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1 Subgroup Membership Problem

It is well known that the subg$mup$ membership problem for afinitely presented groups is not de-
cidable in general, whereas it is solvable for the class of finite groups or finitely generated abelian
groups, However, if we consider more practical computation, that is, the probabilistic polyn0-
mial time algorithms (or equivalently the class BPP), the membership problem is not trivial
even for the class of finite abelian groups. As amatter of fact, several algorithmic problems used
in cryptography are characterized as the subgroup membership problem under the assumption
that the corresponding membership problem is not in BPP. For example, there exists no known
probabilistic polynomial time algorithm for the integer factorization or the discrete logarithm
problem for some class of finite cyclic groups. The quadratic residue (QR for short) problem and
the decision Diffie Hellman (DDH for short) problem hive numerous applications in cryptogra-
phy, and hence, they have been studied in detail. Following [11], we generalize and formalize
them as the subgroup membership prvyblem and to show many other algorithmic problems, which
are used in public key cryptography, are characterized as the subgroup membership problem as
well. Such aunification of algorithmic problems used in cryptography has not been appeared
up to date as far as the authors are concerned. Widely used assumptions in cryptography are
divided into two groups: the algorithmic assumptions related to the integer factoring (and the
$\mathrm{Q}\mathrm{R})$ and the algorithmic assumptions related to the discrete logarithm problem (and the DDH).
The first is originated ffom the RSA cryptosystem and the second from the Diffie Hellman key
exchange protocol. These two look different and are usually discussed separately. The unified
approach to the integer factoring problem and the discrete logarithm problem shed light on the
fundamental properties of algorithms required to provide the security. Therefore, we can get
better understanding of the algorithmic problems by unified treatment of subgroup membership
problems.

1..1 Subgroup Membership Assumption

Determining the membership of agiven element of acertain group in its subgroup is not always
easy. As amatter of fact, the membership problem of asubgroup in afinitely presented group
is not recursive in general. To apply the membership problem to cryptographic schemes such as
asymmetric cryptosystems, we require the efficiency of computation for legal participants and
the existence of atrapdoor. In this section we consider the subgroup membership problem with
atrapdoor, and show that several problems widely used in cryptography are characterized as
the subgroup membership problem.
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Let $G$ be agroup, and let $H$ be its subgroup. The membership problem is to decide whether
or not agiven element $g\in G$ belongs to $H$ . We suppose that every element in $G$ has a
binary representation of size $k$ , where $k$ is the security parameter. The membership can be
decided within polynomial time in $k$ if acertain information, called atrapdoor, is provided.
The membership of an element $g\in G$ in $H$ can be decided provided the trapdoor, however,
the membership cannot be decided with aprobability suktantiAy larger than $\frac{1}{2}$ without the
trapdoor. We now formalize the subgroup membership problem.

Let $k$ be the security parameter. For the input $1^{k}$ , aprobabilstic polynomial time algorithm
$\mathrm{I}\mathcal{G}$ outputs the description of agroup $G$, the description of asubgroup $H\subset G$ and the trapdoor
that provides afast algorithm for the subgroup membership problem of $H$ in $G$. The algorithm

$\mathrm{I}\mathcal{G}$ is called the instance generator. Every element of $G$ is represented as abinary sequence of
length $k$ . Computation of the multiplication in $G$ is performed in polynomial time in $k$ .

The predicate for the membership of asubgroup is denoted by Mem, that is, Mem is defined
as follows:

Mem , $H,x$) $=\{$
1if $x\in H$

0if $x\in S$ ,

where $\mathrm{I}\mathcal{G}$ outputs the pair $(G,H)$ for $1^{k}$ , $x$ is in $G$ , and $S=G\backslash H$ . The subgrv up membership
problem is to compute Mem in polynomial time in $k$ when we inputs $1^{k}$ and obtain apair of
groups $(G,H)$ and an element $g$ in $G$, which is uniformly and randomly chosen from $H$ or $G$

according to the coin toss $barrow R\{0, 1\}$ . If there does not exist aprobabilstic polynomial time
algorithm that computes Mem with aprobability substantially larger than $\Sigma 1$ , then we say that
the membership problem is intractable. We also assume that one can choose uniformly and
randomly an element from both $H$ and $G$ . This is significant to apply to cryptographic schemes.

The following is trivial, however, it is useful for the construction of an PIR system based on
the subgroup membership problem.

Proposition 1.1 Let $G$ be a group, and let $H$ be a subgroup of G. For any $g\in G$ and $h\in H$,
we have $gh\in H$ if and only $\dot{l}fg\in H$ . 0

Subgroup Membership Assumption I
For every constant c, and every family $\{C_{k}|k\in \mathrm{N}\}$ of circuits of polynomial size in k, there is
an integer K such that for aU k $>K$ we have

Prob$(C_{k}(G,H,g)= \mathrm{M}\mathrm{e}\mathrm{m}(G,H,g))<\frac{1}{2}+\frac{1}{k^{e}}$ , (1.1)

where the probability is taken over (G, $H)arrow \mathrm{I}\mathcal{G}(1^{k})$ , b $\epsilon$ {0,1}, g $\epsilon$ H if b $=1$ , g $\epsilon$ S if
b $=0$ .

The assumption claims that there exists no polynomial size circuit family to compute the
predicate Mem. The following is equivalent to the assumption above.

Subgroup membership assumption II
For every constant c, and every family $\{C_{k}|k\in \mathrm{N}\}$ of circuits of polynomial size in k, there is
an integer K such that for all k $>K$ we have

$| \mathrm{P}_{H}-\mathrm{P}_{S}|<\frac{1}{k^{e}}$ , (1.2)
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where the probabilities $\mathrm{p}_{H}$ and Ps are defined as follows;

$\mathrm{p}_{H}=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}_{(Gff)arrow \mathrm{I}\mathcal{G}(1^{\iota_{)jg}\mathrm{d}_{H}}}(C_{k}(G,H,g)=1)$ ,

and
P.$s=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}_{(Gfl)arrow \mathrm{I}\mathcal{G}(1^{\mathrm{k}})jg}(g_{S}C_{k}(G,H,g)=1)$

1.2 Examples

We exhibit several subgroup membership problems: the DDH problem, the QR problem, the $r\mathrm{t}\mathrm{h}$

residue (RR for short) problem studied by Kurosawa and Tsujii [6], the $\triangleright$-subgroup(PSUB for
short) problem introduced by Okamoto and Uchiyama [8] and the decisional composite resid-
uoeity (DCR for short) problem introduced by Pailler [9]. Recall that the assumption that
the QR problem is intractable (QR assumption) is employed to prove the semantic security of
Goldwasser-Mical cryptosystem [4], and the assumption that the DDH problem is intractable
(DDH assumption) is employed to prove the semantic security of ElGamal cryptosystem. These
two have many other applications. The assumption that one of problems above is intractable is
employed to prove the semantic security of the corresponding cryptosystem [6], [8], [9], respec-
tively. We also note that the security of the cryptosystem introduced by Naccache and Stern [7]
depends on the PSUB assumption as well.

Quadratic Residue Problem
Let $p,q$ be primes. Set $N=\Pi$ . The primes $p$ and $q$ are trapdoor information for the quadratic
residue problem, on the other hand, the number $N$ is public information. Let $G$ be the subgroup
of $(\mathrm{Z}/(N))^{*}$ consisting of the elements whose Jacobi symbol is 1, and let $H$ be the subgroup of
$G$ consisting of quadratic residues of $G$, that is, $H=$ {$x$ $\in G|x=y^{2}\mathrm{m}\mathrm{o}\mathrm{d} N$ for $y\in(\mathrm{Z}/(N))^{*}$ }.
The quadratic residue problem of $H$ in $G$ is to decide whether or not, a llvenv element $g\in G$ ,
$g$ belongs to $H$. We can effectively determine the membership of $g$ in $H$ provided that the
information $p$ and $q$ are available. No polynomial time algorithm is known for the membership
of arandomly chosen element of $G$ in $H$ without the information $p$ and $q$ . Hence, if we define
an instance generator for the QR problem as aprobabilistic algorithm that outputs two primes
$p$ and $q$ of size $k$ and aquadratic non-residue $h$ whose Jacobi symbol is 1for the input $1^{k}$ , then
the QR problem is considered as asubgroup membership problem. Note that we can obtain a
quadratic non-residue $h$ with Jacobi symbol 1by using $p,q$, and that it is possible to uniformly
and randomly choose elements ffom $H$ without the trapdoor information provided $h$ is given.

Decision $\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{l}\triangleright \mathrm{H}\mathrm{e}\mathrm{U}\mathrm{m}\mathrm{a}\mathrm{n}$ Problem
Let $C$ be acyclic group of prime order $p$. The group $C$ may be amultiplication group of afinite
field or agroup of rational points of an elliptic curve. Let $g$ be agenerator of G. The decision
Diffie Hellman problem is to decide whether or not $h_{2}=ae$ for the given quadruple $(g_{1},h_{1},g_{2}, h_{2})$

of elements in $C$ with $h_{1}=g_{1}^{t}$ for some $1\leq a\leq p-1$ . If so, we say that $(g_{1},h_{1},g_{2},h_{2})$ is a
Diffie-Hellman quadruple. The integer $a$ is the trapdoor of the decision $\mathrm{D}\underline{\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{i}}\mathrm{e}-$-Hellman problem.
Knowing the trapdoor $a$, we can efficiently decide whether or not $h_{2}=ffl$.

We show that the DDH problem can be characterized as asubgroup membership problem
for acertain group. We set $G$ to be the direct product $C\mathrm{x}C$ . Then the input to the DDH
problem is $(x, y)$ where $x,y\in G$ , that is, $x$ $=(g_{1},h_{1})$ and $y=(g_{2},h_{2})$ . It is obvious that
$(g_{1},h_{1},g_{2},h_{2})$ is aDiffie-Hellman quadruple if and only if $y$ belongs to the subgroup $<x>\mathrm{o}\mathrm{f}$

$G$ generated by $x$ . It follows that the DDH problem for the cyclic group $C$ is equivalent to
the subgroup membership problem of the group $H=<x>$. ’where $x=(g_{1},g_{1}^{a})$ , in the group
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G $=C$ xC $=<g_{1}>\mathrm{x}<g_{1}>$ . N.ote that, when agenerator x of H is given, it is possible to
choose uniformly and randomly elements from H without the trapdoor information.

Rth Residue Problem
The RR problem is anatural extension of the QR problem defined as follows. Let $p,q$ be
primes, and let $e_{1}$ ,e2 be odd integers dividing $p-1$ and $q-1$, respectively, such that $e_{1}$ is
prime to $q-1$ and e2 is prime to $p-1$ . Set $N=pq$ and $r$ $=e_{1}e_{2}$ . The primes $p$ and $q$ are the
trapdoor information for the RR problem, on the other hand, the number $N$ and $r$ are the public
information. Let $G$ be the group $(\mathrm{Z}/(N))^{*}$ , and let $H$ be the subgroup consisting of rth residues
of $G$, that is, $H=$ {$x\in G|x=y^{r}\mathrm{m}\mathrm{o}\mathrm{d} N$ for $y\in G$}. The RR problem of $H$ in $G$ is to decide
whether or not, agiven element $g\in G$, $g$ belongs to $H$. Thus, the RR is asubgroup membership
problem of $H$ in $G$ . We can effectively determine the membership of $g$ in $H$ provided that the
information $p$ and $q$ are available. No polynomial time algorithm is known for the membership
of arandomly chosen element of $G$ in $H$ without the information $p$ and $q$ . Note that we can
obtain an element $h$ such that $h^{:}\not\in\{x^{r}\mathrm{m}\mathrm{o}\mathrm{d} N : x\in(\mathrm{Z}/(N))^{*}\}$ for any $1\leq|$

.
$\leq r$ $-1$ by using

the trapdoor information, and that we can uniformly and randomly choose an element ffom $H$

provided $h$ is given.
$\mathrm{P}$-Subgroup Problem
Let $p$, $q$ be primes such that $p$ does not divide $q-1$ . Set $N=p^{2}q$ and let $g$ be arandom element in
$(\mathbb{Z}/(N))^{*}$ such that the order of $g^{p-1}\mathrm{m}\mathrm{o}\mathrm{d} p^{2}$ is $p$. The primes $p$ and $q$ are trapdoor information
for the PSUB problem, on the other hand, the number $N,g$ , $k$ are public information. Let $G$

be agroup defined by $G=$ { $x|x=g^{m}y^{N}\mathrm{m}\mathrm{o}\mathrm{d} N$ for $m\in \mathrm{Z}/(p)$ and $y\in(\mathrm{Z}/(N))^{*}$ }, and let
$H$ be the subgroup defined by $H=$ {$x|x=y^{N}\mathrm{m}\mathrm{o}\mathrm{d} N$ for $y\in G$}. The PSUB problem of $H$

in $G$ is to decide whether or not, agiven element $g\in G$ , $g$ belongs to $H$. Thus, the PSUB is
the membership problem of $H$ in $G$ . We can efficiently determine the membership of $g$ in $H$

provided that the information $p$ and $q$ are available. No polynomial time algorithm is known
for the membership of arandomly chosen element of $G$ in $H$ without the information $p$ and $q$ .
Note that our description of PSUB is slightly diffrent ffom OkamotO-Uchiyama [8], where the
PSUB is introduced as avariant of the coset indistinguishability problem which we will present
in Section 2.3. Naccache and Stern [7] implicitly used PSUB problem in their scheme. Pailier
introduces the decisional composite residuosity (DCR for short). This is ageneralization of [8]
and also characterized as asubgroup membership problem.

For other plausible applications of the subgroup membership problem, the reader is also
referred to [10] in which the DDH assumption is applied to the cryptographic schemes which
only known method to construct is to base on the QR assumption.

1.3 Equivalent Problems

We examine several algorithmic problems equivalent to the subgroup membership problem.
Suppose that $\mathrm{I}\mathcal{G}$ is an instance generator of afamily of groups, and that $\mathrm{I}\mathcal{G}$ outputs $(G,H)$ for
the input $1^{k}$ . We set $S=G\backslash H$ . Suppose that $t$ is an integer bounded above by apolynomial
in $k$ . Let K.$\cdot$ be the direct product of $t-1H$’s and $S$, where all $j\mathrm{t}\mathrm{h}$ position $(j\neq:)$ is occupied

by $H$ except for $i\mathrm{t}\mathrm{h}$ position, that is, $K_{}=H\mathrm{x}H\mathrm{x}\cdots\cross s^{}\mathrm{x}\cdots$
$\mathrm{x}H$ for every $:=1,2$, $\ldots$ , $t$ .

Let $L$ be the union of $K_{1}$ , $K_{2}$ , $\cdots$ , $K_{t}$ , that is, $L=K_{1}\cup K_{2}\cup\cdots\cup K_{t}$.

Pattern Indistinguishability Assumption
The pattern indistinguishability assumption is to assume the following holds: for every constant
c, every family $\{C_{k}|k\in \mathrm{N}\}$ of circuits of polynomial size in k and all :,j such that $1\leq:,j\leq n$
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there is an integer $K$ such that for all $k>K$ we have

$| \mathrm{p}_{:-}\mathrm{p}_{j}|<\frac{1}{k^{ae}}$ (1.3)

Here the probabilities $\mathrm{p}_{:}$ and $\mathrm{P}_{j}$ are defined as follows;

$\mathrm{P}_{:}=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}_{(G,H)\succ \mathrm{I}Q(1)j(g1,\ovalbox{\tt\small REJECT}\cdots ffl)}(\mathrm{r}\mathrm{g}_{K_{}}C_{k}(G,H,:, g_{1},g_{2}\ldots,g_{t})=1)$ ,

$\mathrm{P}_{j}=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}_{(Gfl)\succ \mathrm{I}Q(1^{k})j(g1,\alpha\cdots\alpha)},(\mathrm{d}\kappa_{j}C_{k}(G,H,:, g_{1},g_{2}\ldots,g_{t})=1)$

General Pattern Indistinguishability Assumption
The general pattern indistinguishability assumption is to assume the following holds: for every
constant $c$, every family $\{C_{k}|k\in \mathrm{N}\}$ of circuits of polynomial size in $k$ and all ($:_{1}$ ,i2, $\ldots$ , $i_{u}$ )
and $(j_{1},j_{2}, \ldots,j_{u})$ , there is an integer $K$ such that for all $k>K$ we have

$| \mathrm{P}_{(:_{1\prime^{12\prime\dot{\mathrm{w}}\mathrm{I}}}}\cdot,\ldots-\mathrm{P}_{(\mathrm{j}_{1}\mathrm{j}_{2\prime\cdots\dot{l}u})}|<\frac{1}{k^{e}}$ (1.4)

Here the probabilities $\mathrm{P}_{\mathrm{t}:_{1,2,\ldots,\dot{\mathrm{h}})}}|$.and $\mathrm{P}_{(f_{1}\mathrm{j}_{2},\ldots \mathrm{j}_{u})}$ are defined by

$\mathrm{P}_{\mathrm{t}:_{1},_{2,\ldots,\dot{\mathrm{b}})}}=\mathrm{P}\mathrm{r}o\mathrm{b}(C_{k}(G,H,x_{1},x_{2} \ldots,x_{u})=1)$ ,

where the probability is taken over $(G,H)arrow \mathrm{I}\mathcal{G}(1^{k})$ and $(x_{1},x_{2}\ldots,x_{u})\mathrm{d}$
$K_{_{1}}\mathrm{x}K_{\dot{1}2}\mathrm{x}\cdots \mathrm{x}K_{u}\dot{.}$

and
$\mathrm{P}_{U\mathrm{j}_{2},\ldots \mathrm{j}.)}=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}(1C_{k}(G,H,x_{1},x_{2}\ldots,x_{u})=1)$ ,

where the probability is taken over $(G,H)arrow \mathrm{I}\mathcal{G}(1^{k})$ and $(x_{1},x_{2}\ldots,x_{\tau\iota})L$
$K_{j_{1}}\mathrm{x}K_{j_{2}}\mathrm{x}\cdots \mathrm{x}K_{j_{u}}$ .

Coset $\mathrm{h}\mathrm{d}\mathrm{f}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{g}\mathrm{u}\mathrm{i}\mathrm{s}\mathrm{h}\mathrm{a}\mathrm{b}\mathrm{U}\ddagger \mathrm{t}\mathrm{y}$ Assumption
The coset $\dot{|}nd\dot{u}$ $t\cdot.ngu\dot{u}$$hab\cdot.lu$

.
$y$ assumption is to assume the following holds: for every constant

$c$, every family $\{C_{k}|k \in \mathrm{N}\}$ of circuits of polynomial size in $k$ and every algorithm $F$ that on
input $(G,H)$ outputs apair of elements in $G$, there is an integer $K$ such that for aU $k>K$ we
have

Prob($C_{k}$ (G,H, go, $g_{1},g)=b$) $< \frac{1}{2}+\frac{1}{k^{e}}$ , (1.5)

where the probability is taken over $(G,H)arrow \mathrm{I}\mathcal{G}(1^{k})$, (go, $g_{1}$) $arrow F(G,H)$ , b $\epsilon$ {0,1} and g A
$g\iota H$.
Theorem 1.2 The following are equivalent
(1) The $\mathrm{r}p$ membership assumption $I$.
(1) The $\mathrm{r}p$ membership assumption $II$.
(3) The pattern indistinguishability assumption.
(4) The general pattern $\dot{l}nd\dot{u}$$t\dot{1}ngu\dot{u}$$hab\cdot.l_{\dot{1}}ty$ assumption.
(5) The coset indistinguishability assumption. a
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2Private Information Retrieval

Chor, Goldreich, Kushilevitz and Sudan [2] introduced the private information retrieval scheme
for remote database access, in which the user can retrieve the data of user’s choice without
revealing it. Their scheme attains information theoretic security, however the database must
be replicated in several locations where the managers are not alowed to communicate each
other. The computational private information retrieval scheme was introduced by Chor and
Gilboa [3]. Their scheme attains more efficient communication than Chor, Goldreich, Kushilevitz
and Sudan’s model by sacrificing the information theoretic security, nevertheless, their scheme
enjoys computational security by assuming the existence of pseudorandom generators. However,
their scheme stiu needs replication of the database. Kushilevitz and Ostrovsky [5] introduced
acomputational private information retrieval scheme in which only one database is needed.
Their scheme depends on the intractability of the quadratic residue problem. More efficiency,
polylogarithmic communication complexity, is attained by Cachin, Mical and Stadler [1]. They
assume anumber theoretic hypothesis, which they cffi the $\Phi$ assumption, and sacrifice one-
round communication and then obtain polylogarithmic communication complexity. However,
arigorous proof of the intractability of the $\Phi$ assumption or its equivalence to awidely used
assumption like the quadratic residue assumption or the integer factorization is not given in [1].

We briefly review the general scheme of aprivate information retrieval (PIR for short)
scheme. Acomputational PIR scheme with asingle database is aprotocol for two players, a
user $\mathcal{U}$ and adatabase manager $VB$. Both are able to perform only probabilstic polynomial
time computation. The database manager $DB$ maintains adatabase, which is abinary sequence
$X=\mathrm{X}\mathrm{O}\mathrm{X}1\mathrm{X}2\cdots x_{n-1}$ . The goal of the protocol is to allow $\mathcal{U}$ to obtain the $i\mathrm{t}\mathrm{h}$ bit $x_{+1}$ of $X$

without leaking any information on $x$:to $VB$. The protocol runs as follows:
Step 1 $\mathcal{U}$ computes a query Query(i) using his random tape (coin toss), which $\mathcal{U}$ keeps secret.
Then he sends Query(i) to $DB$ .
Step 2 $DB$ receives Query(i). He performs apolynomial-time computation for the input $X$ ,
Query(i) and his random tape. The computation yields the answer Answer(Query(i)). He sends
Answer(Query(i)) back to $\mathcal{U}$ .
Step 3 $\mathcal{U}$ receives Answer(Query(i)). He performs apolynomial-time computation using the
answer Answer(Query(i)) and his private information (his random tape). The computation
yields the $i\mathrm{t}\mathrm{h}$ bit $X:+1$ of the database.

Correctness
For any database sequence X and for any query Query(i) for ith bit of X, $\mathcal{U}$ obtains X:at the
end.

Privacy
$DB$ cannot distinguish aquery for the $i\mathrm{t}\mathrm{h}$ bit and aquery for the $j\mathrm{t}\mathrm{h}$ bit for aU: and $j$ by a
polynomial-time (probabilistic) computation with non-negligible probability. Formaly, for all
constants $c$ , for all database of length $n$ , for any two $1\leq:,j\leq n$ , and aU polynomial-size family
of circuits $C_{k}$ , there exists an integer $K$ such that for au $k>K$ we have

lProb($C_{k}$ Query(i $)=1$) -Prob($C_{k}$ (Query(j)) $=1$) $|<\sigma$ , (2.1)

where $k$ is the security parameter of the protocol and $\sigma=\frac{1}{({\rm Max}(k,n))^{e}}$ .
Computation
Computations of both VB and $\mathcal{U}$ are bounded above by apolynomial in the size n of the database
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and the security parmeter k.

3PIR Based on the Subgroup Membership Problem

Following [11], we show that the subgroup membership problem can be applied to aPIR scheme
by modifying Kushilevitz and Ostrovsky’s scheme [5]. The proposed scheme has the same
communication complexity as Kushilevitz and Ostrovsky’s scheme whose security depends on
the QR assumption. On the other hand, the security of the private information retrieval scheme
proposed in this paper is based on the subgroup membership assumption. Therefore, we can
construct aprivate information retrieval scheme based on any algorithmic problems in Section
2.2, in particular, we can use groups of rational points on eliptic curves or multiplicative groups
of finite fields under the corresponding DDH assumption. We should remark that all the private
information retrieval schemes proposed so far depend on either the existence of pseudorandom
number generators or intractabilty assumption related to the integer factorization. No private
information retrieval scheme based on the DDH has been proposed, yet as far as the authors
are concerned. Modifying [5], we construct aPIR scheme based on the subgroup membership
problem.

3.1 Basic Idea

First of all, we explain the basic idea of the scheme by asimple model. Suppose $VB$ has the
database $X=\mathrm{X}\mathrm{O}\mathrm{X}1\mathrm{X}2\cdots$

$x_{\iota-1}$,and that $\mathcal{U}$ wishes to know the $\dot{|}\mathrm{t}\mathrm{h}$ bit $x:-1\cdot \mathcal{U}$ chooses group
elements $g_{0}$ , $\mathrm{g}\mathrm{i}$ , $g_{2}$ , $\ldots$ , $g_{-1}$ , $\ldots$ , $g_{n-1}$ so that $g_{\mathrm{j}}\in H$ for $j\neq:-1$ and $g_{-1}\in S=G\backslash H$ .
Then $\mathcal{U}$ sends them aU to $DB$. $DB$ computes the group element $g=g_{0^{\mathrm{O}}}^{l}g_{1}^{x_{1}}g_{2^{2}}^{l}\cdots$ $g_{-1}^{x\dot{.}-1}.\cdot\cdots g_{1*-1}^{x_{n-1}}$

and sends it badc to $\mathcal{U}$. $DB$ cannot get to know which of go, $g_{1}$ , $g_{2}$ , $\ldots$ , $g-1$ , $\ldots$ , $g_{l1-1}$ comes
ffom $S$ if the subgroup membership problem of $H$ in $G$ is intractable. Since $\mathcal{U}$ possesses the
trapdoor, he can determine whether or not $g$ lies in $H$. By Proposition 1, $g$ lies in $H$ if and only
if $x:-1=0$. Therefore, $\mathcal{U}$ can obtain the tth bit $x:-1$ . This simple model illustrates the idea of
using the subgroup membership problem, but the communication complexity is still large. We
need the trick by [5] to reduce the communication complexity.

3.2 Scheme

Step 0The user $\mathcal{U}$ inputs $1^{k}$ to the instance generator $\mathrm{I}\mathcal{G}$ and then gets apair $(G,H)$ of
groups and the trapdoor for the subgroup membership problem of $H$ in $G$, where $k$ is the security
parameter and every element of $G$ is represented by abinary sequence of length $k$ . We assume
the subgroup membership assumption of $H$ in $G$. The group $G$ is shared by both $DB$ and 2#.
On the other hand, $\mathcal{U}$ keeps the trapdoor information for the subgroup membership problem
of $H$ secret. Computations of both $DB$ and $\mathcal{U}$ are performed in the group $G$. Let $X$ be the
database managed by $DB$. We suppose that $X=\mathrm{X}\mathrm{O}\mathrm{X}1\mathrm{X}2\cdots$

$x_{\mathfrak{n}-1}$ , where $x:\in\{0,1\}$ , and that
$n=d$, where $t,l$ are positive integers.

Step 1 &computes query Query(t) for his desired bit x:-l, where $1\leq:\leq n$, in the following
manner. First, $\mathcal{U}$ computes the t-Mc expansion of:. Let : $=\alpha_{0}$ . Then the t-ax3Xc expansion of
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i is $\beta\iota\beta_{l-1}\ldots$ $\hslash\beta_{1}$ , where

$\alpha 0=\alpha_{1}t+\$ $0\leq\alpha \mathrm{p}\leq t^{l-1}-1$ , and $0\leq\beta_{1}\leq t-1$

$\alpha_{1}=\alpha_{2}t+\alpha$ $0\leq\alpha_{1}\leq t^{l-2}-1$ , and $0\leq\hslash$ $\leq t-1$

$\alpha_{2}=\alpha_{3}t+\$ $0\leq\alpha_{2}\leq t^{l-3}-1$, and $0\leq h$ $\leq t-1$

(3.1)

$\alpha_{l-2}=\alpha_{l-1}t+\beta\iota-1$ $0\leq\alpha\iota-2\leq t$ -1, and $0\leq\beta_{l-1}\leq t-1$

$0\leq\alpha_{l-1}=\beta\iota\leq t-1$ and $\alpha_{l}=0$ .
For each $u(1\leq u\leq l)$ , $\mathcal{U}$ chooses uniformly and randomly $t-1$ elements $g_{(u,0)}$ , $g_{(u,1)}$ , $\ldots$ ,
$g(u\beta_{\mathrm{u}}-1)’ g(u,\beta_{u}+1)$ , $\ldots$ , $g(u,t-1)$ ffom $H$. He also chooses uniformly and randomly $g_{(u,\beta_{u})}$ ffom
$S=G\backslash H$. $\mathcal{U}$ defines $\mathrm{Q}(\mathrm{t}\mathrm{i})$ by

($g_{(u,0)},g_{(u,1)},$ $\ldots,g_{(uflu^{-1)’ g(u,\beta_{u})’ g_{(ufl+1)},\ldots,g_{(u,t-1)})}}u$ ’ (12)

that is, $Q(u)$ is asequence of group elements of $G$ such that the $\beta_{u}\mathrm{t}\mathrm{h}$ component is uniformly
and randomly chosen from $S=G\backslash H$ and the others are uniformly and randomly chosen ffom
$H$ . Then, $Q(1)$ , $Q(2)$ , $\ldots$ , $Q(l)$ comprise aquery (denoted by Query(i)) for the $i\mathrm{t}\mathrm{h}$ bit $X:-1$ of
$X$ , and $\mathcal{U}$ sends Query(i) to $VB$. Since each $Q(u)$ consists of $t$ group elements from $G$, $Q(u)$ is
represented by $k\mathrm{x}t$ bits. Thus, Query(i) consists of $k\mathrm{x}t\mathrm{x}l$ bits.
Step 2Receiving Query(i), DB constructs child databases recursively from the original
database X. We regard X as the $t^{l-1}$ xt binary matrix

$D(0,\lambda)=(\begin{array}{llll}x_{0} x_{1} x_{2} x_{t-1}x_{t} x_{t+1} x_{t+2} x_{2t-1}x_{t^{I}-t} x_{d-t+1} x_{t^{l}-1}\end{array})$ ,

where Adenotes the empty sequence in $\{0, 1, 2, \ldots, k-1\}^{*}$ . We note that the target bit $x:-1$ is
the $(\alpha_{1},\beta_{1})$ entry of $D(0, \lambda)$ ($\alpha_{1}$ and $\beta_{1}$ are obtained in (3.1)). Denote it by Target(D(0, $\lambda)$).

We recursively define child databases $D(u, s)$ , where $1\leq u\leq l$ and $s\in\{0,1,2, \ldots,k-1\}^{u}$ .
Suppose that we have defined the databases $D(u, s)$ and their target bits Target(D(u, $s$)) and
$s\in\{0,1,2, \ldots, k-1\}^{u}$ for $0\leq u<l-1$ . Then we define the databases $D$($u+1$ , sO), $D(u+1, s1)$ ,
. . . ’ $D(u+1, s(k-1))$ .

The database $D(u, s)$ is abinary sequence of length $d^{-u}$ . We regard $D(u, s)$ as a $d^{-u-1}\mathrm{x}t$

binary matrix. Suppose that

$D(u, s)=(\begin{array}{llll}y_{0} y_{1} w y_{t-1}y_{t} \Re+1 \Re+2 \Omega t-1y_{t^{l-u}-t} y_{t^{\mathrm{t}-\mathrm{u}}-t+1} y_{t^{l-u}-1}\end{array})$

We now construct $k$ child databases, $D$ ($u+1$ , sO), $D(u+1,50)$ , $\ldots$ ,
$D(u+1, s(k-1))$ .

Recall that $Q(u)$ consists of $t$ group elements $g(u,0)’ g(u,1)$ ’ $\cdots$ , $g_{(u.t-1)}$ in $G$ (defined in (3.2)).
We define agroup element $g_{v}$ for each row $v=0,1,2$, $\ldots$ , $d^{-u-1}-1$ as follows. We set

$f_{(v,w)}=\{$
$g_{(u,w)}$ if $D(u,s)(v,w)=1$
1if $D(u,s)$ ($v$ ,to) $=0$ , (3.1)
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where $D(u,s)(v,w)$ denotes the (v,.w) entry of $D(u,$ s). Then we set

$f_{D(u,s),v}= \prod_{\prime}f_{(v,w)}w=0,1,2,\ldots t-1$
(3.4)

for each row $v=0,1,2$, $\ldots$ , $d^{-u-1}-1$ . We note that the group element $f_{D(u,s),v}(0\leq v\leq$

$d^{-u-1}-1)$ is of size $k$ , and that $f_{D(u,s),v}\in H$ if and only if $D(u,s)(v,\beta_{u})=0$ by Proposition
1.1. The rth child database $D(u+1, sr)(0\leq r \leq k-1)$ is defined to be the sequence consisting
of $\mathrm{g}\mathrm{v}(\mathrm{r})g_{1}(r)$ , $\ldots$ , $gd^{-u-1}-1(r)$ , where $g_{v}(r)$ denotes the $r\mathrm{t}\mathrm{h}$ bit of the representation of $f_{D(u,s),v}$ .
Hence, we have the following matrix equation:

$(\begin{array}{l}f_{D(\mathrm{u}_{\prime}\iota)_{\prime}0}f_{D(\mathrm{u}_{\prime}\ell)_{\prime}1}f_{D(u,\epsilon),t^{l-u-1}-1}\cdots\end{array})=$ $(D(u+1,\mathrm{s})$ $D(u+1, s(k-1)))$ (3.4)

where each $f_{D(\tau_{4^{\ell),v}}}$ is arow vector and each $D(u+1, sr)$ is acolumn vector. Thus, $D(u+1, sr)$

is abinary sequence of length $d^{-u-1}$ . We regard it as a $d^{-u-2}\cross t$ binary matrix. Then the
target bit for it (denoted by Target(D(u $+$ $1$ , $sr$))) is defined to be the $(\alpha_{u+1},\beta_{u+1})$ entry of
$D(u+1,sr)$ for every $r$ $\in\{0,1, \ldots, k-1\}$ ( $\alpha_{u+1}$ and $\beta_{u+1}$ are obtained in (3.1)).

Step 3In the last stage of constructing child databases, $VB$ obtains $k^{t-1}$ databases $D(l-1, s)$
$(s\in\{1,2, \ldots,k\}^{t-1})$ . Note that each $D(l-1, s)$ contains $t$ bits. We regard $D(l-1, s)$ as a1 $\mathrm{x}t$

matrix. For each $D(l-1, s)$ , we define agroup element $A(s)$ as follows. First, we define

$f_{(0,w)}=\{$
$g_{(u,w)}$ if $D(l-1,\epsilon)(0,w)=1$

1if $D(l-1,s)(0,w)=0$ .

$\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n},$

,
$s \in\{0, 1,2\mathrm{v}\prime \mathrm{e}\mathrm{s}\mathrm{e}\mathrm{t}f_{D(l-1,\iota),0},\ldots,=\prod_{w=01,2..t-1}f_{(0,w)}=A(s).\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}A(s)\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{f}\mathrm{s}\mathrm{i}\mathrm{z}\mathrm{e}k\mathrm{f}\mathrm{o}\mathrm{r}k-1\}^{t-\acute{1}}.\acute{\mathrm{T}}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{e}1\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}A(s)(s\in\{0\mathrm{l},\ldots,k-1\}^{t-1})\mathrm{f}\mathrm{o}\mathrm{m}$

the answer Answer(Query(i)) to the query Query(t), and $VB$ sends Answer(Query(i)) to $\mathcal{U}$ .
Step 4 $\mathcal{U}$ receives Answer(Query(i)) consisting of $A(s)$ , where $s\in\{0,1, \ldots,k-1\}^{t-1}$ . $\mathcal{U}$

can retrieve the target bit $x:=\mathrm{T}\mathrm{a}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{t}(D(0,\lambda))$ in polynomial time in $k,n$ . In fact, the following
holds in general.

Theorem 3.1 For every database $D(u,l)$ ’where $0\leq u\leq l-2$ and $s$ $\in\{1,2, \ldots,k\}^{u}$ , $\mathcal{U}$ can
compute $\mathrm{I}\mathrm{b}\mathrm{g}\mathrm{e}\mathrm{t}(D_{(u,\ell)})$ in $\mu lynom.d$ time in $n,k|.f$ Thrget(D(u+l,\mbox{\boldmath $\omega$})), Target(D(u+l,sl)), $\ldots$ ,

$\mathrm{I}\mathrm{h}\mathrm{r}\mathrm{g}\mathrm{e}\mathrm{t}(D_{(u+1,.(k-1))})$ are given. $\square$

3.3 Privacy

In the proposed scheme, the query Query(i) consists of $Q(1)$ , $Q(2)$ , $\ldots$ , $Q(l)$ , and each $Q(u)$

consists of
$(g_{(u,0)}, g_{(u,1)}, \ldots, g_{(ufl\mathrm{u}^{-1)}}, g_{(u\phi_{u})}, g_{(u\beta_{*}+1)}, \ldots, g_{(u,t-1)})$ ,

where one of the components is chosen uniformly and randomly from $S=G\backslash H$ and the others
are chosen uniformly and randomly ffom $H$. The privacy is assured by the inequality

$|\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}(C_{k}$ (Query(i $)=1$) -Prob($C_{k}$ (Query(j)) $=1$) $|<\sigma$ ,
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3.4 Communication Complexity

In the first step, $\mathcal{U}$ sends Query(i) $=(Q(1),Q(2)$ , $\ldots$ , $Q(l))$ . Each $Q(u)$ consists of $t$ group
elements in $G$ . Since every element in $G$ is represented by abinary sequence of length $k$, the total
bits sent in this stage is $l$ xtxk. In the second step, $DB$ sends Answer(Query(i)) consisting of $k^{l-1}$

group elements in $G$. Therefore, the total bits sent in this stage is $k^{l-1}\mathrm{x}k=k^{l}$ . Consequently,
the communication complexity is $ltk+k^{l}=ln^{1}\tau k+k^{l}$ . Suppose that $k=n^{\epsilon}$ and $l=O(*_{g}^{n})$ .
Then we have $\mathit{1}=\sqrt{\frac{1\mathrm{o}\mathrm{g}n}{1\mathrm{o}\mathrm{g}k}}$ , and $k^{l}=(2^{\log k})^{l}=2^{l\log k}=2^{\sqrt{\mathrm{o}\mathrm{g}n\log k}}=2^{\sqrt{\mathrm{o}\mathrm{g}n\epsilon\log n}}=n^{\sqrt{e}}$ . On the

other hand, we have $ltk+k^{l}=k^{l}(lk +1)<k^{l}k^{l}=(k^{l})^{2}$ . Hence, we have $ltk+k^{l}=(n^{\sqrt{e}})^{2}$ . It
follows that the communication complexity is $O(n^{\mathrm{c}})$ .
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