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0 Introduction

A careful study of a largely forgotten article of C. Hermite « Sur quelques
équations différentielles linéaires » [HER], published in Crelle’s Journal in 1875
gives us many interesting new results about simultaneous approximations of
Abelian integrals. ‘

Hermite’s paper begins (as his title says) with a linear differential equation
which is a particular case of the so-called Tissot Pochhammer differential equa-
tion. Later it deals with simultaneous approximations to logarithmic functions,
both in the classical and hyperelliptic case.

However many proofs are not complete and it is often difficult to restore a
correct version of them. Nevertheless many tools of modern mathematics are
hidden in this paper of Hermite : “Padé approximation of the second kind, mo-
nodromy, Picard Lefchetz principle, computation of the determinants of periods
of integrals”, infortunately without arithmetic applications.

This paper was published in 1875, two years after the publication of the proof
of the transcendence of e. If we carefully study Hermite’s proof, we can see that
both constructions are similar and uses Padé approximation of the second kind.
It is curious and strange that Hermite uses linear differential equations to study
simultaneous rational approximations of Abelian integrals at distinct points but
one can recall for instance Siegel’s E and G functions are also related to linear
differential equations. » '

In the following we denote by

Bz) = X" 4@ X™+ -+ amp € QX]
0<i<m o i

with e; #ejfori#3j,0<i<m,0 < j < m. I denotes a quadratic imaginary
field, Z (1) his ring of integers and for i, 1 < ¢ < m. For k > 2 and k does not



divide m + 1, we set

fi(z) = ®(z)/* /-z £ ()" kdt (0.2)

€o

(for a suitable choice of the branch of ®(z)!/* and for ep € Q).

The main result of this paper says that for z € I satisfying some arithmetic
conditions the numbers 1, f;(z), f2(z), - - , fm(x) are linearly independent over
Z(I) and satisfy a linear independence measure condition. (see the theorems 2.1
and 2.2).
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1 Tissot Pochhammer equation, cycloelliptic curves

and Padé approximation
Let us consider the k-cyclic covering of the projective plane P, = P, (C)
Vi(t,u) = {(t,u) e P, x P, |uF =&(t)} (1.1)
(cycloelliptic curve). |

Using the Riemann Hurwitz formula it is easy to compute the genus g of
Vi(t,u).
For m; € Z*, 0 < m; < k, we set §; = m;/k and

oy= I G-l (12)

0<i<m

the branches of v(t) are solutions of the linear differential equation of the first
order ’

O+ Y ::5‘}v(t)=o (1.3)

e.
0<i<m b

If k =1 (ie. g = 0) we shall set v(t) = 1. The differential forms
v(t)dt

t) = .
wq(t) p— (1.4)
are differential forms of the third kind on Vi(¢,u).
The family of integrals
oi@)= [ w@a=[ 292 1gism (1.5)
¥i v T t .

where «y; denotes any path beginning at ey and ending at e; on Vi(t,u) or a
Pochhammer double loop encircling eo and e;.
For the moment we assume that the paths ; do not surround any point “above



2" on the Riemann surface Vi(t,u).
For this choice of path, we can write for |z| > 1

ps(z) = i( / | v(t)t"dt) Jzk+1 (1.6)

ie. ¢;(z) is holomorphic at inﬁhity and has a zero there. Under the above as-
sumptions we set

B = [ %’ 1<j<m | (1.7)
then | o
Rj(z) = 1/xﬂ+1z(/ w()B(1)"tkdt ) [2* . (1.8)
k=0 Y7

This family of functions on Vi(t,u) gives an answer to the following question :
“Find a polynomial @Q(z), not identically zero, of degree at most N = nm such
that for 7, 1 <7 <m

Q)i (z) — [R=)p;j(z)lN-1 = O(1/z"*?) (1.9)

(where the bracket square [ ]ny—; denotes the truncated series of order N — 1)
R;(z) has at the point at infinity a zero of order at least n + 1 .

This problem has a solution, since it reduces to a system of N = nm li-
near homogeneous equations in N + 1 unknowns (the coefficients of Q(z)) and

the solution is called Hermite-Padé approximation of the second kind in the

neighborhood of infinity for the set of functions ¢;(z).

Since for j, 1 < j < m, Rj(z) = O(1/z™*!), we can guess that for 1 < j < m
the solution of this problem will be explicit. As in the Hermite’s paper, we can
give two proofs.

First proof :

A n fold integration by parts gives

(n) n
Ri(o) = (- /m [ PANO2OTIE (1.10)

Vi

where D, denotes the derivation on the Riemann surface Vi(t, u)
Ifwesetforl1<j<m

o = Ty 0 ie”) @)

_ [ Q) -Q®)
PJ(IB) —[y _a;_:_i——v(t)dt ’ (112)

J
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we see that Q(t) is a polynomial of degree mn and P;(z) is a polynomial of
degree mn — 1 and according to (1.11) and (1.12)

R;(x) = Q(2)pi(z) - Pi(2) (1.13)

Remark 1.1 Q(z) is a generalisation of Jacobi’s polynomials.

Second proof :

In the remainder of this section, we assume that the path «v; = (eo, e;) begins
at ep and ends at e;, (1 < j < m). On the Riemann surface Vi(t,u), we can use
“Hermite’s trick” and deform this path to add to it a loop called a “vanishing
cycle”.

The new path ;(z) is composed of the path v;, a line segment £, in the positive
sense, a small circle C(z) of center z and the segment Z;le in the opposite sense.

We set v, = l‘ o C(z) o £e;z. With these notations
vj(z) = vj+ < 7j | 7= > 7% (Picard Lefchetz Principle) (1.14)

where < 7; | 7 > denotes the intersection index, < 7; | 7z >= *1. Now we
can rewrite the integral 1.7 with ;(z) instead of v;. It follows that

_ ~ vt [ v(t)B(t)"dt
Rsle) = /7,.(,,) (z —t)m+ _/w (z — )+

+ 2i”res{%t:)225(i)_-:1}t=z , (<7l >=1)

Hence
R;(z) = (m)+2z1r( ) D™ {v(z)®(z)"™)} (1.15)

Similarly, writing (1.9) in the form

Bye)=0@ [ BB

we get

R,- (z) = Rj(x) + 2imv(z)Q ()

and by identification with (1.15) we obtain Q(z) = Q(z).

This second proof gives more. Namely that R,,41(z) = Q(z)v(z) is the
m + 1-th solution of the Tissot-Pochhammer linear differential equation of order
m + 1 satisfied by the m linear independent solutions R;(z), R2(z), -+ , Rm(2).
This equation, has the following form [INCE] -

(T.P.E) @(z)y"™*) — pd'(z)y™ +,( "3 )‘I’”(w)y""_l)“ (1.16)
1.16

p+2
Bo(@)y™ — (i + 1)@h(z)y™D + ( wt ) 81 (z)ymD — ...
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m
Bo(z) = —®(z) ) _(1 - 6;)/(z — &5) (1.17)
=0
p=—(n+1) (1.18)
This differential equation is Fuchsian with singularities eg, €1, - , €m, 00 (rami-

fication’s points of Vi(t,u)).
We can associate to (1.6) the Riemann scheme

/60 ey e €m o0 \
0 0 0 n+1
1 i e -1 n+2
: (1.19)
m—-1 m-1 ------ m—1 n+m
\o—1 & —1 ---nor b —1 4 )

u o= E;":O((Sj - 1) + nm.
which gives the roots (exponents) of the indicial equations of the T.P.E. at
€0,€1, " ,€m,00.
It is very useful to notice that R;(z), R2(z),- - , Rm(x) belong to the expo-
nents n + 1 and that R,,+1(z) belongs to the exponent y' at infinity.
Furthermore, Cauchy’s formula yields

Rosi(z) = % / KIOLIQM (1.20)

(z — f)n+1

where 7,41 denotes a closed Jordan curve containing z in the interior of a
domain where v(t) is holomorphic.

Now if we choose the m + 1 steepest descent paths 4;(z) homological to v;
such that the critical points of the integrands of R;(z), 1 <% < m + 1 are the
roots of the family of equations

E,: (t—-2z)®'()—-2(t)=0. (1.21)
If 0,(z),02(x), - - Om(z) denote the roots of (1.21), thenfor 1 < j <m +1,
6;(z) € 4;(z). With these choices, the new integrals

Rj(z)=Lj(z)%t—)§%¥£—t,1§jgm+1 (1.22)

satisfy the equation (1.16). From this we can obtain the asymptotic behaviours
of these integrals, namely

lim 1/nlog |R;(z)| = log|®' (6;(2))| - (1.238)

n
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Remark 1.2 The relations R;(z) = O(1/z"*1),1 < k < m and Q(z) = O(z™")
give

(o _ Fi(®) -~ 1+1/m
and if |z| =& o0
Q@) ~ Rie)™. (1.25)

2 Arithmetic applications

2.1 The logarithmic case

In the section, we assume that v(t) = 1 and we obtain simultaneous rational
approximations of the integrals

& dt
/ —,1<7<m. (2.1)
e Tt

For instance if we set ®(¢) = t3 — ¢, we can prove that for ¢ € Z*, g > 4 the
three numbers

1 1
1,log(1 - =), log(1 + -
&( q) g( q)

are linearly independent over I and we find a very precise measure of linear
independence for these numbers.

Following a method of M. Hata [HA] which uses Padé-type approximations, .

we can state the following estimate.
Theorem 2.1 For rational integers bo, by, by with H = max(|b;], |b2]) > 2

Ibo + by log2 + be log 3| > H 10101 (2.2)

We outline only the proof.
One chooses ¢(t) = t(t — 1/2)(t — 1/3), D,, € Z*, such that for
i,5,k, 0<i<2n,0<j<2n,0<k<2n,i+j+k—3n£0and

D,,( 2?)(2;)(2:)/(i+j+k—3n)ez,

then it is easy to verify that we have simultaneous approximations of log(2/3)
and log(3/4), namely

. 2n
{ 63nDn f01/3 t—tl =dt = an, log(2/3) - b}, (2 3)

6% Dy, [}1 28 srdt = a, log(3/4) — b2

with a, € Z,bL € Z, b2 € Z .
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2.2 Abelian integrals

From now on we suppose that g > 1, ¥ > 2 and k does not divide m + 1
(i.e the point at infinity is ramified on Vi(t,u)). We have to introduce some
notations '

o v(t) = ®(t)"1+/F = ul=F(t) (For a suitable determination of u(t))

e d a denominator of a;,as, -, Gm+1, €0 ie. d is such that Jaj €Z,1<j<

m + 1, resp. deg € Z. '

e™ H p[ﬁl—l] if Am+1 75 0
plk
p prime

k
exp{k/‘p(k) Z 1/3} H et if apyy =0

s=1 plk
L (s,k)=1 p prime

[ ]
e

where ¢ denotes Euler’s ¢ function.
e Dy =kbEd
In the sequel the roots 8;(z), 1 <i < m+ 1 of (1.21) are chosen such that

|7(6:(X))] < |2'(02(2)] < -+ |2' (O ()] < |2 (B2 ()]

and we set R(z) = |®'(0m(z)|; E(z) = |®'(0m+1(z)). Then we have the main
result of this paper.
Theorem 2.2 If x = a/b € I satisfies

DrMR(z) < 1. (2.4)

Then the numbers 1, fi(x), fa(x), -+, fm(x) are linearly independent over I.

Moreover, for arbitrary rational integers ag,ai,a2---a,, of I with
H =max(|ail, - ,|am|) > 2, the linear form

L=ao+ Y aifi(x)
i=1

admits the lower estimate |L| > cH —C=) where ¢ is an effectively computable
positive constant and

C(z) = log(D?R(m)) / log(DinE(a:)) (Measure of linear independence)

(2.5)
Remark 2.1 Using (1.25), we see that if |z| = oo, C(z) - m.
With the same notations as in the previous theorem we have

Corollary 2.1 If z = P(u) = a/b satisfies D3R(z) < 1 (P(u) denoting as
usual the Weierstrass B function) the numbers P'(u), u—w1/2, {(u) —m /2 are
linearly independent over I and

B (u) + by (u — w1 /2) + bz (C(u) — m/2)| > CH=C()

where wy, resp. M1 denotes a period (resp.) a quasi-period of the elliptic curve.
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We give here only the ideas of the proofs of the main lemmas. The detailed
proofs will appear in a forthcoming publication.

3 Sketch of the proofs

Lemma 3.1 Interchange of the argument and the parameter.
If we consider the integrals
€; t
/ v(t)
o T—1t

with v(t) = ¢(t) "1 +1/*%, t is called the argument and x the parameter. Then this
integral satisfies the following relation

m-—1

&(z)n(z) [/ | %dtz )y { L | (v(t)tf)dt} / : Amoioi (Bt (3.1)

§=0

n(t) being a solution of the adjoint differential equation related to (3.1)

—¢(t)n' (t) + (Bo(t) — @'(t))n(t) =0
Am-1-j(t) is a polynomial of degree m — 1 — j that depends on the differential
equation T.P.E.

We do not prove this relation here [HU]. It uses some tools about differential
equations [INCE] or [SCH]. The reader can nevertheless verify the relation

9 { NG) }_ F) { NZIO) }= Uz, ?) (32)
oz \(t-2)/o0 ] Bl e-0v/e@ ) VoDV

which is a particular case of (3.1) for the hyperelliptic case.
Where U(z,t) denote the polynomial (anti-symmetric) of degree m — 1.

L(¢'(z) + ¢'(8)) (t — 2) + p(z) — (2)
(t — z)? '

U(z,t) =

To obtain a relation in the hyperelliptic case it suffices to integrate this relation
by respect to t.

Lemma 3.2
m-—1
/7 | 9e) = 9 gy > ( /7 U0a) Q). (3.3)

This lemma says that the module of differential forms t*v(t)dt with k € Z* is
generated modulo exact differentials by t*v(t), 0 < k < m — 1 and the proof
uses De Rham cohomology on Vi (t,u).
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Having disposed of these preliminary steps, we find m relations that we can
write for 1 <1 <m

m

Ri(z) = Z(/

j=1 i

t- lv(lt)dt){Q(:b*)(‘l>(a= n(z))” / Am—1-5 ()N (t)dt Qm-1(2)}

(3-4)
Now, we see that we must invert the matrix A = (aij) where

Qi = f% tj_‘l'u(t)dt.

The determinant of this matrix is the determinant of periods of integrals on
the curve Vi (t,u).
The proof that det(A) # 0 uses the properties of the differential equation (1. 16)
and in the particular case of elliptic curves we find det A = w1n2 —wam = in/2
(Legendre’s relation).
The other lemmas are more classical applications of the theory of diophantine
approximation [HU]J.

In the following, we set v(z) = ¢(x)* /.

Lemma 3.3 Let us set
By = Ex(n,m) = k"™ [] pl#5bem (1,1 + k, -+ , 1 + knm)
plk
if am4+1 # 0 and
By, = Ex(n,m) = d"™k"™ [[ p1#1)em (1,2, -+ ,nm)
plk ’
if ami1 = 0. Then ErQ(z) resp. ErQm_i(z) € Z[z], 1 < i < m. Furthermore
B < f);‘m (see 2.5)

To finish the proof of the theorem (2.2), we are obliged to compute the deter-
minant of the following lemma and to show that it is nonzero.
For s=n,n+1,---n+m, we set

Q:QS7 R; :Rs,i, Pi =Qs,m—i» O_<_"' <m
Lemma 3.4 The determinant
Qn(x) Pna (z) T Pn,m(x)
5 () = Qn+1(x) 'Pn+1,1($) '

Qn+m(x) Prym,1 (:12) T Pn+m,m(x)
= ¢(z)"m 1)/ 24 (x) /v(z) where w(x) is the wronskian of the Tissot-Pochhammen
equation. In particular for  # {e1,e2, - ,em}, Am(x) #0.

This lemma shows that among the linear forms boQi(z) + 37—, b P;;(x),
there exists at least one form which is nonzero.
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