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Introduction

Let K be an algebraic number field of degree D over the rational number
field Q. We denote by Q the algebraic closure of Q in C. Let k be a rational
integer > 1. Let &,... ,&; be k elliptic curves defined over K. We assume
that these curves are defined by Weierstral}’ equations, normalized as follows :

Y¥?=42 - gz —g3; : @i0:€K, 1<i<k.

We denote by gp;, for 1 < i < k (resp. o;, for 1 < i < k), the Weierstraf’
elliptic functions (resp. the Weierstraf’ sigma functions), associated with the
underlying period lattice A; = w1 ;Z + wyiZ, 1< i < k.

For each 1 < i <k, let u; € C satisfy

i = (o), 03 () pi(us), oF (us) ol (ws)) € E4(Q).

When v; is a pole of p;, we consider v; = (0,0, 1).

Such complex numbers u;, ... ,u, are called elliptic logarithms (of rational
points).

Thus, clearly, any point in the period lattice is an elliptic logarithm.

Let N > 1 be an integer and P = (z9,...,zx) € PN(Q). We introduce
the absolute logarithmic projective height on PVY. Let L be a number field
containing all coordinates of the point P. Put

h(P) = —— 3" n, log(max{jzoly, .., [zxlu}),
ARA

where v runs over the set of absolute values of L which are normalised such that
for all z € L,z # 0, we have ), n,log|z|, = 0 and > ujoo Tv = d. Here, we
denote by n, = [K, : Q,] the local degree at each v. Because of the extension
formula, it is well known that h(P) is independent of the choice of the field L,
and the product formula ensures on the other hand that the definition does not
depend on the choice of projective coordinates of P.

The study of linear forms in elliptic logarithms derives from an analogy
with the theory of linear forms in usual logarithms, simply by viewing the
Weierstraf’ elliptic p-function with algebraic invariants as an exponential map
of an elliptic curve (i.e. a commutative algebraic group) defined over a number
field.

A basic question is to ask whether non-zero elliptic logarithms of rational
points are transcendental. An answer was first given by C. L. Siegel in 1932
(see [Sie]). For k = 1, we write u = w3, A = A;, and p = g, in our nota-
tions set above. He showed that there exists at least one element of A which is
transcendental over Q. If p has complex multiplication, it is well known that
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the ratio of two non-zero elements of A belongs to the corresponding quadratic
imaginary field 8. Thus, in the case of complex multiplication, Siegel’s result
implies that any non-zero element in A is transcendental. In 1937, Th. Schnei-
der proved more generally (confer [Scl]) that any elliptic logarithm u is either
zero or transcendental without any hypothesis of complex multiplication. Now
consider the case k = 2 with £, = &3, p := g1 = p32. Th. Schneider also showed
that the quotient of two elliptic logarithms wu;,us is either transcendental or
rational if p has no complex multiplication, and either transcendental or an
element of R if p has complex multiplication over & Indeed, in both CM and
non-CM cases, for u; # 0,us # 0, his result yields that a necessary and suf-
ficient condition for the transcendence of 31 is the algebraic independence of
the two functions p(u;2) and p(uzz) (see [Sc3)).

A. Baker proved in 1970 (confer [Bal]), using the method he developped for
the study of linear forms in usual logarithms (see [Ba3]), when k = 2, u; € A
and ug € Ay, that the linear form f;u; + faus with algebraic coefficients 3, B2
is either zero or transcendental (see also related results together with quasi-
periods and 2mi by S. Lang, J. Coates and by D. W. Masser, mentioned in
[Ma5]).

In 1975, D. Masser succeeded in a generalization to arbitrary & elliptic log-
arithms u,... ,ur when & = --- = &, provided that p := p; = --- = p; has
complex multiplication over R : if uy,... ,u are linearly independent over R,
then 1,uy, ... ,ux are linearly independent over Q (Chapter 7 with Appendix 3
of [Mal]). This was extended in 1980, to the non-CM case by D. Bertrand and
D. Masser : suppose that p has no complex multiplication and that uq,... , us
are linearly independent over Q. Then 1,u,,... ,u; are linearly independent
over Q (confer [Be-Mal]).

Generalizations in the abelian case were treated by Th. Schneider (see [Sc2])
in 1941 for abelian integrals, more generally by S. Lang and by D. Masser
(confer [Lal], [Ma2], [La2], [Ma3], [Mad4]). D. Masser proved the linear inde-
pendence of “abelian” logarithms over Q under a hypothesis of complex mul-
tiplication (with a quantitative version of exponential magnitude : see below).
The non-CM case was presented in 1980 by D. Bertrand and D. Masser (see
[Be-Ma2]); they however needed real multiplication.

Let us consider the linear independence problem of elliptic logarithms with-
out the simplifying hypothesis £&; = --- = &, nor assuming complex multi-
plication. More generally, consider the corresponding problem on a connected
commutative algebraic group defined over a number field. The linear inde-
pendence over Q of 1 and “generalized abelian” logarithms was proven by G.
Wiistholz in 1989 (confer [Wii]), where we can deduce all qualitative results
mentioned above as corollaries.

From now on, we give an account of the history of quantitative estimates.
In 1951, N. 1. Fe’dman showed a Diophantine approximation measure of
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an elliptic logarithm by an algebraic number. Precisely, it concerns the case

= 1, u := u; # 0 in our notations above. Write h(8) := h(1,0) if 3 is
algebraic. Let B be a real number > 3. He proved that there exists an effective
constant ¢ > 0 which is independent of B such that for any 3 € Q with
h(B) < log B we have

log [u — 8| > —log B - exp{c(loglog B)"/?};
he refined the estimate for a non zero period u € A := A; to obtain
log|u— 8| > —c-log B - (loglog B)*.

The case of a quotient of two non-zero elliptic logarithms was also treated by
him (confer [Fel), [Fe2), [Fe3]) (in fact, he used a classical height, but it can be
translated to the logarithmic height; see the relation between various heights

in [Wal).
Let £(z) = Bozo + -+ + PBr2x be a non zero linear form on C**! with
coefficients in K. We write v = (1 Uy,...,ur). Let B be a real number

satisfying B > e.
A. Baker proved a positive lower bound of |£(v)| in 1970 (see [Ba2]) for
k =2& = &,u,us € A := A = Ay and By # 0. D. Masser showed

in [Mal] the following estimate in 1975 for arbitrary k, & = --- = & and
Po = 0 under a hypothesis of complex multiplication over- £ ; assume that
uy,... ,ur are linearly independent over K. For any € > 0, there exists an

effective constant ¢ > 0 which depends on ¢ and other data but independent of
B such that for any 8;,..., 0 € K satisfying h(B;) <logB ; 1 <1 <k, we
have log |L(v)| > —c- B¢ (see also abelian cases in [La2], [Ma2], [Ma3], [Ma4] ;
the estimates in [Ma2] and [Mad] are of the same magnitude). Also assuming
complex multiplication, J. Coates and S. Lang [Co-La] refined this estimate in
1976, actually in the abelian case, to get log|L(v)] > —c - (log B)3+6+e
In 1977, M. Anderson refined this estimate and proved in the not neces-
sarily homogeneous case but still assuming complex multiplication on ellip-
tic curves : log|L(v)] > —c-logB - (loglog B)**1*+¢, where h(f,) < log B,
and log B > e. Some related results were treated by W. D. Brownawell and
D. Masser in [Bro-Ma], by E. Reyssat (see [Re]) and by Kunrui Yu (confer
[Yu]).

In 1988 P. Philippon and M. Waldschmidt showed the first such estimate
without any hypothesis of complex mulplication (see [Ph-Wal]). Let us denote
W = ker(L). Suppose that for any connected algebraic subgroup G' of G :=
Gqo X & X -+ - x & with Tg (C) C W we have v € T/ (C) (here we write T (C)
the tangent space of G at the origin and G, stands for the additive group). Let
B be a real number satisfying log B > max {1, h(8;) ; 0 < i < k}. Then they
obtained a lower bound of the form

IL(v)] > exp( —c- (logB)k“) .
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They did not assume L£(v) # 0 as was often done; thus we can deduce also
qualitative linear independence or transcendence results from this quantitative
one (such a lower bound clearly implies that £(v) # 0). In fact, they proved
a result in the general case where G is any connected commutative algebraic
group. This estimate was refined by the second author in 1991 (see [Hil], [Hi2])
with log B > e to get

log |£(v)| > —c-logB - (loglog B)**!

also in the case of connected commutative algebraic group, relying upon an
idea originally due to N. Feld’'man (confer [Fel]) also used in E. Reyssat’s work
(see [Re]) but by introducing a “redundant variable”.

The first author then gave in 1995 (confer [Da)]) a completely explicit version
in the elliptic case of this result, with ¢ made explicit as a function of all given
data. Here, the dependence of |u;| with 1 <4 < k is better than the previous
results when these quantities are small. In 1998, M. Ably (see [Ab]) showed in
the elliptic case an estimate of the form

log |L(v)] > —c-logB

under a hypothesis of complex multiplication. For this purpose, he generalized
Fel’dman’s polynomials to quadratic fields and studied their properties. He was
thus the first to obtain the optimal estimate in the elliptic case, albeit with the
extra hypothesis of complex multiplication. A little later, in 1999 a special
case related with periods and quasi-periods of an elliptic function was treated
by S. Bruiltet (see [Bru]), where one part corresponds in fact to a statement
announced by G. V. Chudnovsky in 1984 (confer [Ch]). We would also like
to mention a work by E. Gaudron, which aims to provide an estimate of the
same optimal shape, i.e. —c-log B for any commutative algebraic group, by
studying the arithmetic properties of infinitesimal neighborhoods of the origin
on suitable integral models.

Our contribution basically originates from an idea of G. Chudnovsky, which
says that local parameters have better arithmetic properties than the com-
plex uniformization, though they do not have a good analytic behaviour. We
therefore build on his idea of “variable change” (see Chapter 8 on algebraic
independence measure of [Ch]) to the case of elliptic logarithms, which are not
necessarily in the period lattice, and we work with the parameters coming from
the so-called formal group (see eg. chapter IV of [Sil]).

New result

“Weputr; = “’2 )1 <1 < k. There is no restriction to assume that 7; belongs
to the upper half pla.ne §, even, to the usual fundamental domain S of $H by
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the action of SLy(Z) ; for this, we choose a suitable basis of A; and this does
not change the invariants g2 ;,93,:,1 <1 < k.

We denote by h = max{1,h(1,92,i,93:) ; 1 < % < k} the height of our
elliptic curves.

We also denote by fz(fy,) the Néron-Tate height of 7; defined as in [Sil],
namely, f(y;) = limp_,oo 2075

Finally we put G = G, x &; X --- x & which is a connected commutative
algebraic group. Write Tg(C) for the tangent space of G at the origin which we
shall identify with C¥*+!. We denote by T¢: (C) the tangent space at the origin
of an algebraic subgroup G’ of G.

Now we present our result.

Theorem (with S. DAVID) [Da-Hi] There exists an effective funcion C >
0 of k, with the following property. Let L(z) = Bozo + -+ + PBr2r be a non zero
linear form on C*+1 with coefficients in K, we put W = ker(L); let moreover
u1,... ,ur be compler numbers such that v; = (1, p:i(u:), pi(ui)) € &i(K) C
P2(K) if u; € A;, and v; = (0,0,1) ifu; € A; for 1 <i < k. We write v =
(1,u1,...,ux). Let B, E, V4,...,Vi be real numbers satisfying the following
conditions :

log B > max {1,h(B;) ; 0<i< k}
w2---2W
) I"-"il2
’ D|w1,,-|28‘m T

. . &
egEgmin{lwl"l(ng' DlogVy)” . 1sigk}.

logViZmax{eah(’Yi }a IS%Sk

s

Suppose that for any connected algebraic subgroup G' of G with T/ (C) C W,
we have v € T/ (C).
Then we have L(v) # 0 and

log|L(v)| > —C - D**? x (log E)~%*~! (log B + log(DE) + h + loglog V4 )

k
X (log(DE) + h + loglog Vi )kt H (h+1logV;).
=1
Thus we obtain here a lower bound of the form
log|L(v)| > —c- logB

without any hypothesis of complex multiplication.
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