elogi s)_2}u(s)

p—-2 p-1 -2
= i(s) — u(s) + —u(s) + {4 > (H log; s ) + 6( I los; s) }u(s).
k=0 \i=0 i=0
Hence, equation (E)p4; is transformed into the equation
p—2 -2 p—1 -
it(s) —u(s) + u(s) + { > (H log; s ) + 6( I1 log; s) }u(s) =0.
k=0 ‘i=0 i=0

By setting w(s) = u(s) exp(—s/ 2), this equation becomes

w(s) + { Z (Hlog, ) 2+ J(Ii:_[llog,- s>—2}w(s) =0

=0

because
w(s) = {u(s) —u(s) + u(s)} exp(—s/2),

and therefore, w(s) satisfies equation (E),. Hence, by the inductive assumption, we see
that

w(s) = {(Hp-2 o log; s ) 2{KI(Ing__1 s)* + K (log,_, 3)1-—z} if 6 1/4,
(1223 1og; s)*{ Ko + K log, 5} if §=1/4.

Since y(t) = w(s) exp(s/2) = w(logt)v/t, we have

y(t) = (pI:I log; (log t))m{K 1(log,_;(logt))* + K»(log,_, (log t))'~*} ¢"/2

=0

p—2 1/2 0
= (T togien t) {K1(l0g, t)* + Ka(log, t)"~*} (logy t)"

1=0 .

-1 \1/2 .
= (H log; t) {Kl(logp t)* + Kg(logp t) —z}

1=0
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if § # 1/4 and

1 = (Tt "{5 + o o0}

1=0

p-1 1/2
p—d ( H log‘+1 t) {K3 + K4 logp+1 t} (logo t)1/2

=0

P 1/2
_ ( I] log, t) {Ks + Kylog,y, )

=0

if § = 1/4. Thus, the assertion is also true for n = p + 1. This completes the proof. O
By Proposition 2.2, we can classify equation (E), into two types as follows:
PROPOSITION 2.3. If § > 1/4, then equation (E), is oscillatory, and otherwise it is

nonoscillatory.

3. POSITIVE ORBITS OF A LIENARD SYSTEM

To prove our main result, Theorem 1.1, we will prepare an important lemma in this
section. Changing variable ¢t = e°, we can transform equation (1.1) into the equation

i—u+g(u) =0, s €R,
which is equivalent to the planar system
u=v+u,
b= —g(u) (31)

System (3.1) is of Liénard type. Sugie and Hara [3, Lemma 4.1] proved that all nontrivial
solutions of (3.1) are unbounded.

We call the projection of a positive semitrajectory of (3.1) onto the phase plane a positive
orbit. Under the assumption (1.2), the unique equilibrium of (3.1) is the origin, in other
words, every solution is nontrivial except the zero solution. Taking the vector field of (3.1)
into account, we see that if equation (1.1) has a nontrivial oscillatory solution z(t), then
the positive orbit of (3.1) corresponding to z(t) rotates around the origin clockwise.

Numerous studies have been made on positive orbits of more general Liénard systems.
There is a possibility that systems of Liénard type have both positive orbits rotating
around the origin clockwise and positive orbits running to infinity, to put it another way,
such systems have both oscillatory solutions and nonoscillatory solutions at the same time
(for example, see [2]). As shown below, however, it is impossible that both oscillatory
solutions and nonoscillatory solutions coexist in system (3.1). From this point of view, the
following lemma plays the same role of Sturm’s separation theorem in linear differential
equations.

LEMMA 3.1. Under the assumption (1.2), if equation (1.1) has a nontrivial oscillatory
solution, ‘then all nontrivial positive orbits of (3.1) keep on rotating around the origin
clockwise.

Proof. Let (u(s), v(s)) be a nontrivial oscillatory solution of (3.1) and let A= (u(s0), v(s0))
Then it follows from Lemma 4.1 in [3] that (u(s),v(s)) is unbounded. Define a Liapunov
function

V(u,v) = —;-vz + /oug(a)do
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and consider the level curve V(u,v) = H for any H > 0. Then there exist two points of
intersection of the curve with the straight line v = —u. In fact, the function V(u, —u) is
increasing for v > 0 and decreasing for v < 0, and

V(0,0) =0, V(u,—u) > 00 as |u| = 0.

Let (—a,a) and (b, —b) be the points of intersection, where @ > 0 and b > 0. It is clear
that numbers a and b are dependent of H and increasing with respect to H, and satisfy

a(H) — oo, b(H) — oo
as H — oo. Define a domain Dy by
Dy = {(u,v): —a<u<b and V(y,v) < H}.

Then the domain Dy becomes larger as H increases and covers the whole (u, v)-plane, that
is, :
DH1 C DH2 for Hy, > H;, U Dy = R2.

H>0
Since (u(s), v(s)) is unbounded, the positive orbit 'y(f,_l)(A) which corresponds to {u(s), v(s))
cannot stay in Dy. Hence, we choose a 7 > 0 such that (u(7),v(7)) € Df, where D§ is
the complement of Dy. From the vector field of (3.1), we see that ’yal)(A) does not cross
the lines u = b and u = —a again. We also see that v ,)(A) cannot cross the level curve
V(u,v) = H twice, because

LV (u(s),v(s) = u(s)g(u(s)) >0

by (1.2). Hence, 'y(Jg.l)(A) cannot return to Dy for s > 7. Since H is arbitrary and
(u(s), v(s)) is oscillatory, fy(“;_l)(A) keeps on rotating around the origin clockwise and tending

toward infinity. From the uniqueness of solutions for the initial value problem it follows
that all nontrivial positive orbits of (3.1) must have the same property. O

4. PROOF OF THEOREM 1.1

As mentioned in Section 1, Sugie and Hara [3] proved that Theorem 1.1 is true for n = 1,
and thus, let n > 2. We prove only the case that condition (1.5) is satisfied for z > 0
sufficiently large, because the other case is carried out by the same manner.

We first prove the special case

g(z) _ 1
= ZSn(x) (4.1)

for x > 0 sufficiently large. The proof of this case is by contradiction. Assume that
equation (1.1) with (4.1) has a nontrivial oscillatory solution. Consider system (3.1),
which is equivalent to equation (1.1). For convenience’ sake, we call it system (4.2) if g(z)
satisfies (4.1). System (4.2) coincides with the system

uU=v+u,
V= 15’ (w)u
= =75

for u > 0 sufficiently large. By the assumption of contradiction and Lemma 3.1, all
nontrivial positive orbits of (4.2) keep on rotating around the origin in clockwise direction.
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We now consider the linear differential equation
1 n—1
{ > (Hlog. ) }y =0, (4.3)
k= =0

which is equation (E), with § = 1/4. Let to be an arbitrary number with ¢, > e,_; and
define

1? V5%
p' =147 {_1+Z(Hlogzt0) }’ Yo = 2u0>0- (44)
1=
Putting K3 = yo(l'[?;ol log; to)_l/2 and K, = 0 in Proposition 2.2, we see that the function
n—1 -1/2 1/2
y(t) = yo( IT los: to) ( II log; ) (4.5)
i=0 i=0

is a nonoscillatory solution of (4.3).
n—-1 ] n—-1
Claim 1. ( I1 log; t) =) (H log; )
=0 k=1 “i=k
We prove the claim by mathematical induction. Since
(Hlog, ) (tlogt)' = logt+1—§:(Hlog, )
=0 i=k

the claim holds when n = 2. Suppose that the claim is satisfied with n = p. Then we have
P ' p-1 ! p-1 ' p-1 p-1 -1
(H log; t) = {( I log; t) logpt} = ( I log; t) log, t + ( I1 log; t)( I1 log; t)
=0 =0 =0 1=0 =0
r—1 ,p-1 P P
= {E (Hlog,-t) +1}logpt+1 =Y (Hlogit) +1
k=1

i=k k=1 ‘“i=k

Hence, the claim is also satisfied with n = p+ 1.

From Claim 1, we see that the solution y(t) satisfies the initial conditions

y(to) = o, = % 2 (]_-k[ log; to)_l

=0
In fact, we have
-1/2,n-1 -1/2,n-1 '
( H log; to) ( I1 log; t) ( I1 log; t)
1—0 =0 =0
n-—1 1/ n-1
( H log; to) ( I1 log; t) { > ( II log; ) } (4.6)
i=0 i=0 k=1 \i=k

and therefore,
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% n-1 1({ n-1 ,n-1
(to) = 2 (T logito) { S (T togito) + 1}
i=0 k=1 \i=k
Y n—-1 -1 -1 n—1 -1Y)
=—°{Z(Hlog,-to) +(Hlog,-to) }
2 iz \izo i=0
Yo n-—2 n—1 -1
- (% (Ioun) +(Toan) |
=0 ‘=0 =0
n-1
y— ( H log, to)
2 k=0 =0
Let s = logt. Then equation (4.3) is transferred into the system
U =v+u,
1722 4.7
{ + = E(Hlog, ) }u (4.7)
k-—o =0

The change of variable also transfers the solution (4.5) to (u(s),v(s)) which is represented

as
(u(s),v(s)) = (y(e*), ¥ (e')e’ — y(e")).
Using (4.5), (4.6) and the fact that log; e* = log;_,(log e®) = log;_, s, we obtain

% y((tt)) (Hlog' ) 1{nz—:l(ﬂ]:[llog,-t> +1}t—1

=0 k=1 “i=k
1 n—1 —1 1 n k-1 —1
{Z(Hlog,) (Hlog,-t) }t—l:—{Z(Hlogit) }t—l‘
=1 \i=0 i=0 2=t \io
n - 1 12 k-1 -1
e e )
k=2 2 2 k=2 “i=1
1. 1 1 1 n-2 k -1 '
_—_——+ (Hlog, ) =—~—+—E(Hlogi3) .
2= \iZo 2 2,3 \iZo

Let so = logts > e,—s. Then we get

u(so) = y(to) = ¥o, v(sp) = %{—_1 + ’S (ﬁ log; 30)"1}.

n—2 k -1 k= i=0
Claim 2. ) (H log; so) <1l
k=0 “i=0
Noticing log; so > ep—2—; for i = 0,1,--- ;n — 2, we have
k -1 k -1 1 1 n—2
(H log; So) < (H en—2—i) < < (—) ’
i=0 =0 €n-2 €

and therefore,
n—2 k -1 n—2 1 n—2 1 n-2
Z(Hlogiso> <Z(—> =(n-1) (—) <1
k=0 \i=0 k=0 \€

It turns out from Claim 2 that

(u(so),v(s0)) € Ry & {(u, v):u>0 and — %u <v< 0}.
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Miuve

v(s)
ul(s) Ny as s — 00,
we conclude that
(u(s),v(s)) € R, for s> so. (4.8)

Letting u = pcos p and v = psin p, we can transform system (4.7) into the system

: n—2 k -2
p= P{fl(‘P) - silﬂpfoﬂ Z (H log,-s) }

¢ = falp) - cos” ‘pE (Hlog. ) ,
k=0 “i=0

where

1
fi(p) = (sin p + cosp) cos p — Zsin pCos @,
1
f2(p) = —(sinp + cos p) sin p — 1 cos?p.

Let (p(s), ¢(s)) be the solution of (4.9) which corresponds to (u(s),v(s)). From (4.8) we
see that

—0* < p(s) <0 for s> sq, (4.10)

where 6* is the number satisfying 0 < §* < 7/2 and tan6* = 1/2.

Returning now to the nonlinear system (4.2), we consider the positive orbit 7} 5 (A)
starting at the point A(u(so), v(so)) at s = sg. Recall that all nontrivial orbits of (4.2)
keep on rotating around the origin clockwise, and so does 2)(A) Hence, it meets the
line v = —u/2 infinitely many times. Let s; > 8o be the first intersecting time of 7(4_2)(A)
with the line.

Consider the system

_ sinf cosf & 1 '

7 =r|f(6) - 4 k§2 {Li(rcos8)}?]|’

: cos?0 & 1 o
0=100)~ 4~ X (Lo O]

Let (r(s),8(s)) be the solution of (4.11) corresponding to 'y(“;_:,)(A). Note that the starting
point A is in the region R;. Then we see that

8(s,) = —6", —0* <8(s) <0 for so<s< 8. (4.12)

Since the function f;(#) is increasing for —6* < 6 < 0, we have
£OE) 2 i(-0) =5 for <5<y,

and therefore,

1"(8) = T(S) [f1(0(8)) - Sin0(8)40080(8) Xn: {Lk(r(s) 2089( ))}2 % (s)

k=2
for sy < s < s;. Integrating this inequality from sg to s < s1, we get

r(8) > r(80) exp {%(s — so)} for so < s < sy,
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) = V{u(s0)}? + {o(s0)}* = y\) 1+7 {- t Z (ﬁ“g' %) }

k=0 =0

1 nol gk -1\ V5t
=yo\ll+z{—1+2(ﬂlog¢to) } = Yo = 20-
k=1 Vi=1

Hence, together with (4.12), we obtain

fo + log (cos 6%)

1 V5% 2 1
s — 8g) + log 5 +log\/§—2s (4.13)

=3

log (r(s) cos0(s)) > %(s — 89) + log

for s < s < s;.
Claim 3. li(r(s)cosf(s)) > log;_ ;s for s <s<sy and :=1,2,--- ,n—1.

The proof is by mathematical induction. The claim is true for 1 = 1 because
l1(r(s) cos 0(s)) = 2log(r(s) cosf(s)) > s =logys for sp < s< s
by (4.13). Suppose that the claim is satisfied with ¢ = p. Then we have
lpr1(r(s) cosB(s)) = log {l,(r(s) cos6(s))} > log (logp_l s) = log, s

for sp < s < s1, namely, the claim is also satisfied with ¢ = p + 1.

From (4.11) and Claim 3, we conclude that

cos20(s) & 1

0(s) = f2(6(s)) - 4 2 {Li(r(s) cosf(s))}?

k=2

= f2(8(s)) _ cos” S) i (H 1i(r(s) cos §( s)))
cos 0( cos’0(s) <

> £(0(5)) - z(IIlog,ls)

- £009) - O 5 (Tog,s)

for sp < s < s;. Comparing this differential inequality and the second equation in system
(4.9), we see that

o(s) < 6(s) for sg < s < sy.
Hence, by (4.10) we obtain

0(s) > —6" for sy < s < sy,

which is a contradiction to (4.12) at s = s;. Thus, equation (1.1) is nonoscillatory in the
special case (4.1).

Next, we consider the case that (4.1) does not hold. Then there exists a sequence {xk}
tending to oo such that

o) Loy, k=12, (4.14)
T 4
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Of course, condition (1.5) is satisfied for z > 0 sufficiently large. We prove the remaining
case (4.14) by contradiction. Suppose that equation (1.1) has a nontrivial oscillatory

solution. Then, from Lemma 3.1 it turns out that all nontrivial positive orbits of
u=v+u, (4.15)
0= —g(u) '

rotate around the origin clockwise.

As proved above, all nontrivial solutions of (1.1) with (4.1) are nonoscillatory. Hence,
without loss of generality, we can choose a solution {(¢) which is positive for ¢ > T', T
sufficiently large. Since ¢(t) is a solution of (1.1) with (4.1), we have

£0(1) = ~7SCOKEH <0 for £ T,

that is, ¢'(¢) is strictly decreasing for t > T If there exists a t; > T such that {'(t;) <0,
then we can choose a t; > t; such that

¢'() <¢'(t2) <0 for t 2>ty
and therefore,
¢(t) < ¢(t2) + ¢ (t2)(t — t2) = —o0
as t = oo. This contradicts the assumption that {(t) > 0 for ¢t > T. We then conclude
that {'(¢) >0fort > T.

Consider again system (4.2) which is equivalent to (1.1) with (4.1). Let (£(s),n(s)) be
the solution of (4.2) corresponding to {(t). Then

(£(s),n(s)) = (¢(e*), ¢ (e*)e’ — C(e”)).
Since ¢(t) > 0 and ¢'(t) > 0 for t > T, we see that

(£(s),n(s)) € R, ¥ {(u,v): u>0 and v> -—u} (4.16)

and £(s) = ¢'(e*)e* > 0 for s > log T. Taking notice that system (4.2) has no equilibria in
the region R, we also see that

&(s) 200 as s — oo.

Hence, there exist an s; > 0 and a positive integer m such that
£(32) = Tm. (4.17)
For simplicity, let
uy = €(s2), vy = 1(82), B = (u1,v1) € Ry

and consider the positive orbit 7, (B), which corresponds to (£(s),n(s)). Then, from
(4.16) it follows that 'y(’;g)(B) remains in the region R;.

To compare with the positive orbit fy(’;_z)(B), we consider the positive orbit v ;5)(B).
The slopes of 7} 15)(B) and 7 5)(B) at the point B are

_9(w) _ Sa(u)u/4
v +uy’ v+

respectively. Hence, by (4.14) and (4.17) we see that both are negative and the former is

gentle than the latter. Since all nontrivial positive orbits of (4.15) go around the origin, we

also see that 7} 5 (B) crosses the boundary line v = —u of Rp. Consequently, Vi15)(B)

and 7(""1.2)(3) have a point of intersection in the region R,. Let C(uz,v;) be the first

intersecting point.
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Positive orbits 7, ;5)(B) and ¥} ;)(B) can be regarded as the graphs of v = t(u) and
v = w(u) which are solutions of the equations

d__g(w) v _ _Sawu/a
du  v+u’ du v+u
satisfying ¥(u;) = w(u1) = v, respectively. Since ¥(uz) = w(uz) = v and w(u) < Y(u)
for u; < u < uy, we have
o [, ¢ [,
wP(u) o T Ju Y(u) +u
/“2 Sn(u)u/4
< —————————
w w(u)+u
by (1.5). This is a contradiction. Thus, equation (1.1) is nonoscillatory even in the case
(4.14). We have completed the proof of Theorem 1.1. O

U = v — V2

Judging from results in Theorems A, B and our main result, it seems reasonable to infer
as follows:

CONJECTURE 4.1. Assume (1.2) and suppose that there exist a A with A > 1/4 and a
positive integer n with n > 3 such that

92) S 1o o4 —2
I > 4Sn—1(‘ |)+{Ln(|$|)}2

for |z| sufficiently large. Then equation (1.1) is oscillatory.

REFERENCES

[1] E. Hille, Non-oscillation theorems, Tran. Amer. Math. Soc. 64 (1948), 234-252.

[2] J. Sugie and T. Hara, Classification of global phase portraits of a system of Liénard
type, J. Math. Anal. Appl. 193 (1995), 264-281.

[3] J. Sugie and T. Hara, Nonlinear oscillations of second order differential equations of
Euler type, Proc. Amer. Math. Soc. 124 (1996), 3173-3181. -

[4] J. Sugie and K. Kita, Oscillation criteria for second order nonlinear differential equations

of Euler type, to appear in J. Math. Anal. Appl.
[5] J.S.W. Wong, Oscillation theorems for second-order nonlinear differential equations of
Euler type, Methods Appl. Anal. 3 (1996), 476-485.



