Characterization of finite Automata by the Images and the Kernels of their Transition Functions ¹

T. Saito (斎藤 立彦)

Mukunoura 374, Innoshima, Hiroshima, Japan, 722-23221 e-mail: tatsusaito@mx4.tiki.ne.jp

1. Introduction

By an automaton A, we mean here a 3-tuple (X, A, δ) , where X is a finite set (the set of states), A is a finite alphabet (the set of inputs) and δ is a mapping of $X \times A$ into X (the transition function).

As usual, A^* and A^+ denotes the free monoid and free semigroup generated by A, respectively, and δ is extended from $X \times A$ to $X \times A^*$. In this case, $\delta(x,s)$ is denoted simply by xs for $x \in X, s \in A^*$

Let $\rho = \{(s,t) \in A^* \times A^* : xs = xt \text{ for every } x \in X\}$. Then ρ is a congruence on A^* and A^*/ρ is a finite transformation semigroup on X by defining the action of $s\rho \in A^*/\rho$ on X as $x(s\rho) = xs$. The semigroup A^*/ρ is called the *characteristic semigroup* of A. Let V be a class of semigroups not necessarily a variety. Then an automaton A is called a V-type if $A^+/\rho \in V$.

For $s \in A^*$, let im $s = \{xs : x \in X\} = Xs$ and $\ker s = \{(x, y) \in X \times X : xs = ys\}$, which are called the image and the kernel of s, respectively. Then $\ker s$ is an equivalence on X.

Let \mathcal{V} and \mathcal{U} be two classes of semigroups. Then the direct product of \mathcal{V} and \mathcal{U} is defined by $\mathcal{V} \times \mathcal{U} = \{V \times U : V \in \mathcal{V}, U \in \mathcal{U}\}$. Let $U \in \mathcal{U}$ and let S be a semigroup. If for each $s \in V$, there exists $U_s \in \mathcal{U}$ such that $S = \sqcup \{U_s : s \in U\}$ and $U_s \cdot U_t = \{u_s u_t : v_s \in U_s, v_t \in U_t\} \subseteq U_{st}$, then we say that S belongs to $\mathcal{V}(\mathcal{U})$, where \sqcup denotes a disjoint union..

As our start, we consider the following classes of semigroups: $\mathcal{G}=\{\text{groups}\}$, $\mathcal{LZ}=\{\text{left zero semigroups }[st=s]\}$, $\mathcal{RZ}=\{\text{right zero semigroups }[st=t]\}$ and $\mathcal{SL}=\{\text{semilattices }[st=ts,s^2=s]\}$. We first characterize, for the classes $\mathcal{G},\mathcal{LZ}\times\mathcal{G},\mathcal{G}\times\mathcal{RZ}$ and $\mathcal{LZ}\times\mathcal{G}\times\mathcal{RZ}$, their types automata by the images and the kernels of their transition functions. By using the results, we characterize, for $\mathcal{V}\in\{\mathcal{SL},\mathcal{LZ},\mathcal{RZ}\}$ and $\mathcal{U}\in\{\mathcal{G},\mathcal{LZ}\times\mathcal{G},\mathcal{G}\times\mathcal{RZ},\mathcal{LZ}\times\mathcal{G}\times\mathcal{RZ}\}$, $\mathcal{V}(\mathcal{U})$ -type automaton by the same way.

¹ This is an abstract and the details will be published eleswhere

For a example, we show later that an automaton \mathcal{A} is a $\mathcal{SL}(\mathcal{LZ} \times \mathcal{G})$ -type if and only if im $st = \text{im } s \cap \text{im } t$ for every $s, t \in A^+$.

2. Preliminaries

For a set Y, |Y| denotes the cardinality of Y, for an equivalence λ , $x\lambda$ denotes the λ -class containing x and $|\lambda|$ denotes the number of λ -classes. i.e., $|\lambda| = |\{x\lambda : x \in X\}|$, and for $s \in A^+$, |s| denotes the length of s. Then clearly |im s| = |ker s| for every $s \in A^+$.

For $s \in A^*$, let fix $s = \{x \in X : xs = x\}$. Let $E(A^+) = \{e \in A^+ : (e, e^2) \in \rho\}$. Then it is easy to see that $e \in E(A^+)$ if and only if im e = fix e. and that $(e, f) \in \rho$ for $e, f \in E(A^+)$ if and only if im e = im f and ker e = ker f. Since A^+/ρ is finite, for every $s \in A^+$, there exists a positive integer m such that $s^m \in E(A^+)$.

Lemma 1. Let $s, t \in A^+$. Then

- (1) If $|\ker st| = |\ker t|$, then im $st = \operatorname{im} t$.
- (2) If $|\operatorname{im} st| = |\operatorname{im} s|$, then $\ker st = \ker s$.

Lemma 2. Let $s \in A^+$. Then the following are equivalent:

- (1) im $s \cap x \ker s \neq \emptyset$ for every $x \in X$.
- (2) im $s^m = \text{im } s \text{ and ker } s^m = \text{ker } s \text{ for every } m \in \mathbb{N}^+$.
- (3) There exists $e \in E(A^+)$ such that im $s = \text{im } e, \text{ker } s = \text{ker } e, (s, se) \in \rho$ and $(s, es) \in \rho$.

Lemma 3. The following are equivalent:

For every $s, t \in A^+$,

- (1) im $s \cap x \text{ker } t \neq \emptyset$ for every $x \in X$,
- (2) im st = im t.
- (3) $\ker st = \ker s$.

Let $A = (X, A, \delta)$ be an automaton, and let $Y = \bigcup \{ \text{im } a : a \in A \}$ and $\kappa = \bigcap \{ \text{ker } a : a \in A \}$. Then we have $Y = \bigcup \{ \text{im } s; s \in A^+ \}$ and $\kappa = \bigcap \{ \text{ker } s : s \in A^+ \}$. In fact, if $s \in A^+$, then s = s'a = bs for some $a, b \in A, s's \in A^*$, so that im $s'a \subseteq \text{im } a$ and $\text{ker } b \subseteq \text{ker } bs$.

Since $Ys \subseteq Y$ for every $s \in A^+$, the restriction s_Y of s to Y can be defined. Let $A_Y = \{a_Y : a \in A\}$. Then the automaton $A_Y = (Y, A_Y, \delta)$ is called the *subautomaton of* A *with respect to* Y.

Let $s, t \in A^+$ and $x \in X$. Since $(xs)t_Y = (xs)t$, the action of st_Y on X is defined by $x(st_Y) = x(st)$.

Let κ be as above. Define the action of $s \in A^+$ on X/κ by $(x\kappa)s = (xs)\kappa$. Then the action is well-defined. In fact, if $x\kappa = y\kappa$, then $(x,y) \in \kappa \subseteq \ker s$, so that xs = ys. When the action of s is on X/κ , s is denoted by s_{κ} . Let $A_{\kappa} = \{a_{\kappa} : a \in a\}$. Then the automaton $\mathcal{A}_{\kappa} = (X/\kappa, A_{\kappa}, \delta)$ is called the automaton induced from \mathcal{A} by κ .

Let $s, t \in A^+$ and $x \in X$. Then clearly $(x \ker s)s = xs$. Since $\kappa \subseteq \ker s$, we have $(x\kappa)s = xs$, so that $((x\kappa)s_{\kappa})t = ((xs)\kappa)t = (xs)t$, Thus the action of $s_{\kappa}t$ on X is defined by $x(s_{\kappa}t) = x(st)$.

For an automaton $\mathcal{A}=(X,A,\delta)$, let $Im(A^+)=\{\text{im }s:s\in A^+\}=\{Y_i:i\in I\}$, i.e., for each $i\in I,\ Y_i=\text{im }s$ for some $s\in A^+$ and im $s\in Im(A^+)$ for every $s\in A^+$, and let $Ker(A^+)=\{\text{ker }s:s\in A^+\}=\{\kappa_\mu:\mu\in M\}$, $Im(A_\kappa^+)=\{\text{im }s_\kappa:s\in A^+\}=\{Z_i:i\in I'\}$ and $Ker(A_Y^+)=\{\text{ker }s_Y:s\in A^+\}=\{\kappa_\mu:\mu\in M'\}$. In this case, if im $s\cap x\text{ker }s\neq\emptyset$ holds for every $s\in A^+$ and $x\in X$, then $Im(A^+)=Im(E(A^+))$ and $Ker(A^+)=Ker(E(A^+))$.

3. Main Results

A semigroup in $\mathcal{LZ} \times \mathcal{G}$ is called a left group whose class is denoted simply by \mathcal{LG} , i.e., $\mathcal{LG} = \mathcal{LZ} \times \mathcal{G}$.

Theorem 1. Let $A = (X, A, \delta)$ be an automaton. Then the following are equivalent:

- (1) There exists a subset Y of X such that im a = Y and $Y \cap x \ker a \neq \emptyset$ for every $a \in A$ and $x \in X$.
 - (2) There exists a subset Y of X such that im s = Y for every $s \in S$.
 - (3) A is a left group type.

From Theorem 1 we obtain the following results

Corollary 1.1. An automaton $A = (X, A, \delta)$ is a SL(LG)-type if and only if im $st = \text{im } s \cap \text{im } t$ for every $s, t \in A^+$.

Corollary 1.2. An automaton $A = (X, A, \delta)$ is a $\mathcal{RZ}(\mathcal{LG})$ -type if and only if im st = im t for every $s, t \in A^+$.

A semigroup in $\mathcal{G} \times \mathcal{RZ}$ is called a right group whose class is denoted by \mathcal{RG} , i.e., $\mathcal{RG} = \mathcal{G} \times \mathcal{RZ}$.

Theorem 2. Let $A = (X, A, \delta)$ be an automaton. Then the following are equivalent:

- (1) There exists an equivalence κ on X such that $\ker a = \kappa$ and $\operatorname{im} a \cap x \kappa \neq \emptyset$ for every $a \in A$.
- (2) There exists an equivalence κ on X such that $\ker s = \kappa$ for every $s \in A^+$.
 - (3) A is a right group type.

Corollary 2.1. An automaton $A = (X, A, \delta)$ is a SL(RG)-type if and only if ker $st = \ker s \vee \ker t$ for every $s, t \in A^+$.

Corollary 2.2. An automaton $A = (X, A, \delta)$ is a $\mathcal{LZ}(\mathcal{RG})$ -type if and only if im st = im t for every $s, t \in A^+$.

From Corollaries 1.2 and 2.2 we obtain:

Corollary 2.3. An automaton $\mathcal{RZ}(\mathcal{LG})$ -type if and only if it is $\mathcal{LZ}(\mathcal{RG})$ -type.

Remark. It can be easily show that $\mathcal{LZ}(\mathcal{LG}) = \mathcal{LZ}(\mathcal{G}) = \mathcal{LG}$ and $\mathcal{RZ}(\mathcal{RG}) = \mathcal{RZ}(\mathcal{G}) = \mathcal{RG}$.

Theorem 3. Let $A = (X, A, \delta)$ be an automaton. Then the following are equivalent:

- (1) There exist a subset Y of X and an equivalence κ on X such that im a = Y and $\ker a = \kappa$ for every $a \in A$ and $Y \cap x\kappa \neq \emptyset$ for every $x \in X$.
- (2) There exist a subset Y of X and an equivalence κ on X such that im s = Y and $\ker s = \kappa$ for every $s \in A^+$,
 - (3) A is a group-type.

A semigroup in SL(G) is called a Cliford semigroup,

Corollary 3.1. An automaton $A = (X, A, \delta)$ is a Cliford smigroup type if and only if im $st = \text{im } s \cap \text{im } t$ and $\text{ker } st = \text{ker } s \vee \text{ker } t$ for every $s, t \in A^+$.

Theorem 4. Let $A = (X, A, \delta)$ be an automaton, and Let $Y = \bigcup \{ \text{im } a : a \in A \}$, $\kappa = \bigcap \{ \text{ker } a : a \in A \}$. Suppose that im $s \cap x \text{ker } s \neq \emptyset$ for every $s \in A^+, x \in X$. Then the following are equivalent:

- (1) \mathcal{A} is a $\mathcal{LZ} \times \mathcal{G} \times \mathcal{RZ}$ -type.
- (2) ker $s_Y = \ker t_Y$ for every $s, t \in A^+$.
- (3) im $s_{\kappa} = \text{im } t_{\kappa} \text{ for every } s, t \in A^+$.

Corollary 4.1. With the assumption of Theorem 4, the following are equivalent:

(1) \mathcal{A} is a $\mathcal{SL}(\mathcal{LZ} \times \mathcal{G} \times \mathcal{RZ})$ -type.

- (2) ker $s_Y t_Y = \ker s_Y \vee \ker t_Y$ for every $s, t \in A^+$.
- (3) im $s_{\kappa}t_{\kappa} = \text{im } s_{\kappa} \cap \text{im } t_{\kappa} \text{ for every } s, t \in A^+.$

Suppose that an automaton \mathcal{A} is a $\mathcal{LZ} \times \mathcal{G} \times \mathcal{RZ}$ -type. As is seen in the proof of Theorem 4, $A^+/\rho = \{(i,g,\mu) : i \in I, g \in G, \mu \in M\}$. For $i \in I$ and $\mu \in M$, let $A_i/\rho = \{(i,g,\mu) : g \in G, \mu \in M\}$ and $A_\mu = \{(i,g,\mu) : i \in I, g \in G\}$, respectively. Then $A_i/\rho \in \mathcal{RG}$ and $A_\mu/\rho \in \mathcal{LG}$. For $s\rho = (i,g.\nu), t\rho = (j,h,\mu)$, since $(st)\rho = (i,gh,\mu)$, by Theorems 1 and 2, we have $\ker st = \ker st$ and $\ker st = \operatorname{im} t$. Thus we obtain;

Corollary 4.2. If an automaton A is a $LZ \times G \times RZ$ -type, then it is a RZ(LG)-type. The converse is not true,

There is a simple example that a $\mathcal{RZ}(\mathcal{LG})$ -type automaton which is not a $\mathcal{LZ} \times \mathcal{G} \times \mathcal{RZ}$ -type.

References

- 1. Howie, J. M., "Fundamentals of Semigroup Theory", Oxford Science Publications, Oxford, 1995.
- 2. Howie, J. M., "Automata and Languages", Oxford Science Publications, Oxford, 1991.
- 3. Petrich, M., "Lectures in Semigroups", John Wiley and Sons, London, 1977.
- 4. Saito, T. Band-type acts over free monoids (preprint).