Ooo0o0oooOooO 12160 2001 O 243-254

243

ASYMPTOTIC PERIODIC SOLUTIONS FOR A
TWO-DIMENSIONAL LINEAR DIFFERENCE
SYSTEM WITH TWO DELAYS

FIEIXESEMFE KM # (Nagabuchi Yutaka)

1. Introduction

Consider the linear delay difference system of dimension two
Tnp1 —Tn + A(@pe+ 20k) =0, neZ,={0,1,---}, (1)

where A denotes a 2 x 2 constant real matrix and delays £ and k are
positive integers. For convenience we assume the condition ¢ < k, so
that solutions of (1) are uniquely determined by (k + 1)-initial values:
T—ky T—k+1, "'7$0€R2' . :

The system (1) is originated from the scalar difference equation

Uppl — Un +PuUnx =0, ne€Z,, (2)

which often appears, related to some population dynamics, in mahtemati-
cal biology; a necessary and sufficient condition for the asymptotic stabil-
ity of (2) was given by Levin and May [4] (see also [1;p.182], [2;p.12], [3],
and [7]). Recently, the author [6] has obtained necessary and sufficient
conditions for the asymptotic stability of (1), which improve the result
([4]) for (2) and also generalize those ([5]) for the system (1) with £ = k.
Under the assumption that the matrix A is either of the Jordan forms

) cosf —sinf . noq\
@ p(sin0 cosa)’ (i) (0 p2>’

we showed in [6] the following theorems, where p, 8, p;, p; and q are all
real constants and 8 satisfies the condition 0 < |0 < 7/2.



Thmorem 1.([6]) Suppose that A is of the form (i). Then the system
(1) is asymptotically stable if and only if

sin{(7/2—10])/({+ k + 1)}
cos{(k—€O)(n/2—|60))/(£+k+ 1)}

O0<p<

Thmorem 2.([6]) Suppose that A is of the form (ii). Then the system
(1) is asymptotically stable if and only if

sin{(7/2({ + k + 1)}
cos{m(k — £)/2(£ + k + 1)}

0<p,p2<

Theorems 1 and 2 assert that in case (i) the stability region, with £ and
k fixed, of the system (1) is given by the bounded set in the (8, p)-plane:

S1={(6,p) €R*|0<p<p,0<|f| <m/2},
and that in case (ii) it is given as the square in the (p;, p;)-plane:

Sz = {(p1, p2) € Rz|0 <p,p2<pg}

where p* and pj are the critical values in Theorems 1 and 2 respectively.

This papar investigates the behavior of solutions of (1) on the bound-
aries of the stability regions above. Even for the scalar equation (2), we
can not find such kind of results. More specifically, we are concerned
with solutions on

I'h={(0,p) €05 |p=p"}
and
T2 = {(p1, p2) € 8S;|pr or p2=pg},

corresponding to cases (i) and (ii) respectively.

We shall show that in case (i) every solution of (1) on I'; is asymptot-
ically periodic, i.e., asymptotically equivalent to some periodic solution
and that this periodic solution admits an explicit expression (Theorem
3). On the other hand, in case (ii) the behavior of solutions depends
on the form of the triangle matrix; if p; = p; and ¢ # 0, on I'; the
system (1) possesses possibly unbounded solutions besides periodic solu-
tions, and if ¢ = 0, every solution of (1) on I'; is asymptotically periodic.
We also give explicit expressions of those periodic solutions in case (ii)
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(Theorems 4 and 5). Our results particularly yield its asymptotic form
for every solution of the scalar difference equation (2) in the critical case
p = 2cos{km/(2k + 1)} (Corollary 1).

In the next section, we briefly discuss the system of first order, equiv-
alent to (1), and then give the asymptotic form of each solution of the
system (1). In section 3 we summarize distributions of the characteris-
tic roots of (1) on the boundaries of stability regions. In section 4, we
state our main results, giving explicit expressions of asymptotic periodic
solutions of (1) for each coeflicient matrix A.

2. Preliminaries

In this section we discuss the structure of solutions of the system (1).
Let {z"} C R™, m being 2(k + 1), be the sequence defined by

n tyt.,n t_n t_ny . tyfi t t
2 = (20‘7 21577 zk)"" (xn—k’ LTn—k+1y " ") x‘n) for TLGZ+.

Then it follows from (1) that

Zn+1 = t(t$n+1-—ka Ty tzm t$n+1) = t( tz?v' Tty tz;:a t(z;cl_A(zg_*'z;:—-l)))a

so that the system (1) is equivalent to the m-dimensional system of first

order: )
2" = Az", n€Zy, (3)

where A is the m x m matrix of the form

(O L O ... ... ... 0})
A= o |’ I, : the £x/{ identity matrix.
O ... ... ... ... 0 I
-A O ... =A ... O I
\ k61 )

The structure -of solutions of (3) is determined by the eigenvalues of
the matrix A. Let o(A) be the set of the eigenvalues of A, and o_, o9
and o, denote those of the eigenvalues which belong to the interior, the
boundary and the exterior of the unit disk respectively. And let P :
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C™ = ®iesouoy E()) be the projection, where E()) is the generalized
eigenspace of A associated with A € o(A). Then the solution 2" = A"2°
of (3) with initial value 2° is asymptotically equivalent to Pz" in the

sense that
|z" = P2"|| < Ce™, n €Ly,

where € is a constant such that max{|A\||) € 04} <e < 1land Cis a
positive constant depending on €. Note that Pz™ is also a solution of
(3) since P commutes with A. The solution Pz" is expressed explicitly
in terms of a basis of @yesou0, £(}) and its dual. For this, we use the
following lemma, well known in linear algebra.

Lemma 1. Let V be an m-dimensional vector space over C and T
a linear transformation on V. Then for eigenvalues A\, u € o(T), the
following hold:

(i) E*(N) C E(p)*, for A#p;

(i) ExA\) N EA)* = {0},

where E*()) is the generalized eigenspace of T*, the adjoint of T, as-
sociated with A € o(T), i.e., E*(X) = U,>; Coker (Al,, — T)", and for a
subspace W C V, WL C V* is the subspace of covectors that vanish on
W,ie, Wt={peV*|(4 ¢)=0forall g € W}.

Now let {97, -9y} and {1, #%(r)} be bases of E*(X) and E()),

~

the generalized eigenspaces of A*=tAand A associated with A € o(A)
respectively. Then the dual basis of {e2,--- ,¢ﬁ(,\)}, {1, ¥nn}, s
constructed in the following way. Assume that

ady + o+ eapybapy € E(N)* (4)
with complex numbers ¢;, -+, ¢ca(n). Then it immediately follows from
Lemma 1 (ii) that ¢; = - -- = ¢p(x) = 0. Since (4) is equivalent to

Cl(¢?a '¢'i\) +---+ Cn()\)(qs_?a 'pri‘(,\)) =0, for .7 =1,--- yn(A)a
we see that the matrix ¥*@* = ((¢}, 1) ) is nonsingular, where ¥* and
@* are n()) x n(A) matrices given by
9
WA= AE , ¢A — (¢f,..-,¢i(A))_
¢‘n()\)
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The dual basis {¢?, -, 1,[3,’:( » 7} is then obtained as
‘53\ = (-, CTJ;(A))L”'\ =clyl 4+ Cz(x)lbi(,\), (5)
where (cf,- - - ,c,’;( ») is the solution of a linear equation

(Cii,--- ,C,"Z(,\))!p/\él\ — (0, <+-,0, ,]._\, 0, -, 0) € (Cn(/\))*

J

This, together with Lemma 1(i), shows that the projection P is repre-
sented, via {¢7,- - ,¢3(,\)} and {¢},---, 2(,\)}, as follows

P= 3 (¢i\ﬁzi\ +---+ ¢2(,\)‘/;;:(,\)) ) (6)
/\60an+
and therefore the solution Pz" is given as
Pt =PA"°= ¥ (qgﬁzlk +eeet ¢ﬁm@53(x)) A0 (7)
/\GO‘OUU.'.

In particular, the solution z,, of the system (1) with initial values z_j, z_z4.
-++, g is asymptotically equivalent to the solution pr(Pz"), more pre-
cisely, ||z, —pr(Pz")|| converges exponentially to 0 as n tends to infinity,
where pr : C™~2 x C? — C? is the projection.

3. Characteristic roots in the critical cases.

In this section we consider the characteristic equation of (1) in the critical
cases mentioned in section 1. Here the coefficient matrix A of the system
(1) is assumed to be either of the forms below:

cosf —sinf p 1 O
(I)p(sina cos )’ (D (0 p)’ (IIT) (0 pz)'
The characteristic equation of (3), or equivalently (1), is given by

F()) := det(A, — A) = det((A\*! = XYL + (A  +1)4) =0,  (8)

and its roots analysis has been done in section 2 ([6]). We summarize
below the distribution of the roots of the characteristic equation (8) in
the critical cases. We first consider case (I). In this case,

F()\) — (/\k+1 _ )‘k _I_peie(/\l—k + 1))()\k+1 _ )\k +pe—i0(/\l—k + 1))



When (0, p) € Ty, we have the following lemma.

Lemma 2. Let p = p* hold. Then the equation (8) has simple roots
e'“, e~ on the unit circle, and the rest of the roots in the interior of the
unit disk, where w = (20 — 7)/({ + k + 1).

In case (II), the characteristic equation becomes
F(O\) = (W - Xk p(AF + 1)) =0.
So, when p = pj, we have the following.

Lemma 3. Let p = pg hold. Then the equation (8) has double roots
e, e~ and the rest of the roots in the interior of the unit disk, where

wo=—m/(£+k+1).
And in case (III), the equation (8) is written as

F(A) = R = 0% 4 p Xk 4+ 1) — AF 4 pp(AF + 1)) = 0.
Particularly when (p;, p2) € I'z, we get:

Lemma 4. Let (p;, p2) € I';. Then the following hold.

(a) If py = p; and 0 < p3 < p, or 0 < p; < pj and p; = pg, the equation
(8) has simple roots €'°, e™*°, and the rest of the roots in the interior
of the unit disk.

(b) If p = p; = 2cos {kn/(2k + 1)}, the equation (8) has double roots
e“o e~ with the rest of the roots in the interior of the unit disk.

Thus we see that, on the boundaries of stability regions, oo = {€¢*, e™*}
and o, = @ for case (I), and that oo = {€**, e=**} and o, = 0 for cases
(IT) and (III). In the next section we shall give explicit expressions of
asymptotic periodic solutions of (1) for each coefficient matrix A.

4. Explicit expressions of asymptotic periodic solu-
tions.

Based on the results in sections 2 and 3, we can obtain explicit expessions
of asymptotic periodic solutions of the system (1) in the critical cases.
In case (I) we have the next theorem.
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Theorem 3. Suppose that 0 < |0] < 7/2 and p = p* hold. Then the

solution z, of (1) with initial values x_x, £_g41,- -, Zo satisfies
k
z, = R(nw) Z Ki(j)z-; exponentially as n — oo,
Jj=0
where

(I + (LR(kw) + kR(fw)) tA)™", j=0;
Ky = (a+ (ER(0) & kR(60)) *AY™ - (R((E+5)) + R(k +5)0)),

1) = )
J= la e ,f;

(I + (£R(kw) + kER(Lw)) tA) ' - R((L + j)w), j=L+1,--- k.

and R(a) denotes the matrix ( cosar Tsina )

sina cosa

Proof. By Lemma 2, in this case, 0, = () and the roots on the unit circle
of the equation (8) are A := € and its conjugate X, which are simple.
Let ¢; and 9; be an eigenvector and an eigen-covector of A associated
with A. Direct calculations show that ¢; and i, are given by

(A_k(_li)\

o1

Il
>
L
.
| =
~.
N——
—
=}
~

and
,¢,1 — (A(+kp*e—i0(1, Z), . A2l+1p*e—i0(1, Z), (/\l + Ak)Alp*e-—iG(l, 2),
O+ (1, ), (1, 9))
(10)

Note that an eigenvector (an eigen-covector resp.) associated with X is

given by @; (; resp.) since A isreal. So {¢,, 1} is a basis of E(\)®E(X)
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and, from (5), its dual is given by {;Zl, E}, where v, is defined by

- 1 1
V= o T AT O F e )

It follows from (6) and (7) that the projection P : C™ — E(A\) @ E(}) is
obtained as

Y1

P = ¢1th1 + &1 %,
and that
Pz" = Mgy + X" 6 $12° = 2{Re(A"¢: 1) } 2°.
So the solution z, is asymptotically equivalent to z7, given by

*

z; = pr(Pz")

A" - —i ,
= Re 1 4 (EX* + kX)pre-if {P € 9()\(""'[\ zg R ,\2£+1K22_l‘l

+AF AR 4+ 4+ (M + A"),\Kz,‘g_l) + Kz,‘g}l ,
where K is a 2 X 2 matrix defined by < _lz ;
Now let 2§ = *(¢;, n;) and (; = §; +in; for j = 0,--- k. Note that

s 0 _ 1 € _ G
w=(51) (5)=(5%)

It then follows that
AP 9 k-1 ) C
. : * -1 /\l+k—1 J
i Re[l + (O F kX)pre® {” ’ (E ( —i(;

7=0

-1
(e )+ ()
2 (—ick-m- i,

_ Re()
- (Imc ’




where ( is the complex number

" . k-1 iy -1 i
T (O + kN)pre ™ e (D076 + DN tss) + G}

j=0 j=0

From the real representation of C, z}, is written as

-1

p(N)"(p(1) + (Lp(V)* + kp(A))p(p*e™))

k=1 -1

{otre) (o022 + S+ rs) + 5
=0 7=0

where p : C\ {0} = GL(2,R) sends a complex number a + ¢3 into the

—ﬂ * ,—10

a

matrix . Since p(p*e~*?) = *A, so

B
2t = R(nw) (12 + (eR(kw) + kR(€w)) tA)_l

2+ A(E R((E+ k= j)o)0 + 3 R((E+ —j)w)zz_eﬂ)],

7=0 7=0
obtaining the proof of Theorem 3.

Remark 1. If w/7 = (20/m—1)/(2k+1), hence 8/, is rational, then z;,
is a periodic solution of (1); otherwise the w-limit set of z};, and therefore
of z,,, is the circle at the center 0 with radius || ©5_o Ki1(5)z—;|l-

We next consider cases (II) and (III), and simply give the statement
of the results without proofs. In what follows we use the notation E;j,
meaning the 2 x 2 matrix with its (7, j)-component 1 and the others 0.
In case (II) we get:

Theorem 4. Suppose that p = p}, in case (II). Then the solution x, of
(1) with initial values z_g, T_g41," - -, To satisfies the following.

(i) If the second component of zo + p},‘( 5;_1 /\'(;foj + Ele Aé+j1'_j) is
nonzero, then z, diverges as n — oo, where Ao = €'“°;

(i) If the second component of zo +p3(2§___1 A i+ Y /\g“w_j) is
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k ' k
n = Eyy R(nwo)Y K (j)e_; + ExR(nwo)Y_ K (j)z_j,

j=0 =0

exponentially as n — oo, where

KM () = 4
KP(G) = |
with

D{Ey, + kD(R(fwo) + R(kwo)) Ern}, 5 =0;
D(R(fwo) + R(kwo)) R(jwo)

[PsEvs + D{Ls + pis(k + j — 1) (R(wo) + R(kwo)) } Era],
j = 17 e ae;

DR(jwo) [ps R(€wo) Exy + R(kuwo)Enz

+D{ I + 5 ((j = VIz + k(R(lwo) + R(kwo)) R(fwo)

+€R(kuwo)) } Ena), F=l4L ek
D?R(wo){I2 + (psk — k + &) R(kwo) + p3kR(fuwo) } Eza,
1=0
psD*{ I + (pk — k + &) R(kwo)+ pik R(fwo) }
(R(€wo) + R(kuwo)) R(jwo) Ezz, j=1,1,6
psD*{ I + (p3k — k + O)R(kwo) + pykR(8wo) }R((£ + j)wo) Enn,
j=e+1a"'1k,

-1

D = (I + pi(tR(kwo) + kR(two)))

Remark 2. Since wo/7 is rational, z}, is a periodic solution. So, in
case (II) with p = pg, the system (1) has both unbounded solutions and
asymptotic periodic solutions.

The following theorem gives explicitly asymptotic periodic solutions
arised in case (III).

Theorem 5. Suppose that (p,, p2) € T'; in case (III). Then the solution
T, starting from initial values _i, £_g41," -, Zo, satisfies the following:

(i) If p1 = pg and 0 < p, < pj, then

k ,
z, = 2E;; R(nwo) Y K3(j)Enz—;, exponentially as n — oo,

j=0
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D, 7=0;
Ks(5) =1  pD{R((k+j)wo) + R((£+ j)wo)}, G =1,---,6
PoDR((£ + j)wo), j=L+1--,k
(ii) If 0 < p; < p; and p; = p}}, then
k
z, = 2FE R(nwp) E K3(3)Eqyx_j, exponentially as n — oo;
1=0

(iii) If p; = p; = p}, then

k
zn — 2R(nwo) Y K3(j)z-;, exponentially as n — oco.
=0

As an immedieate consequence of Theorem 5 with £ = k, we have the
following Corollary, obtaining asymptotic periodic solutions of the scalar
equation (2) arised in the critical case.

Corollary 1. Let p = 2cos{kn/(sk + 1)}, the critical value for the
asymptotic stability of (2) ([4,5]), hold in the equation (2). Then the
solution u, with initial values u_g, u_z41,---,up € R satisfies

2
1 + p?k? + 2pk cos kwyq {( cos (n — k)uwo)uo

Up —

k ‘
+ Y (cos (n+ k + j)wo + pkcos (n +j)w0)u_j},

i=1

exponentially as n — oo.
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