obooooooOooo 12170 2001 0 158-164

158

Strong Normalization of Second
Order Symmetric Lambda-mu Calculus

Yoriyuki Yamagata |[JJEEZ

Department of Mathematical Science, University of Tokyo
yoriyukiCms.u-tokyo.ac. jp

RERKFHER AR

Abstract. Parigot suggested symmetric structural reduction rules for
application to p-abstraction in [7] to ensure unique representation of
data type. We prove strong normalization of second order Au-calculus
with these rules.

1 Introduction

Originally, Au-calculus was defined to clarify correspondence between classical
logic and control operators in functional programming languages. In this re-
spect, Ap-calculus seems quite successful [3] [4] [5] [10]. In addition, Parigot was
also motivated in [6] by possibility of witness extraction from classical proofs
of X9¥-sentences. Unfortunately, reduction rules of Au-calculus seems not suffi-
cient for this purpose. For example, let A(z) be an atomic formula of arithmetic
and A’(z) be its code in second order predicate logic. We represent 3z.A(z) as
VX.Vz(A(z) = X) = X in second order language, where X is a variable over
propositions. We expect that a closed normal deduction of 3x.A4’'(z) somehow
contains a unique first order term ¢ such that A(t) holds. However, consider the
following situation. Suppose that A(t) holds but A(u) does not hold. Let M be
a deduction of A’(t) represented as Au-terms. AX.\a.pf.[Blau(uy.[BlatM) is
a closed and normal deduction of 3zA’(z) but apparently contains two terms
t,u. Moreover, u is not a witness of 3zA(z). This suggests that we need addi-
tional reduction to extract the witness. In fact, Parigot proposed addition of new
reduction rules M(ua.N) = pB.N[M*/a] to solve similar problem on normal
forms of the natural number type. N[M*/a] is defined by inductively replacing
all occurrence of [@]L in N to [a]M(L[M*/a]). We will prove that adding these
rules suffices to ensure that a closed normal term of type 3zA(z) for an atomic
A(z) contains one and only one first order term ¢ and A(t) holds. Non-confluency
of this calculus could be used to analyze non-determinism in classical logic.
Obviously, to use such calculus for witness extraction, we need normalization
property of it. In addition, if we expect that reduction rules represent extraction
algorithm of witness, strong normalization is desirable. However, symmetric na-
ture of reduction of application to u-abstraction seems to prevent obvious adap-
tion of the proof of strong normalization of original Au-calculus [8]. Luke Ong
and Charles Stewart addressed strong normalization of call-by-value restriction

Lemma 5. Assume that (t:)icr,(Ai)ier is defined as Definition 6. If M €
/\:e 1 Ai, Mt; € A;. Similarly, for (T;)jes and (Aj)jes defined as Definition
6, if M € N3cy Aj, MT; € A;.

Proof. The proof goes on the same line of that of Lemma 4. We concentrate the
second order case. Let D“*(S) = A;c; Ai. Assume that « is the least ordinal
such that ¢t € D*(S). We will prove that for all L such that MTj =>; L, L € A;

holds, by induction on x and w(M).

The case where L = M'T; and M =; M'. From induction hypothesis of
w(M'), the thesis follows.

The case where M = AX.M; and L = M;[T;/X]. Since M € II}. ; A;, we
have the thesis.

The case where M = pa.M; and L = pf.Mi[py.[fl(7Ti)/a]. Let J € oA;
and K € D" (S). By induction hypothesis on x;, we have KT; € A;. From

arbitrariness of K and ki, it follows

py- (/) € o | D™ (S).

1<K

Since M has a p-form, M € ool ., D" (S). We can infer M1 [py.[J)(vT3) /] €
1. Hence we have L € e @ A;.

The rest of the proof runs similarly to the usual method of reducibility candi-
dates. Let 7 be the set of all first order terms. F™ denotes the set of all functions
from 7™ to R. Suppose that £ is a map sending first order variables to first order
terms, a predicate variable X™ to n-ary function from the set of first order terms
to R. We extend zi to be a map on the whole types using £(L) = L and the
following clauses.

£(eA) = o£(A) (7)
£(A - B) = £(A) = £(B) (8)
1
EvzA) = N\ €lt/=)(4) - (9)
teT
7 |
VXA = N\ Ef/X)(4) (10)
feFrn .

where £[a/b] is defined as a map £[a/b](b) = a and for ¢ # b, £[a/b](c) = &(c).

Proposition 2. Let M be a term of type A. Assume that free first order vari-
ables of M are 1, -, Ty, frcefredicate variables of M are X,,---,X, and free
variables of M are af‘,---,a, !. Suppose that £ is a map sending first order
variables to first order terms, a predicate variable X* to k-ary function from
the set of first order terms to R. For each 1 < i < n and t;,---,tx € T (k
is the arity of £(X;)) £(Xi)t1---tn € Rp,[t,/z1,tn/2u]- Let Nj € E(A;j) for

159

7. Az.M is a term of type Vz A for a term M of type A and a first order variable
z. Variables of M do not contain = as a free variable.
8. Mt is a term of type A[t/z] for a term M of type A and a first order term

t.
9. AX™.M is a term of type VX™A for a predicate variable X™ and a term M

of type A. Variables of M do not contain X™ as a free variable.
10. M{T} is a term of a type A[T/X") for a term M of type VX™A and an
abstraction term T = Az, - - - z,.B.

Definition 3. Reduction rules are the followings. Let 8,v,6 and y,Y be fresh
variables.

(M) Aa.M)N = M[N/a]

(A2) Az.M)t = M[t/z]

(As) (A X".M)T = M[T/X"]

() [Mlpa.N = N[M/o] [pa.MIN = M[N/a]

(G1) (pa.M)N = pB.M(py.[B(YN)/a] M(pa.N) = pB.N(py.[Bl(M7)/a]

(G2) (pa-M)t = pB.M(py.[B)(1t)/a]

(G) (paM)T = pB.M(p.[8](vT)/c]

As usual, compatible closure of the rules above is called one-step reduction
relation (denoted =>;) and reflexive and transitive closure of one-step reduction is
called reduction relation (denoted =). w(t) is the maximal length of sequences
t = t--- = t, if the maximum exists. Otherwise w(t) is undefined. ¢ is
strongly normalizable if and only if w(t) is defined.

Using s and (-rules, Parigot’s structural reduction [6] and symmetric one [7]
mentioned in Section 1 can be derived.

(na. ..[a]u..)v =>¢ pB. [m:[ﬂ’](z'v)]u =, pb. ...[Bl(wv)...
u(pa. .. [a)v...) =¢ pb. ..[pz.[fl(uz)v... 2>, pb. ...[B](wv)...

If we understand e as the usual negation symbol, our {-rules resemble to Andou’s

reduction for L [1].
By induction on a term, it is easy to prove the following lemma.

Lemma 1. If M is a normal Au-term,

M=Xa.---AX.---Az.aM; - - My or
M = Aa.---AX.-- - Az.pf.[y]My

where Aa.--- AX.--- Az. i3 an arbitrary sequence of A-abstraction.

We assume that predicates and function symbols for primitive recursive arith-
metic are included in our language. Then we can code second order Peano arith-
metic in second order predicate logic. In particular, a X9-sentence 3z.4 is coded
as 3z.N(z) A A(z), where N(z) is defined as VX'.X10 = Vy(X'y = X1Sy) —
X'y and A(z) is atomic. Since we can deduce 3z.A(z) from 3z.N(z) A A(z), we
extract witness from a formula 3z.A(z).

160

Proposition 1. Let A(z) be an atomic formula and M be a normal closed term
of type 3x.A(z). M contains one and only one first order term t and A(t) holds.

Proof. By Lemma 1, M has the form E[aM, ---M,,)] where E[] consists of
abstraction and [-]-. By consideration on type, we have that a has a type Vz.(A —
X) , M, is a first order term and M, is a term of type A(t). Since A(t) is atomic
and does not contain X, we can see that M, consists of axioms alone. We have
the thesis.

3 Strong normalization

Definition 4. First we prepare several notations.

1. A term beginning with u is called a p-form.

2. For a set S of terms of type C, CI(S) is defined as the smallest set which

satisfies clauses

(a) S C Cl(S) and contains all variables of type C.

(b) MN € CI(S) if L € CI(S) for all L such that MN =>; L.

(c¢) Mt € CU(S) if L € CI(S) for all L such that Mt =, v for a first order
term t.

(d) MT € CI(S) if L € CI(S) for all L such that MT =, v for an abstrac-
tion term T.

The set of strong normalizable terms of type 1 is also denoted 1.

For a set S of terms of type C # L,

oS := {pa.M|VN € S,M[N/z] € 1}

Rl

where a is a variable of type C and M has a type L.
5. the operator D(X) is defined as Cl(X U e @ X). Note that ee and hence D

are monotone operators. For ordinal k,

D~(Xx) := D(|J D"(X)).

<K

Definition 5 (Reducibility candidates). Let w; be the first uncountable or-
dinal and A be a proposition. Let S be a set of strong normalizable terms of
type A. Suppose S does not contain a p-form and S is closed under reduction
relation. Then, a set D¥1(S) is called a reducibility candidate of the proposition
A. Note that from monotonicity of D, a reducibility candidate is a fized point of
D. The set of candidates of the proposition A is denoted by R4. R is the union
of all R4.

Lemma 2. Let R be a candidate D“*(S). R = Cl(SU e e R).

Proof. Since R is a fixed point of D, we have R = CI(RUeeR) D Cl(SUeeR),
while D®(S) C Cl(SUeeR).

Lemma 3. For M € eR and N € R, [M]N € 1.

161

Proof. 1t suffices to prove that all L such that [M]N =, L are strong normaliz-
able. We consider each possibilities of the reduction of [M]N.

The case where L has the form [M'|N' and M = M’ and N = N'. The
thesis follows from induction hypothesis on w(M) + w(N).

The case where M = pa.M; and L = M;[N/a]. By the hypothesis M € oR.

The case where N = pa.N, and L = N;[M/a]. By Lemma 2, N should be
an element of e ¢ R. We have the thesis.

Definition 6. Let A € R4 and B € Rp. Assume that (t;)icr is a non-empty
Jamily of first order terms and (Tj)jes s a non-empty family of abstraction
terms. Further, A; is a candidate of the proposition A[t;/x] for each i € I and
Aj; is a candidate of the proposition A[Tj/X] for each j € J. Candidates A — B

/\:e 1 Ai /\fe ; Aj are defined by the following steps.

L(A, B) := {\a*.M|VN € A,M[N/a*] € B} (1)
IO} 1 A == {Az.M|Vi € I, M[t;/z] € Ai} (2)
M} Aj = {AX.M|Vj € J, M[T;/X] € A;} (3)
A = B := D“*(L(A, B)) (4)
1
/\ A 1= D' (ITjc 1 Ai) (5)
i€l ’
2
N Ai = D (I}, Ai) (6)
jeJ

Lemma 4. Let Ac R4y andBeRpg. fMe A—-+Band Ne€ A, MN € B.

Proof. Let A = D“'(S). Assume that x is the least ordinal such that M €
D*(L(A,B)) and 7 is the least ordinal such that N € D"(S). By induction on
the natural sum « ® 7 and w(M) + w(N), we will prove that if MN =, L,
L € B, which is the exact condition of MN € B.

The case L = M'N' and either M =; M'and N = N' or M = M' and
N =, N'. The thesis follows from induction hypothesis on w(M) + w(N).

The case M = Aa.M; and L = M,[N/a]. Since M € L(A, B), we have the
thesis.

The case where M has a form pa.M; and L is obtained from reduction of
the outermost redex. Then, L has a form uf.M;[uy.[B](YN)/a]. Let J € oB,
K € D*(L(A,B)) for k; < k. By induction hypothesis on «;, we have KN €
B. It follows [J]J(KN) € 1. From arbitrariness of K and x,;, wy.[J](YN) €
® Uy, <x D**(L(A, B)) follows. Since M is a p-form, M € es|), ., D™ (L(A,B)).
We can infer M;[uy.[J](7N)/a] € L. Since J € oB, we have L € e ¢ B. Now,
from e e B C B, the thesis follows.

The case where N has a form pa.N; and L is obtained from reduction of the
outermost redex. L has a form ufS.N;[uy.[f](M~)/a). Let J € Band K € D™(S)
for 7 < 7. From induction hypothesis on 71, we have MK € B. Similarly as
above, it follows py.[JJ(M7v) € ol, ., D™(S). Since N has a p-form, N €
oo, <, D™ (S). We have Nl[u'y.[ﬂ](M'y)/a] € 1 and hence, L € B.

162

of this calculus [5]. Their calculus Ay, is confluent, hence useful as a program-
ming language. However, imposing reduction strategy seems to be an alien idea
in a logical calculus, and non-determinism is lost.

Barbanera and Berardi proved strong normalization of a non-deterministic
calculus for propositional classical logic using fixed point construction for re-
ducibility candidates [2]. We will prove strong normalization of second order
Au-calculus with the rules above based on this method.

2 Symmetric Au-calculus

Our formalization is exactly a second order extension of symmetric Au-calculus
in [9]. Usually, a term of Ap-calculus is understood as a proof with multiple
conclusions. On the contrary, we consider a Au-term as a proof with a sin-
gle conclusion but two kinds of hypothesis, ordinary hypothesis and denials of
propositions, which correspond conclusions other than a principal formula in
usual Au-calculus. Moreover, we do not distinguish A-variables and u-variables.
z,y,y,--- and t,u,t;, - - stand for first order variables and terms. X™,Y ", X
denotes n-ary predicate variables and constants.

Definition 1. A proposition is tﬁat of second order predicate logic built up by
predicate variables X! and logical connectives —, V. Formally,

Ax=XMy--t, | Ao A| VzA | VXTA

A formula is a proposition A or a denial e A of proposition or contradiction L.
Note that L is not counted as a proposition. Other connectives are defined by us-
ing second order construct. For ezample, 3z.A(z) is defined as VX°.Vz(A(z) -
X0) - X0,

We assume axioms of our calculus is limited to those for atomic propositions
or formulae with a form A; =& A3 — --- = A, for atomic proposition 4;. We
denote axioms and variable by Greek letters a, 8, - - -.

Definition 2. For each formula A, Au-terms of type A are defined inductively
as follows.

1. A variable or an aziom of is a term of type C. We assume that there is no
variable of type L. '

2. [M]N is a term of type L for a term M of type A and a term N of type A.

3. pa.M is a term of type A for a variable a of type o A and a term M of type
d.

4. pa.M is a term of type oA for a variable a of type A and a term M of type
1.

5. Aa.M is a term of type A — B for variable a of type A and a term M of
type B.

6. MN is a term of type B for a term M of type A — B and a term N of type

163

1 < j < 1. We define M by simultaneous substitution £(z1),---,&(zm) into
T1,+**,Tm, B1, -+, Bp into X1,--+,Xpn, N1, ,N; into a,---,o4 on M. Then
we have M € £(A).

Proof. By induction on the construction of M.

As a special case, t € £(A) holds. From Lemma 2, we have the following

theorem.

Theorem 1. All terms are strongly normalizable.

Acknowledgement. I am grateful to Ken-etsu Fujita, Ryu Hasegawa and

Charles Stewart for their helpful comments and discussion.

References

1.

2.

10.

Yuuki Andou. A normalization-procedure for the first order classical natural de-
duction with full symbols. T'sukuba Journal of Mathematics, 19(1):153-162, 1995.
F. Barbanera and S. Berardi. A strong normalization result for classical logic. Ann.
Pure Appl. Logic, 76:99-116, 1995.

Ph. de Groote. A cps-translation of the Au-calculus. In Trees in algebra and
programming, CAAP ‘94, number 787 in Lect. Notes Comput. Sci, pages 85-99.
Springer-Verlag, 1994.

Ph. de Groote. On the relation between Au-calculus and the syntactic theory of
sequential control. In Logic programming and automated reasoning, volume 822 of
Lect. Notes Comput. Sci, pages 31-43. Springer-Verlag, 1994.

. C.-H. L. Ong and C. A. Stewart. A curry-howard foundation for functional compu-

tation with control. In Proceedings of the 24{th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM press, January 1997.

. M. Parigot. Ap-calculus: an algorithmic interpretation of classical natural deduc-

tion. In A. Voronkov, editor, Logic Programming and Automated Reasoning, vol-
ume 624 of Lecture Notes in Artificial Intelligence, pages 190-201. Springer-Verlag,
1992.

M. Parigot. Classical proofs as programs. In Computational logic and proof theory,
volume 713 of Lect. Notes Comput. Sci, pages 263-276. Springer-Verlag, 1993.

M. Parigot. Strong normalization for second order classical natural deduction. J.
Symb. Log., 62(4):1461-1479, 1997.

M. Parigot. On the computational interpretation of negation. In P. Clote and
H. Schwichtenberg, editors, Computer Science Logic, volume 1862 of Lect. Notes
Comput. Sci, pages 472-484. Springer-Verlag, 2000.

Th. Streicher and B. Reus. Classical logic, continuation semantics and abstract

-machines. Journal of Functional Programming, 8(6):543-572, 1998.

164

