
The Theory of Twiners and Linear
Parametricity (Note)

Ryu Hasegawa(長谷川 立)

Graduate School of Mathematical Sciences, The University of Tokyo,
(東京大学 数理科学研究科),
Komaba 3-8-1, Meguro-ku, Tokyo 153-8914, Japan

1Introduction

We want to show that solutions of domain equations, or equivalently existence
of recursive types, can be derived from acomputer theoretic concept, called
the principle of linear parametricity. Existence of recursive types has appli-
cations in, for example, semantics of functional programming, type-theoretic
study of object-0riented programming, and the theory of programme trans-
formation, as reviewed in the following. In usual, the existence of recursive
types is ensured using amathematical theory of Scott domains or alike. Our
innovation lies in that it can be derived from amore computer theoretic
concept. In this work, we focus on giving amodel satisfying the principle
of linear parametricity in areasonable sense, leaving more syntax-0riented
matters such as axiomatization to afuture work.

In many activities of computing, we often need the structures defined recur-
sively. Simple data structures such as lists, trees, and even natural numbers
are examples of recursively defined data. These examples are rather easily
rationalized, since they are given as fixed points of operators where indetermi-
nates occur only positively. Anaive set-theoretic understanding is sufficient
for them in most occasions.

Amore challenging problem is whether we can give rationale for fixed points
of operators that may contain negative occurrences as well. One of early
speculations leading to this problem was to provide semantics for the untyped
lambda calculus. The calculus has arather peculiar structure where functions
and data have no distinction and everything can be applied to everything.
This observation leads us to the fact that giving semantics of the untyped
lambda calculus amounts to detecting an entity X that is isomorphic to

数理解析研究所講究録 1217巻 2001年 23-36

23

the function space $X\Rightarrow X$ on itself. Namely we need afixed point of the
operator $F(X)$ defined by $X\Rightarrow X$ where the indeterminate X occurs both
positively and negatively. If we work in set theory and interpret $X\Rightarrow X$ as
the set of all functions, simple cardinality argument reveals that there are
only trivial solutions where the fixed point X is asingleton. Hence we must
give away naive set-theoretic interpretation, and try to find certain exotic
structures in which we can have fixed points of the operators of the type
above. It was late sixties that Scott finally gave aconstruction by which we
can form fixed-points of such operators [18]. His construction uses certain
(not even HausdorfF) topological spaces and continuous functions. Later the
idea leaded to evoluation of domain theory [7], which nowadays is matured
so as to be used as fundamental tools to give mathematical reasoning to
programming languages.

Turning to more up-t0-date topics, we still hold the same sort of problems in
several situations. One of them comes ffom a type-theoretic study of object-
oriented programming. During the attempt to pin down the essence of the
object-0riented programming in functional programming setting, several new
ideas are discovered and imported into the traditional theory. These include
how to incorporate the concepts of inheritance and self-reference. At an early
stage, unfortunately, in the author’s opinion, inheritance was emphasized too
much. It was avogue to adjoin the structure of partial orders to systems
in order to interpret inheritance. However the author believes the concept
of self-reference is equally or more important as the heart of object-0riented
programming and should be dealt with in suitable respects (to be fair, we
remark that many systems pay attention to also self-reference properly).
Aphilosophy of object-0rientedness is that each definition of object should
be self-contained (putting inheritance aside) so that the behaviour of an
object is determined by information written in the definition of the object
itself. As anatural consequence, there should be amechanism with which
certain methods, often called binary methods, can refer the object itself. For
example, the definition of the objects of queues should contain the method to
update queues, this method accessing the object itself and modifying it. To
comprehend this phenomenon type-theoretically, we usually employ recursive
types where indeterminates may occur negatively [1, 15, 17]. Of course, the
consistency of recursive types is asensitive matter. Aconceivable way to
check it is to build mathematical semantics, employing domain theory.

24

Another example is taken from the theory of programme transformation.
The fusion rule is amachinery to eliminate intermediate structures passed
between two functional procedures, when they are composed. The rule as-
serts that, if two canonical functions from inductive types satisfy certain
commutativity conditions, we can combine them into asingle function so
that intermediate return values are never created. Under lazy evaluation of
functional programming, we can use also coinductive types as potentially infi-
nite data types. The corresponding fusion rules can be defined for coinductive
types as well. What is more interesting, however, occurs when inductive and
coinductive types interact. Hylomorphism is by definition the composition of
acanonical function into coinductive types $\nu X.F(X)$ followed by acanonical
function from inductive types $\mu X.F(X)$, provided that these coinductive and
inductive types coincide, that is $\nu X.F(X)=\mu X.F(X)[4,11]$. An advantage
of hylomorphism is that intermediate structures can be always eliminated.
But, to use this notion, we must assume that inductive types coincide coin-
ductive types. At first sight, this assumption looks rather unnatural. For
example, intuitively, the inductive tyPe for the operator $1+A\cross X$ is that
of finite lists of members of A while the coinductive type is that of possibly
infinite sequences. We can show that the assumption of coincidence is equiv-
alent to existence of recursive types under certain conditions. To ensure the
notion of hylomorphism to be consistent, we must appeal to domain theory
again.

Therefore many subjects rely on exquisite theory of Scott domains; from old
problem of giving semantics to the untyped lambda calculus, to newer fields
of theoretical computer science, e.g., object-0riented programming and the
theory of programme transformation. There is no doubt that domain theory
was one of the most successful theories to give rigid foundations to the theory
of programming. At this point, however, we want to address afundamen-
tal query. Can the theory of programming be built only on Scott domains?
Trained theoreticians may fully use domain theory as avehicle for verifica-
tion, whereas the working programmers (even the theoreticians themselves
when they write actual codes) would not take Scott domains into account to
understand how the programmes they write work. Arole of semantics is to
give an intuition of the behaviour of programmes. In this respect, domain
theory is too apart from computational concepts programmers naturally bear
in mind

25

Our goal is to propose acomputer theoretic concept from which we can
derive the construction usually achieved by domain theory. Namely we want
to have the same effect as domain thoery without appealing to Scott domains.
The new concept is called linear parametricity. An advantage of our method
is that we can obtain various results from asingle principle, and that the
principle linear parametricity can be understood ffom a computer theoretic
point of view.
Earlier we investigated the notion of (full) parametricity for polymorphic
programming languages. The intuition behind parametricity can be easily
understood computationally. That is, apolymorphic programme is called
parametric if it makes no explicit use of information of types. Then the
principle of parametricity assures that, if apolymorphic programme is para-
metric, it behaves in auniform way, irrelevant of the types with which we
substitute type-parameters. In earlier works, we studied the principle of para-
metricity from several perspectives, including categorical and logical ones,
and demonstrated that this simple principle induce many nice properties
[8, 9, 10]. However the principle of parametricity can coexist solely with a
fragment of polymorphic languages where only terminating programmes mat-
ter. The property of languages allowing recursive programming contradicts
to the categorical consequences of the principle.

Linear parametricity is areduced version of full parametricity, and does not
contradict to existence of recursive programmes. Furthermore, in accordance
with recursive programmes, linear parametricity yields better results: solu-
tions of domain equations, $\mathrm{i}.\mathrm{e}$, recursive types, which cannot be consequences
of full parametricity. Linearity means the same thing as that in linear logic
[5]. Namely linear parametricity is the principle of parametricity asserted in
the context of linear logic. Asimilar approach is proposed in [16].
In this work, we develop amodel of second order linear logic, using new
mathematical stuffs called twiners, which may be interesting in their own
right. They are extensions of Joyal’s analytic functors $[12, 13]$ and Girard’s
normal functors [6]. Into the twiner model of second order linear logic, we
incorporate the notion of linear parametricity, and form asecond more elab-
orate model satisfying the principle of linear parametricity. Finally we verify
that, in the new model, we can solve domain equations using syntax of linear
logic, rather than Scott D_{∞}-style construction. It would take dozens of pages

26

to fully expand the theory of twiners. So, in this paper, we must be content
with overview of the theories, leaving details to the full paper in prepration.

2First Model

We assume certain amount of knowledge in 2-category and bicategory theory.
We refer the reader to standard literatures $[14, 3]$. To fix terminology, we
use the following terms: pseud0-functors, quasi-natural transformations, and
modifications.

Agroupoid is asmall category where every morphism has an inverse. In
particular, if agroupoid has asingle object only, the set of all morphisms
forms agroup. Conversely every group may be regarded as agroupoid with
asingle object. We note that, since every morphism of agroupoid A is
invertible, the opposite category $A^{\mathrm{o}\mathrm{p}}$ is equivalent to A as groupoids. To
distinguish objects etc. in $A^{\mathrm{o}\mathrm{p}}$ from those in A , we often use notation \overline{x} for
the thing in $A^{\mathrm{o}\mathrm{p}}$ corresponding to x in A . We sometimes write the overline
as in \overline{A} to denote the opposite groupoid itself.

Agroupoid-enriched category is such that its homsets are endowed with the
structure of groupoids satisfying certain conditions we do not specify here.
It comes from standard enriched category theory by taking the category of
all groupoids and all groupoid homomorphisms with cartesian product as a
monoidal structure. We note that agroupoid-enriched category is nothing
else than a2-category where every 2-cells are invertible.

Example: (i) Gpoid is the groupoid-enriched category of all groupoids, all
groupoid homomorphisms, and all natural transformations which turns out
automotically to be isomorphisms.

(ii) For each groupoid A , the groupoid-enriched category Gpoid is given
by all pseud0-functors on A into Gpoid, all quasi-natural transformations,
and all modifications. By an analogy that an object of Set for agroup G

is the same thing as a G-set, we call an object of Gpoid an j4-gr0up0id.

(iii) We can define the slice groupoid-enriched category $\mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}/A$, the objects
of which are groupoid homomorphisms T $\frac{f\iota}{/}$ A on some groupoid T . We
omit the details here

27

2.1 Proposition
Let A be a groupoid.

Biequivalence $\mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}^{A}\cong \mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}/A$ between groupoid-enriched categories
holds.

The right-t0-left direction of the biequivalence is given by the Grothendieck
construction [2]. For each object t in Gpoid“4, we denote the groupoid over
A obtained as the Grothendieck construction by either Gr(t) or, boUowing
integral notation, $\int_{l\in A}t[x]$. In particular, an $A^{\mathrm{o}\mathrm{p}}\cross B$ groupoid M corresponds
to aspan

$AB\nearrow\backslash S_{M}$

,

taking $A\cong A^{\mathrm{o}\mathrm{p}}$ into considertation. We call $A^{\mathrm{o}\mathrm{p}}\cross B$-groupoids M biprofunc-
tors from A into B as ageneralization of profunctors, and write M : $A-rightarrow B$.
We might regard such abiprofunctor M as amatrix of A columns and B

rows. If N is abiprofunctor ffom B into C , we define the matrix composition
$NM:A\infty$ C by (NM)[x\overline , z] $:= \int_{y\in B}N[\overline{y}, z]M[\overline{x}, y]$. In terms of spans, the
matrix composition corresponds to taking abipullback $S_{M}\cross_{B}S_{N}$.
We can give the interpretation of the additive-multiplicative fragment of
linear logic at this point. Each type is interpreted as agroupoid A . Aterm
of type A is interpreted as an A-groupoid, that is, an object of $\mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}" 4$.
We give the interpretations of types only, leaving those of terms to the full
paper. If we identify types A with their interpretations, the interpretations
are given as follows:

[A-,] $=A^{\mathrm{o}\mathrm{p}}$

$[A \otimes B]$ $=$ [A ηB] $=A\cross B$

[A&B] $=[A \oplus B]$ $=A+B$
[1] $=[[perp]]=1$
[T] $=[0]$ $=\emptyset$.

In particular, the interpretation of linear implication is given as $\mathrm{I}^{A}arrow B\mathrm{I}$ $=$

$A^{\mathrm{o}\mathrm{p}}\cross B$. Namely aterm of type $Aarrow B$ is interpreted as abiprofunctor from
A into B .

28

To define the intepretation of exponential in linear logic, we introduce wreath
product of groupoids. Let G be agroupoid endowed with apseud0-functor
$G \frac{\varphi_{\mathrm{c}}}{/}$ Gpoid. The wreath product A $\mathrm{w}\mathrm{r}G$ is defined by the Grothendieck
construction $\int_{x\in G}$ Gpoid(\mbox{\boldmath φ}(x), A). We remark that this concept is ageneral-
ization of the traditional wreath product of groups, occurring as aspecial case
of semidirect product [19]. To be more general, if C is agroupoid-enriched
category, we can define wreath product A $\mathrm{w}\mathrm{r}G$ for each object $A\in \mathrm{C}$ and a
pseud0-functor $G\underline{\varphi_{\iota}},\mathrm{C}$ from agroupoid G , simply by putting the groupoid
A $\mathrm{w}\mathrm{r}G$ to be $\int_{x\in G}\mathrm{C}(\varphi(x), A)$. For the interpretation of linear logic, we must
slightly extend groupoid G in definition of wreath product. We allow G to
have afamily C of empty components. Namely we formally consider G to be
apair of agroupoid $G’$ and aset C . The contribution of one empty comp0-
nent to wreath product is asingleton as asum over an empty set. Hence, for
such apair G , we define A $\mathrm{w}\mathrm{r}G$ to be adirect sum of A $\mathrm{w}\mathrm{r}G’$ and adisjoint
groupoid (i.e., aset) G.

2.2 Definition (of S)
An extended groupoid S is adirect sum of symmetric groups S_{n} where n

ranges over the set N of natural numbers. For $n=0$, we regard S_{0} to be an
empty component in the sense above.

The interpretation of exponential is given as wreath product $\mathrm{I}!A\mathrm{I}$ $=A\mathrm{w}\mathrm{r}S$.
Accordingly [$?A\mathrm{J}=A\mathrm{w}\mathrm{r}S^{\mathrm{o}\mathrm{p}}$, which is equivalent to A $\mathrm{w}\mathrm{r}S$.
Next we turn to second order variable types. We want to consider types such
as $!X$ where X is atype variable. To interpret $!X$, we are interested in the
operation $X\vdash\Rightarrow(X\mathrm{w}\mathrm{r}S)$. It turns out that $(-)\mathrm{w}\mathrm{r}S$ is a2-functor from Gpoid
to itself. In general, (-) $\mathrm{w}\mathrm{r}G$ for $G \frac{\varphi}{\prime}\mathrm{C}$ is a2-functor on C into Gpoid

In agroupoid-enriched category C , we call a1-cell $A\underline{J\mathrm{c}}\prime B$ essentially
onto if the groupoid homomorphism $\mathrm{C}(B, X)arrow \mathrm{C}(A, X)$ induced by com-
position is faithful for every object X . Likewise we call f sur jective if
$\mathrm{C}(B, X)arrow \mathrm{C}(A, X)$ is full and faithful for every X . An object A is biprO-
jective iff the 2-functor $\mathrm{C}(A,-)$ carries surjections to surjections. We call A

quasi-biprojective iff $\mathrm{C}(A,-)$ carries surjections to essentially onto groupoid
homomorphisms. Moreover we call A finitely bipresentable iff $\mathrm{C}(A,-)$ pre-
serves filtered bicolimits

29

2.3 Theorem
Let C be a groupoid-enriched category having all bilimits and all filtered bi-
colimits, and let $\mathrm{C}\underline{\underline{F\mathrm{t}}}$ Gpoid be a pseudO-functor.

The following are equivalent.
(i) The pseudO-functor F is quasi-naturally equivalent to the Z-functor $(-)\mathrm{w}\mathrm{r}$

G associated to a pseudO-functor $G \frac{\varphi_{1}}{r}\mathrm{C}$ subject to the condition that
$\varphi(x)$ is finitely bipresentable for every object $x\in G$.

(ii) The pseudO-functor F preserves filtered bicolimits and bipullbacks.
(iii) For each object (A, x) of the Grothendieck construction Gr(F), the slice

groupoid-enriched category Gt(F)/(A, x) has a biinitial object $(Z, c)\underline{(k,\alpha)}$,

(A,x) where Z is finitely bipresentable.

2.4 Definition
Let C be agroupoid-enriched category having all bilimits and all filtered
bicolimits.
Atwiner on C is apseud0- on $\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{C}\underline{\underline{F\iota}}$ Gpoid satisfying one of the equiv-
alent conditions in the preceding theorem. Atwiner is called discrete iff it
carries surjections to surjections. Atwiner is called quasi-discrete iff it carries
surjections to essentially onto groupoid homomorphisms.

Atwiner (-) wr (; for $G\underline{\varphi}\mathrm{C}$ is discrete iff all $\varphi(x)$ are biprojective. It is
quasi-discrete iff all $\varphi(x)$ are quasi-biprojective.

Now we give the interpretation of types and terms having type variables in
linear logic. Atype $F(X_{1},X_{2}, \ldots,X_{||})$ with n type variables is interpreted
as adiscrete twiner on Gpoid”. Moreover aterm of type $F(X_{1}, X_{2}, \ldots, X_{n})$

is interpreted as aquasi-discrete twiner on the Grothendieck construction
Gr(F). To Gr(F) \underline{t} Gpoid and agroupoid A , we can associate aFA-
groupoid t_{A} by definition $t_{A}[x]:=t(A,x)$.
For alater use, we note that atwiner extends to operations on biprofunctors.
If F is atwiner on Gpoid and M : $A-\# tB$ is abiprofunctor, we can
associate $F_{b\mathrm{p}m}M$: $FAarrow FB$. In fact, M corresponds to aspan S_{M} over
A and B . So we simply define $F_{bpn}M$ to correspond to $F(S_{M})$ over FA and
FB . In the sequel, we write simply FM instead of cumbersome $F_{bp_{PO}}M$.

30

Finally we must give the interpretation of second order quantified types. In-
deed we give two interpretations. The first one stated here is based on the
observations summarized so far. Later we provide with more elaborate con-
struction so that the model enjoys the principle of linear parametricity. Let
B_{qb} (Gpoid) be the 2-groupoid of all quasi-biprojective, finitely bipresentable
groupoids, all equivalences between such groupoids, and all natural isomor-
phisms. We note that every quasi-biprojective groupoid is equivalent to a
direct sum of free groups. The 2-groupoid B_{qb} (Gpoid) is actually biequiv-
alent to agroupoid, as aconsequence of the fact that all free groups have
trivial centers. For each discrete twiner F on Gpoid, we define groupoid πF

by

$\pi F=\int_{X\in B_{qb}(\mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d})}F(X)$.

Then the interpretation of second order quantified types is given as $\mathrm{B}\forall$ X. $F(X)\square$

$=\pi F$. Now we have obtained the first model of second order linear logic.

2.5 Theorem
The interpretation above gives a sound model of second order linear logic.

3Linear Parametricity and Recursive Types

We truncate the first model to the one satisfying linear parametricity. First
we introduce alinear dependent type theory with realizability semantics in-
formally. Types are identified with groupoids and terms of type A are objects
of groupoid-enriched category Gpoid“4. The only logical connective we are
concerned with is the linear first order universal quantification $(\forall x:A)\varphi(x)$.
As an atomic formula, we take equality predicate $t=_{A}u$ for each type A .
We interpret each formula as agroupoid. For equality, the formula $t=Au$ is
interpreted as the groupoid

$\langle u|t\rangle:=\int_{x\in A}\overline{u[x]}t[x]$

where the concatenation is an abbreviation of direct product of two groupoids.
We note that there is an embedding $A^{\mathrm{o}\mathrm{p}}arrow \mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}^{A}$ carrying \overline{x} to the
A-groupoid denoted by $\{\overline{x}\}$ which carries $a\in A$ to the discrete groupoid
$A(x, a)$. For interpretation of linear quantifier, if $\varphi(x)$ is interpreted as

31

F : $\mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}^{A}arrow \mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}$, then the formula $(\forall x:A)\varphi(x)$ is interpreted by
the Grothendieck construction $\int_{x\in A}F\{\overline{x}\}$. In particular, equality $t=[perp] u$ for
type 1(that is, asingleton 1) is interpreted by $u^{\mathrm{o}\mathrm{p}}\cross t$. Then $t=_{A}u$ may
be regarded as an acronym of $(\forall x:A^{[perp]})(tx=[perp] ux)$.
So far linearity does not come on the scene yet. It involves the witness relation
$s\mathrm{F}$

φ we introduce below, read as s witnesses φ . Here s is an A-groupoid if the
formula φ is interpreted by groupoid A . For equality predicate, $s\mathrm{F}$ $(t=_{1}u)$

iff s is an identity biprofunctor from u into t . For the linear quantifier,
the witness relation $s\mathrm{F}$ $(\forall x:A)\varphi(x)$ holds for an $(\int_{x\in A}F\{\overline{x}\})$-groupoid s iff
$su\mathrm{F}$ Fu holds for every $u\in \mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}^{A}$. Here an Fu-groupoid su is defined as

$su[y]= \int\int_{\mathrm{r}\in A,\mathrm{c}\in F\{f\}}s[x, c]\int_{k\in \mathrm{u}[ae]}Fu(Fk(c), y)$

for y in the groupoid Fu. We note $u[x]$ equals $\mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}^{A}(\{\overline{x}\}, u)$. So Fk is a
groupoid homomorphism from $F\{\overline{x}\}$ into Fu . We emphasize that linearlity
involves witnesses only. There may be several occurrences of x in the linearly
quantified formula $(\forall x:A)\varphi(x)$, including the case of null occurrence. The
null case, say $(\forall x:A)B$, is written linear implication $Aarrow B$.
A(binary) linear predicate between types A and B is apredicate $P(x, y)$

for x : A and 17: B , endowed with its interpretation as abiprofunctor M :
$A\infty$ B and witness relation $s\mathrm{F}$ $P(t, u)$ for each pair of t and $t’$. Here s is
a $\langle u|M|t\rangle$-groupoid, where $\langle u|M|t\rangle$ is defined to be $ff_{ae\in A,y\in B}\overline{u[y]}M[\overline{x}, y]t[x]$.

Exmple: (i) $x=_{A}y$ is alinear predicate between A and A . It is interpreted
as an identity biprofunctor, and witness relation has been defined above.

(ii) If R and S are linear predicates interpreted by biprofunctors M : $Aarrow+$

$A’$ and N : $B-\Leftrightarrow\rangle$ $B’$, then R $\otimes_{0}S$ is abinary predicate between $A\otimes B$

and $A’\otimes B’$. Its interpretation is $M\otimes N$ defined as $(M\otimes N)[\overline{x},\overline{y}, x’, y’]:=$

$M[\overline{x},x’]N[y,y’]$. Witness relation is defined to hold for $r\otimes s\mathrm{F}R(t,t’)\otimes$

$S(u,u’)$ iff both $r\mathrm{F}$ $R(t,t’)$ and $s\mathrm{F}$ $S(u,u’)$ hold.

(iii) If R is alinear predicate between A and $A’$, the $dua/$ $R^{[perp]}$ between $A^{\mathrm{o}\mathrm{p}}$

and $A^{\prime \mathrm{o}\mathrm{p}}$ is defined. We regard

$R^{[perp]}(t,t’)=$ $(\forall x:A)(\forall x’ : A’)(R(x,x’)arrow(tx=_{1}t’x’))$,

32

from which its interpretation and witness relation are induced.

3.1 Definition
Afactual predicate is alinear predicate R satisfying that $s\mathrm{F}$ $R(t, t’)$ iff
$s\mathrm{F}$ $R^{[perp][perp]}(t, t’)$.

As abasic observation, the double dual $R^{[perp][perp]}$ is afactual predicate for every
linear predicate R . Using this observation, we associate factual predicates
$F(R)$ to each type $F(X)$ with atype variable X and each factual predicate
R . We have given alinear predicate $R\otimes_{0}S$ in the examples above. Likewise
we can define linear predicates R&o S and $!_{0}R$ in astraightforward way.
Definition of $\forall 0$ Y. $F(R, \mathrm{Y})$ is more complicated, and we omit it here. These
predicates with suffix 0are not factual. So we define as follows:

$F(R)\wp$ $G(R)$ $=(F(R)^{[perp]}\otimes_{0}G(R)^{[perp]})^{[perp]}$

$\mathrm{F}(\mathrm{R})\otimes G(R)=(F(R)^{[perp]}\eta G(R)^{[perp]})^{[perp]}$

$F(R)\oplus G(R)$ $=(F(R)^{[perp]}\ _{0}G(R)^{[perp]})^{[perp]}$

$F(R)\ G(R)=(F(R)^{[perp]}\oplus G(R)^{[perp]})^{[perp]}$

$?F(R)!F(R)$

$=(!_{0}F(R)^{[perp]})^{[perp]}$

$=(?F(R)^{[perp]})^{[perp]}$

\exists Y. $G(R, \mathrm{Y})$ $=(\forall 0 \mathrm{Y}. G(R, \mathrm{Y})^{[perp]})^{[perp]}$

\forall Y. $G(R, \mathrm{Y})$ $=(\exists \mathrm{Y}. G(R, \mathrm{Y})^{[perp]})^{[perp]}$

If alinear predicate R is interpreted by M : $A-\mathrm{e}*B$, then $F(R)$ is inter-
preted by the biprofunctor FM.
We extend atwiner t on Gr(F) to operations on biprofunctors, as atwiner
F on Gpoid extends to $F_{bpro}M=FM$. For each biprofunctor M : $Aarrow+$

B , we want to define a $\langle t_{B}|FM|t_{A}\rangle$ groupoid t_{M} . In terms of spans, the
groupoid $\langle t_{B}|FM|t_{A}\rangle$ corresponds to bipullback $T_{A}\cross_{FA}FS_{M}\mathrm{x}_{FB}T_{B}$ where
by convention $t_{A}\in \mathrm{G}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{d}^{FA}$ corresponds to agroupoid T_{A} over FA and
so on. Then t_{M} is defined to correspond $T_{\mathrm{S}_{M}}$ factoring through $T_{A}\cross_{FA}$

$FS_{M}\mathrm{x}_{FB}T_{B}$.

3.2 Definition
Let t be aquasi-discrete twiner on Gr(F) where F is adiscrete twiner on

33

t is linearly parametric iff witness relation t. s $F(\mathrm{g})(\mathrm{t}., \mathrm{t}_{B})$ holds for every
factual linear predicate R interpreted by M $\ovalbox{\tt\small REJECT}$ A $\ovalbox{\tt\small REJECT}-\rangle$ B.

We recall that atwiner is equivalent to a2-functor given as wreath product.
It has the shape (-) $\mathrm{w}\mathrm{r}G=\int_{z\in G}h^{\varphi(z)}$ where $h^{\varphi(z)}$ is the representable 2-
functor $h^{\varphi(z)}(A,x)=\mathrm{G}\mathrm{r}(F)(\varphi(z), (A,x))$. The following is our main lemma
towards the principle of linear parametricity.

3.3 Lemma
Let t be a quasi-discrete t winer on Gr(F), given as wreath product $\int_{z\in G}h^{\varphi(z)}$.
Then t is linearly parametric iff a representable l-functor $h^{\varphi(z)}$ is linear para-
metric for every object z $\in G$.

We define $\pi^{P}F$ be the full subgroupoid of πF of all objects (Z,c) satisfying
that the representable 2-functor $\mathrm{G}\mathrm{r}(F)((Z, c),-)$ is linearly parametric. With
this lamme, aquasi-discrete twiner (-) $\mathrm{w}\mathrm{r}G$ induced by $G\underline{\underline{\varphi_{1}}}$ Gr(F) is lin-
early parametric iff the image of φ is contained in $\pi^{P}F$. Now we define the
second model of second order linear logic simply by changing the interpreta-
tion of quantifier. We interpret $\forall X.F(X)$ by $\pi^{P}F$. We can verify that the
interpretation of every term is actually linearly parametric, that is:

3.4 Theorem
The second inter pretation given above provides a sound model of second order
linear logic.

An advantage of our linearly parametric model to earlier models satisfying
full parametricity is that we can have fixed-point operator, which is needed
to interpret recursive programmes.

3.5 Theorem
We have a linearly parametric fied-point combinator fix of type \forall X. $!(!Xarrow$

$X)arrow X$.

34

We can represent recursive types in the linearly parametric second model
as follows. Let $F(X)$ be atype where X may occur both positively and
negatively. Separating positive occurrences X^{+} and negative occurrences
X^{-} , we may write $F(X^{-},X^{+})$. We define two types A and B as

A $=\exists X$, Y. $!(Xarrow F(\mathrm{Y}, X))\otimes!(F(X, \mathrm{Y})arrow \mathrm{Y})\otimes X$

B $=\forall X$, Y. $!(Xarrow F(\mathrm{Y}, X))\otimes!(F(X, \mathrm{Y})arrow \mathrm{Y})arrow \mathrm{Y}$.
Then we can verify that $B\cong F(A, B)$ and $A\cong F(B, A)$. The proof simu-
lates that of representation of initial algebras and final coalgebras under full
parametricity. Moreover $A\cong B$ holds in the linearly parametric model, as
aconsequence of the existence of the fixed-point combinator fix. Thus the
following holds:

3.6 Theorem
Suppose that groupoids A and B are given as above.

Then $A\cong F(A)$ holds in the linearly parametric model of twiners. Namely A

gives an encoding of recursive type rec X. $F(X)$ in the ffamework of second
order linear logic augmented with a fixed-point combinator.

References
[1] M. Abadi and L. Cardelli, Atheory of primitive objects, Second-0rder systems,

Sci. Computer Programming 25 (1995) 81-116.
[2] M. Barr and C. Wels, Category Theory for Computing Science, Prentice-Hall

International Series in Computer Science, (Prentice-Hall, 1990).
[3] J. Benabou, Introduction to bicategories, in: Reports of the Midwest Category

Seminar, (Springer, 1967) pp. 1-77.
[4] R. S. Bird, Functional algorithm design, Sci. Computer Programming 26 (1996)

15-31.
[5] J.-Y. Girard, Linear logic, Theoretical Computer Sci. 50 (1987) 1-101.
[6] J.-Y. Girard, Normal functors, power series and A-calculus, Ann. Pure Applied

Logic 37 (1988) 129-177.
[7] C. A. Gunter, Semantics of Programming Languages. Structures and Tech-

niques, Foundations of Computing Series, (MIT Press, 1992).
[8] R. Hasegawa, Categorical data types in parametric polymorphism, Mathemat-

ical Structures in Computer Science 4(1994) 71-109

35

[9] R. Hasegawa, Relational limits in general polymorphism, Publications of Re-
search Institute for Mathematical Sciences 30 (1994) 535-576.

[10] R. Hasegawa, Alogical aspect of parametric polymorphism, in: Computer
Science Logic, 9th International Workshop $\mathrm{C}\mathrm{S}\mathrm{L}’ 95$, H. K. Biining, ed., Pader-
born, Germany, 1995, Lecture Notes in Computer Science 1092, (Springer,
1995) pp. 291-307.

[11] Z. Hu, H. Iwasaki, and M. Takeichi, Deriving structural hylomorphisms from
recursive definitions, in: ACM SIGPLAN International Conference on fhnc-
tional Prvygramming, Philadelphia, USA, (ACM Press, 1996) pp. 73-82.

[12] A. Joyal, Une th\’eorie combinatoire des s\’eries formeles, Advances Math. 42
(1981) 1-82.

[13] A. Joyal, Foncteurs analytiques et esp&ces de structures, Combinatoire
Enumirative, Proceedings, Montreal, Qu\’ebec, Canada, 1985, G. Labelle,
P. Leroux, $\mathrm{e}\mathrm{d}\mathrm{s}.$, Lecture Notes in Mathematics 1234, (Springer, 1986) pp. 126-
159.

[14] G. M. Kelly and R. Street, Review of the elements of 2-categories, in: Category
Seminar, Sydney, Australa, 1972/1973, Lecture Notes in Math. 420, (Springer,
1974) pp. 75-103.

[15] J. C. Mitchell, Foundations for Programming Languages, Foundations of Com-
puting Series, (MIT Press, 1996).

[16] G. Plotkin, Second order type theory and recursion, unpublished notes, 1993.
[17] D. Remy and J. VouiUon, Objective $\mathrm{M}\mathrm{L}$:An effective object-0riented exten-

sion to $\mathrm{M}\mathrm{L}$, Theory $Pmctce$ Object Systems 4(1998) 27-50.
[18] D. S. Scott, Continuous Lattices, in: Toposes, Algebraic Geometry and Logic,

Halfax, Canada, 1971, Lecture Notes in Mathematics 274, (Springer, 1972)
pp. 97-136.

[19] M. Suzuki, Group Theory, I, Grundlagen der mathematischen Wissenshaften
247, (Springer, 1982)

36

