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QUANTUM SEX AND MUTUAL INFORMATION

VIACHESLAV P BELAVKIN

ABSTRACT. The operational structure of quantum pairings, couplings entan-
glements and encodings is studied and classified for general von Neumann
algebras. We show that the classical-quantum correspondences such as encod-
ings can be treated as diagonal CP semi-classical (¢-) couplings, and true en-
tanglements are characterized by transpose-CP truly quantum (g-) couplings.
The relative entropy of the diagonal compound and entangled states lead to
two different types of cntropies for a given quantum state on a the von Neu-
mann cntropy, which is achieved as the supremum of the information over
all d-entanglements, and the dimensional entropy, which is achieved at the
standard entanglement, the true quantum entanglement, coinciding with a d-
cntanglement only in the case of pure marginal states. The q-capacity of a
quantum noiseless channel, defined as the supremum over all entanglements,
is given by the logarithm of the dimensionality of the input algebra. It may
double the classical capacity, achieved as the supremum over all c-couplings,
or encodings, which is bounded by the logarithm of the dimensionality of a
maximal Abelian subalgebra.

1. INTRODUCTION

In this paper we develop the operational approach to quantum entanglement [1],
extending the notion of quantum conditional entropy and mutual information to the
general von Neumann algebras with normal semifinite faithful weights. By quantum
sex we call pairings, such as quantum couplings, entanglements and encoodings, of
two systems (A, u) and (B,v), reffered in quantum communications as Allice and
Bob, with respect to the given weights y, v on the von Neumann algebras A and
B respectively.

The entanglements as specifically quantum correlations, are used to study quan-
tum information processes, in particular, quantum computations, quantum telepor-
tation, quantum cryptography [2, 3, 4]. There have been mathematical studies of
the entanglements in [5, 6, 7], in which the entangled state is defined by a state
not written as a form of a convex combination ), ® ¢,p(n) with any states
0,, and ¢,. However it is obvious that there exist several types of the correlated
states written as ‘separable’ forms above. Such correlated, or classically entangled
states have been also discussed in several contexts in quantum probability such as
quantum measurement and filtering [8, 9], quantum compound state [10, 11] and
lifting [12]. ‘
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In this paper, we study the mathematical structure of classical-quantum and
quantum-quantum couplings to provide a finer classification of quantum separable
and entangled states, and we discuss the informational degree of entanglement and
entangled quantum mutual entropy.

The term entanglement was introduced by Schrédinger in 1935 out of the need
to describe correlations of quantum states not captured by mere classical statistical
correlations as the convex combinations of noncorrelated states. In this spirit the
by now standard definition of entanglement is the state of a compound quantum
system ‘which cannot be prepared by two separated devices with only correlated
classical data as their inputs’ (see for example Werner, 1989. We show that the
entangled states can be achieved by quantum (g-) encodings, the nonseparable
couplings of states, in the same way as the separable states can be achieved by
classical (c-) encodings.

The compound states, called o-coupled, are defined by orthogonal decomposi-
tions of their marginal states. This is a particular case of so called diagonal state of
a compound system, the convex combination of the special product states which we
call d-compound. The d-compound states are most informative among c-compound
states in the sense that the maximum of mutual entropy over all c-couplings to the
quantum system is achieved on the extreme d-coupled (even o-coupled) states as the
von Neumann entropy S (¢) of a given normal state ¢ on a simple algebra .A. Thus
the maximum of mutual entropy over all classical couplings of (classical) probe sys-
tems A to a quantum system B, is bounded by InrankB, the logarithm of the rank
of the algebra B which is defined as the dimensionality dim X of the Hilbert space
‘H for irreducible representation of B. Due to dimB = (rank[S’)2 for the simple B,
it is achieved on the normal tracial density operator o = (rankB)_1 I only in the
case of finite dimensional B.

More general than o-coupled states, the d-entangled states, are defined as c-
entangled states by orthogonal decomposition of only one marginal state on the
probe algebra A. In general they can give larger mutual entropy for a quantum
noisy channel than the o-coupled state (which gains the same information as d-
coupled extreme states in the case of a deterministic channel).

We prove that the truly entangled pure states are most informative in the sense
that the maximum of mutual entropy over all entanglements to the quantum system
B is achieved on the g-compound state, given by an extreme (standard) entangle-
ment of the probe system A = B with coinciding marginals, called standard for
a given ¢. The gained information for such extreme g-compound state defines an-
other type of entropy, the g-entropy H (¢) which is bigger than the von Neumann
entropy S (s) in the case of mixed ¢. The maximum of mutual entropy over all
quantum couplings, including the true quantum entanglements of probe systems
A to the system B, is bounded by IndimB, the logarithm of the dimensionality
of the von Neumann algebra B, which is achieved on a normal tracial o in the
case of finite dimensional B. Thus the g-entropy H(s), which can be called the
dimensional entropy, is the true quantum entropy, in contrast to the von Neumann
S (s), the c-entropy which is semi-classical entropy achieved as a supremum over all
couplings with the classical probe systems .A. In the case of finite-dimensional B
the g-capacity C; = IndimB is achieved as the supremum of mutual entropy over
all g-encodings, the. quantum-quantum correspondences, described by entangle-
ments. It is strictly larger then the classical capacity C. = InrankB of the identity
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channel, which is achieved as the supremum over usual encodings, described by the
classical-quantum correspondences A% — B.

In this short paper we consider the case of decomposable probe algebras A but
simple algebra B = £ (H) for which the proofs are rather straightforward. More
general decomposable algebra B including the classical discrete systems as a partic-
ular Abelian case is considered in {13}, and even more general case of von Neumann
algebras will be also published elsewhere.

2. PAIRINGS, COUPLINGS AND ENTANGLEMENTS

Let H denote the Hilbert space of a quantum system, and B = L (H) be the
algebra of all linear bounded operators on H. It consists of all operators A: H — H
having the adjoints AT on H. A linear functional ¢ : B — C is called a state on B if
it is positive (i.e., s (B) > 0 for any positive operator B = A'A in B) and normalized
¢(I) = 1 for the identity operator I in 4. A normal state can be expressed as

(1) ¢(B) =Tr»'Bx=(B,s), BEeB,

where 3¢ is a linear Hilbert-Schmidt operator from H to (another) Hilbert space G,
»' is the adjoint operator from G to H. Here Tr stands for the usual trace in G,
and in the case of ambiguity it will also be denoted as Trg. This s is called the
amplitude operator which can always be considered on § = H as the square root
of the operator st (it is called simply amplitude if G is one dimensional space C,
s = n € H with s¢f3c = ||n||2 = 1, in which case ' is the functional n' from H to
C). :
We can always equip H (and will equip all auxiliary Hilbert spaces, e.g. G)
with an isometric involution J = JT, J2 = I having the properties of complex
conjugation

I Ay =Y XJdn;, VA €Con; €H,

and denote by (B,) the tilda-pairing TrBo of B with the trace class operators
o € T (H) such that & = JotJ. We shall call 0 = Jsc' J = 573 the probability
density of the state (1) with respect to this pairing, and assume that the support
E, of ¢ is the minimal projector E = E' € B for which ¢(E) = 1, i.e. that
EV; .= JE,J = E,. The latter can also be expressed as the symmetricity property
E, = E, with respect to the tilda operation (transposition) B = JB'J on L (H).
One can always assume that J is the standard complex conjugation in an eigen-
representation of o such that & = s’ = & coincides with o as the real element
of the invariant maximal Abelian subalgebra A C L (H) of all diagonal (and thus
symmmetric) operators in this basis.

The auxiliary Hilbert space G and the amplitude operator in (1) are not unique,
however s is defined uniquely up to a unitary transform #! — Usxfin G, and G
can be always taken minimal, identified with the support H, = E,H for o, the
closure of oH (E, is the minimal orthoprojector in B such that ¢F = ). In
general, G is not one dimensional, the dimensionality dim G must not be less than
ranks! = ranke, the dimensionality of the range G, = rans' coinciding with the
support for p = sl ~ 5. ;

Given the amplitude operator s : G — H, one can define not only the state ¢
but also the normal state

(2) 0(A) =TriAsc= (A,p), AcA
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on A = L(G) as the marginal of the pure compound state

w (A B) = TrAsx' By = Tric AsB.

on the algebra A 0 B of all bounded operators on the Hilbert tensor product space
G H.

Indeed, thus defined bilinear form with A = JA'J is uniquely extended to such
a state, given on £ (G « H) by the amplitude ¥ = 3¢, where (¢ 0 ) 3¢ = niscJ¢
forall(e G, ne ™.

This pure compound state w is so called entangled state, unless its marginal
state ¢ (and p) is pure, corresponding to a rank one operator »x! = (5!, in which
case w = p ¥ ¢, given by the amplitude v = ¢ ® 7. The amplitude operator ¢
corresponding to mixed states on A and B will be called the entangling operator of
p=xtxtoo=ss

As follows from the next theorem, any pure entangled state

w(AwB)=9¢' (AxB)Y, AxBeL(GxH)

given by an amplitude ¢ € G ® H, can be achieved as described by a unique
entanglement 3¢ to the algebra A = £ (G) of the marginal state ¢ on B = L (H).
Before to formulate this theorem in the generality which we need for further
consideration, let us introduce the following notations.
Let A be a x-algebra on G with a normal faithful semifinite weight p, A de-

note the commutant {A’ € £(G): [A,A] =0,VA € A} of A, and (.Z, [L) denote

the transposed algebra of the operators A = JA'J with p(A)=p (Z) which may

not coincide with (A, p) (and with A’). We denote by A, C A the space of all op-
erators A € A in the form 21z, where z, 2 € a,,, with a, = {z € A: p(zt2) < ~},
and by (G, ¢, J,.) the standard representation + : A — £(G,) given by the left mul-
tiplication ¢ (A) x = Az on a,,, with the standard isometric involution J, : ¥ — =t

defining normal faithful representation i (Z) = Ju (AN) J, = L/(\A/) of the trans-

posed algebra A on the completion G, of the left module a, with respect to the
inner product (z]2),, = p (z'z). We recall that the von Neumann algebra A defined

by A" = A is anti-isomorphic to ¢ (A)' = J,¢ (A) J,, and thus A =~ + (4)’, and that
A= A}, as the space of all continuous functionals A: ¢ <(/>, Z> with respect to
the pairing :

<a:Tz, ﬁ>p = (:L'|L/(\A/)Z)# = <A,;T;># , zlze Ay, Ae A

The completion of A, with respect to the *-norm ||xTz||* = sup {'<A, ;:T;> ‘ A < 1}
u

and the is indentified with the predual Banach space denoted as A, ( if pu =
‘T|A is the usual trace 7 = Trg on A, then A, coincides with A, as the class
Ar = ANT(G) of trace operators T (G) = {x'z:z,2 € S(G)}, where S(G) =
{x € L(G) : Trgz’z < 0o}).

Note that A # A, L # p in the standard representation H = Hy, J = Jy,
A = A’ unles A is Abelian as only in this case A’ = A. If A is not the algebra of
all operators £ (G), the density operator p for a normal state (2) is not unique even
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with respect to 7 = Trg. However it is uniquely defined as the bounded probability
density p = JxtzJ = z'Z with respect to the restriction u = 7|A (i.e. as the
density operator with respect to u) describing this state as (4, p), = (xAzt) by

the additional condition » = Z € .Z; Note that each probability density p € :4v
describing the normal state g (A4) = (4,p), on A 3 A is positive and normahzed

as (I,p), = 1, but the predual space A, = A, as the *-completion of .A may

consist of not only the bounded densities with respect to u (however each p € A,

can always be approximated by the bounded p,, € A,).
In the following formulation B can also be more general von Neumann algebra
than £ (H), with a normal faithful semifinite weight v : B, — C defining the

pairing (B,viv) = (1’)|L/\B/)D> where v € b, (B, = blb, coincides with B, in
the case of the standard trace v (B6) = TrB6 = (B, o), when b, is the space of
Hilbert-Schmidt operators y € B and B= B).

Theorem 2.1. Let w: Ax B — C be a normal compound state
(3) w(Ax B) = ('D|1, (WB)D) =(A® B,UT'U> :

described by an amplitude operator v : G O H — £ © F on the tensor product of
Hilbert spaces £ and F, satisfying the condition

vive A B, (pwv) (o'o) = 1.
Here ju % v is the product weight the pairing of A ® B in (3) with (A®B) =

(/%)*, and © = JuJ. Then this state is achieved by an entangling operator
x: G F —-EH as

@ (A (e TwB) ), —w(AwB) = (B,u(# (A0 ) 3),
for all A€ A and B € B such that

v(o (IwB)s) CA, p(3 (AwI)sx) CB
The operator s together with x = J st J is uniquely defined by v = U, where
(5) (€xn) s (Coodn) =€) x((wIn), €& eF (eGnen,
up to a unitary transformation U of the minimal subspace space ranv C £ 0 F.

Proof. Without loss of generality we can assume that £ = G,, F = H, and vl =
v(E, x E,) as the support (G x H),;, = ranv! for v'v is contained in G, %0 H,.

vty

—~— ~\7
By virtue viv € (.A’ o0 B ) the range of v is invariant under the action
(Ax B)v =v(AE, © BE,), VYA€ A BeB

. ~ ~ /! o~ ~

of the commutant (.A ® B) = A’ ® B'. Let us equip G and H with the involutions
J leaving invariant G, = E,G and H, = E,H, with J, = E,J, J, = E,J, and
ExF =G, 0 H, with the induced involution J (( ®n) = J,{ ® Jon. It easy to
check for such v and s = v’ defined by v = s in (5) that for any A € A’ and
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BekB
(Z{(XM])T »((xBJy) = (Z{ oan')Tv(E ®Jn) = (€xn) v (Z& ® J§n)
= (6 <><>§77)Jf s (AC @ Jn')
where A = JAJ € Z’, B = JBJ € B'. Hence for any B € B
(A B') ' (I 0 B) %= ' (A® B'B) s =" (I ®B)»x(Ax B'),
where A € ;lf, = ZEP, B’ € B, :=B'E,, and for any A € A
(A0 B)sct (A I) sz =3 (AARB)s»' =3t (AwI)x(A' ®B),
where A" € A' and B € B'. Thus forall A€ Aand B € B
s (IwB)xe (A’ ooB’) WM (AwI)ie (A’ ooB’)
Moreover, due to A) = E,AE, = A, and By = E,BE, = B,

s (10 B) 3¢ C JpAudp 0 EgByEo = (A 0 B,)
A®v

3 (A 1) 5 C EyAuE, 0 JoB,Jy = Ay 0 B, ) .
nev

as bounded by ||B|| »' 3¢ and by || A|| 5! 5 respectively. The partial weights v and p
on these reduced algebras are defined as

(6) v (st (I 0 B)s) = <B’U’U>, (T(AOOI ) = (Avv)
according to (A, <B,v"v>”># = (A ® B,vTU> = <B, (A,UTU) > . In particular

v (xTx) =v (v“v) =p, b (%T ) u(va) =0.
Any other choice of v with the minimal £ ® F =~ G, ® H, is unitary equivalent to
P |

Note that the entangled state (3) is written in (4) as
(B,w(4)), =w(A®B) =(4,@" (B)),

in terms of the mutually adjoint maps @w : A — B, and @' : B — A,. They are
given in (6) as

(7) @ (4) = (4,0v), =1 (4), @' (B)=(Bvlv), =7 (B),

where the linear map 7 : B — A, and the adjoint 7* : A — B, are defined as
partial weights

m(BY)=J (B,v'fv>u J, = (Al) = J(A,’UT'U>“ J.

The linear normal map @ in (6) is written in the Kraus-Steinspring form [17] and
thus is completely positive (CP) but not unital, normalized to the density operators
o = w (I) with respect to the weight v.

A linear map 7 : B — A, is called tilda-positive if 7 (B) := Jm (B)Jr J is positive
for any positive (and thus Hermitian) operator B > 0 in the sense of non-negative
definiteness of B. It is called tilda-completely positive (TCP) if the operator-matrix
n (B)=Jm (B)' J is positive for every positive operator-matrix B = [Bx] = B,
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where AT = [A}k], B* = [B,L.] (and thus Al = [Ayi] for A =[Au] > 0, and
B* = B for B > 0). Obviously every tilda-positive and tilda-completely positive
7 is positive as positive is A= JAJ for every positive A, but it is not necessarily
completely positive unless A = A for all A € A, in which case A is Abelian (or the
Abelian is B).

The map 7 defined in (8) as a TCP {-map, = (BT) = TT(B)T, is obviously
transpose-CP in the sense of positivity of 7 (B)' = [7 (B)] = = (BY) for any
B > 0, but it is in general not CP. Because every transpose-CP map can be repre-
sented as tilda-CP, there might be a positive-definite matrix B for which 7 (B) is
not positive. Note that the adjoint map 7* = 77 is also TCP, as well as the maps
7 =7 and 7 = 7*, where 7 (B) = Jx (B) J, obtained from (6) as partial tracings

(8) ﬁ(B)zV(xT(IQOE)x), nT(A):;L(;fT(Z@I);}).
In these terms of the compound state (4) is written as
(Alr (B)), = w (AT @ B) = (r* (4)|B), ,

where (z|y) = (y,Z) defines an inner product which coincides in the case of traces
with the GNS product (z|y). _

In the following definition the predual space B; = B, (as well as A; = A,)
is identified by the pairing (B, o), = ¢ (B) with the space of generalized density
operators o which are thus uniquely defined as selfadjoint operators (could be un-
bounded) in H. Note that B, = B, if B = B and v = Try = 0.

Definition 2.1. A TCP map 7w : B — A, (or B —» A, C A.) normalized as
i (7 (1)) =1 and having an adjoint with m* (A) C B, (7* (A) C B, ) is called normal
coupling (bounded coupling) of the state ¢ = pom on B to the state p = von™ on A.
The CP map w: A — B; (or A— BT, C B;) normalized to the probability density
oc=w(l) of ¢ withw' (I) € B, (w' (I) € .Z;) will be called normal entanglement
(bounded entanglement) of the system (A, p) with the probability density p = w7 (I)
to (B,s). The coupling m (entanglement w) is called truly quantum if it is not

CP (not TCP). The self-adjoint entanglement w, = w, on (A, ) = (g, E) (or
symmetric coupling mq = m} into A. = B;) is called standard for the system (B, <)
if it is given by

(9) w, (A) = 2402, 7,(B) = a'/2Bg/?,

Note that the standard entanglement is true as soon as the reduced algebra
B, = E,BE, on the support H, = E,H of the state ¢ is not Abelian, i.e. is not one-
dimensional in the case B = £ (H), corresponding to a pure normal ¢ on B = L (H).
Indeed, 79 restricted to B, is the composition of the nondegenerated multiplication
B, > B +— &/2B '/? (which is CP) and the transposition B = JB!J on B,
(which is TCP but not CP if dimH, > 1).

The standard entanglement in the purely quantum case B = B(H) = B, v =
Tr = U corresponds to the pure standard compound state

(10) TrAc'/2Bo'/? = w, (A ® B) = TrB&'/2 A51/?

on the algebra B B. It is given by the amplitude v’ =~ |o1/2) = o, with |o1/2)f =
5 = (01/2| defined in (5) as 3¢ (¢ ® Jn) = ntse¢ for 3 = a1/2,
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Any entanglement on A = L(G), p = Tr corresponding to a pure compound
state is true if rankp = ranko is not one. If the space G is also minimal, G = G,
77 is unitary equivalent to the standard one m,. Indeed, w (A4) = ' Ajs can be
decomposed as

w (A) = o}V AU6'/? = w, (UTAU),

where U : 01/2n +— J3m is a unitary operator from H, onto the.support G, of
p = UcU?' with nonabelian A, = £ (G,) and B, = UTA,U = L (H,).

Note that the compound state (4) with 5 = o'/2 corresponding to the standard
w = w, can always be extended to a vector state on BV B in the standard repre-
sentation (H,, ¢, J,) of B =¢(B) when B = J,BJ, = B, but it cannot be extended
to a normal state on B B in the case of nonatomic B. If B is a factor, this state
is pure, given in the standard representation BVB=_CL (H,)) by the unit vector
y = &'/ € H,,; however it is not normal on B & B unless B is type . B~ L(H).

3. C-, D- AND O-COUPLINGS AND ENCODINGS

The compound states play the role of joint input-output probability measures
in classical information channels, and can be pure in quantum case even if the
marginal states are mixed. The pure compound states achieved by an entanglement
of mixed input and output states exhibit new, non-classical type of correlations
which are responsible for the EPR type paradoxes in the interpretation of quantum
theory. However mixed, so called separable states on A4 ® B, the convex product
combinations

c(AwB) = Zen (A)sn (B)p(n),

which we refer as the c-compound states, do not exhibit such paradoxical behavior.
Here p (n) > 0, 3 p, = 1, is a probability distribution, and ¢, : A - C, 5, : B - C
are usually normal states defined by the product densities p, ® 0, € A; ® B; of
wn = @, ¥ a,. Such compound states are achieved by c-couplings m. : B — A,
given by 7, = w], where

w. (A) = Zgn )onp(n), wi (B) = ch(B)pnp()

Here p,, € A, and 7,, € B, are the probability densities for g, and ¢, with respect
to given weights p and v on A and B. Note that the c-entanglement w., being the
convex combinations of the primitive CP-TCP maps @, (A) = g, (4A)d, € B;, is
not truly quantum.

The separable states of the particular form

(11) wa(A®B) = (n|Aln)s(n,B),

where g,, (A) = (n|A|n) are pure stateson A = L (G) = A given by an ortho-normal
system {|n)} C G, and ¢ (n,B) = (B,d (n)), with ¢ (n) = a,p (n), are usually con-
sidered as the proper candidates for the input-output states in the communication
channels involving the classical-quantum (c-q) encodings. Such separable state was
introduced by Ohya [10, 22] using a Schatten decomposition p = ) |n)(n|p(n) of
the input density operator p € T (G) into the orthogonal one-dimensional projectors
Pn = |n)(n|. Here we note that such state is the mixture of the classical-quantum
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correspondences n +— |n)(n| ® o, which can be described as the composition of
quantum channeling |n)(n| — o, and the errorless encodings n — |n)(n| in the
sense that they can be inverted by the measurements |n)(n| — n as input decod-
ings. We shall call such separable states d-compound as they are achieved by the
diagonal couplings mq = w], (d-couplings) to the subalgebra A4 C A of the diagonal
operators A =Y a(n) |n)(n|, where

(12) @i (A) =) (nlAln)o (n), @ (B) = Zc (n, B) n){n].
n
for the respect to the standard transposition (n]A|m) = (m|A|n) in the eigenbasis
of p.
Actually Ohya obtained the compound states wy as the result of composition

wa(A® B) =w, (Aw A (B))

of quantum channels as normal unital CP maps A : B — A and the special, o-
compound states

(13) wo (A% B) =) (n|Aln)p (n) (n|B|n)

n

corresponding to the orthogonal decompositions

(14) @, (A4) =) _(nlAln)p (n) In){n| = =] (A)
n
such that ¢, (B) = (n|A (B) |n), 0, = AT (|n)(n]|), where (B, AT (p)), = TrgA (B) p.
Assuming that (A4, p) = Trg Ap, we can extend this construction to any discretely-
decomposable algebra A = A on the Hilbert sum G = (OG; with invariant com-
ponents G; under the standard complex conjugation J in the eigen-basis of the
density operator p = JpJ = p. In particular, the von Neumann algebra A might
be Abelian, as it is in the case A = A4 for all A € A, e. .g. when A = A is the
diagonal algebra of pointwise multiplications Ag = ag = Ag by the bounded func-
tions n — a(n) € C on the functional Hilbert space G = £2 3 g with the standard
complex conjugation Jg = g. In this case the densities p € A, are given by the
summable functions p € ¢! with respect to the standard trace u(p) = 3 p(n), and
any compound state has the separable form with g,, (A) = a (n) corresponding to
the Kronecker é-densities p,, >~ §,,. The normal states on the A ~ £°° are described
by the probability densities p(n) > 0, > p(n) = 1 with respect to the standard
pairing :
(A4,p), Z (n)p(n), pel,act>®
of A, = A, with the commutative algebra A. Every normal compound state w on

A x B is defined by
c(Ax B) Za(n) (B,o (n)),,

where o (n) = o,p(n) is the function Wlth positive values o (n) € B; normalized
to the probability density p(n) = (I,0(n)),. Thus all normal compound states
on (> x B are achieved by C-couplings Te=w) : B — ! with ml = w. given by
convex combinations of the primitive CP-TCP maps w, (a) = a(n) o, € B,

A=Y ama(n), vl (B)=3 <(nB)én,
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where ¢ (n, B) = (B, o (n)),,.

Note that any d-coupling can be regarded as such quantum-classical c-coupling
which is achieved by the identification a (n) = (n|A|n) of the reduced diagonal
algebra A° = {3 |n)a(n) (n| : A € A} and £° 3 a. This simply follows from the
commutativity of the density operators p = Y |n)(n|p(n) for the induced states
0(A) = wq (A ®I) identified with p € 0.

In the case A = £ (G) and pure elementary states w, described by probability
amplitudes v,, = x,, ¥ ¥,,, where X,, = [x,) € G, ¥, = |¥,) € H, we have density
operators p,, = x5, X, and o, = ¥4, of rank one. The total compound amplitude is
obviously v = Y_ |n)v (n), where v (n) = x,,®%,,p (n)l/ 2are the amplitude operators
G 0 H — €2 satisfying the orthogonality relations

1

v(n)'v(m) = p, ®onp(n) &y

corresponding to the decomposition viv =Y p, ®on,p(n). The "entangling” op-
erator for the separable state s can be chosen as either as » = 3 |n)s (n) or as
s = Y. »(n)(n| or even as x = ) |n)s(n) (n| with n#(n) = Xp ® ¥ (n), where
P, (n) = ¥, (n)l/ 2 In particular, d-entangling operator s corresponding to d-
encodings (12) is diagonal, s = ) [n)¥ (n) (n| on G = £2, corresponding to the
orthogonal X,, = |n). Thus, we have proved the Theorem 2 below in the case of
pure states ¢,, and g,,. But before formulating this theorem in a natural generality
let us introduce the following notations.

The general c-compound states on A 0 B are defined as integral convex combi-
nations

(A% B) = / 0. (A) s (B) p(de)

given by a probability distribution p on the product-states ¢, ¥¢z. Such compound
states are achieved by convex combinations of the primitive CP-TCP maps 7, = @],
with @, (A) = 0, (A) 04:

(15) @ (A) = / 0. (A) o.p(dz), @] (B) = / ¢z (B) pup (dz).

This is always the case when the von Neumann algebra A is Abelian, and thus can
be identified with the diagonal algebra of multiplications (Ag) (x) = a(z) g (z) by
the functions a € L{° on the functional Hilbert space G = Lﬁ with respect to a
(not necessarily finite) measure p on X. It defines trace p on A, =~ L., NLY as the
integral yt(p) = [p(z) pu(dz) for the bounded multiplication densities (pg) (z) =
p(z) g (z). The normal states on A are given by the probability densities p € L)
with respect to the standard pairing

(4,0, = [e@p@ns), peliacLy

of A, = Ay ~ L, and A = A~ LS corresponding to the trivial transposition
@ = a. Any normal compound state w on A B ~ LY (X — B) is the c-compound

state, defined on the diagonal algebra A by

(16) wa (A B) = / a(2)s (z, B) u(dz)

where ¢ (¢, B) = (B, (z)),, is absolutely integrable function with density operator
values o (z) = 7,p(x) normalized to the probability density p(z) = (I,0 (), =
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¢ (w,I). It corresponds to d-couplings 74 = w], = 7, with 7], = wy decomposing
into w (z, A) = a(z) o (z):

00 @a(d) = [e@)o @) ue), @ (B) = [ 5(zB)bu(da),

where 6, is the (generalized) density operator of the Dirac state g, (A) = (4,6,), =
a () on the diagonal algebra A.

Theorem 3.1. Let w.: Ax B — C be a normal c-compound state given as
. L I
(18) we (A B) = / e (XTAX.) va (1/). B¢.) p(dz),
where x, : G — &z, ¥, + H — F, are linear operators having bounded transpose

x. = JxIJ. . = JYIJ. on Hilbert spaces £ = feB Ep(dz), F. = feB Fep(dz) with

respect to pointwise involution J. = JI. We also assume that
Xixe € Al € B, p, (X'x)=1=vs (17).*17».)

with respect to tﬁe weights

(19) e (305%) = (Lxbxa), s ve (919.) = (Lolws) .

The'n, this state is achieved by decomposable entangling operator s = | ® Xg &

Y p(dz) defining c-entanglement (15) with

(20) 0. (4) = i (XTAR) , <2 (B) = vz (9] 49.),

corresponding to the probability densities p, = Xxix., 0z = wlsz. In particular,
every d-compound state (16) corresponding to p (dz) = p(z) p (dz) with the Abelian
algebra A can be achieved by the orthogonal sum of entangling operators s, =
&, 00 1/)T defining d-entanglement (17) with

o (2) =vhv.p (@), <(@,B)=v. (P 4P.)p ().

Proof. The amplitude operator v = [ ® vgp (dz) corresponding to c-compound state
(18) is defined on as the orthogonal sum of v, = x, ® ¥, on G ® H into [ e 0
F.p (dz). Without loss of generality we can assume that £, = G,, 7, = H, and
v}, = v (E, ® Ey) because the support (G & H),t,, = ranv}, for

Ulvx = Xle ® ¢l¢z =Py RO

—~/ ~ 1
is in G, ® Hy. Due to xlx, € A’ ¢l¢z € B’ for almost all z, the operators yx,

and 1, commute with A € A’ and B € B respectively, and 12)_,5 commutes with
B € B’ for almost all . Thus,

xtAx, €A ¢, By, eB

which defines the weights (19) on L3° ¢ .A and L3° ¢ B for almost all z. The rest
of the proof is the repetition of the proof of the Theorem 1 for each x with the
addition that s¢, is the product v/, = x, @ ¥, for each z. The total entangling
operator » : G ® F. — £ % 'H acts componentwise as 3, (C 00 7.) = x,¢ X Y1,
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In the case of d-compound state (16) one should take G = Li, & = C, and
X9 = g(x). Thus the entangling operator in this case is given as

® N ®
slgwn) = [ 9@ banntda), VoeLin = [ nu(dn)eF.

Note that c-entanglements w, in (15) are both CP and TCP and thus are not
true quantum. The map w. : A — B; with and Abelian algebra A in (17) is
described by a B;-valued measure o (dr) = o (z)pu(dr) normalized to the input
probability measure as p(dz) = (I,0(dz)),. This gives the concise form for the
description of random classical-quantum state correspondences = +— 7, with the
given probability measure p, called encodings of o = [ o (dz).

Definition 3.1. Let both algebras A and B be non-Abelian. The map w : A — B,
is called c-encoding of (B,<) if it is a conver combination of the primitive maps
a0, gwen by the probability densities o, € B; and normal states g, : A — C.
It is called d-encoding if it has the diagonalizing form (12) on A, and it is called
o-encoding if all density operators o, are mutually orthogonal: o ma, = 0 for all
m # n as in (14) The entanglement which is described by non-separable CP map
w : A — B; will be called q-encoding.

Note that due to the commutativity of the operators A« ] with I« B on G H,
one can treat the encodings as nondemolition measurements [9] in .A with respect to
B. The corresponding compound state is the state prepared for such measurements
on the input G. It coincides with the mixture of the states, corresponding to those
after the measurement without reading the message sent. The set of all d-encodings
for a Schatten decomposition of the input state p on A is obviously convex with
the extreme points given by the pure output states ¢, on B, corresponding to the
not necessarily orthogonal (not Schatten) decompositions 0 = > o (n) into the
one-dimensional density operators o (n) = p(n) a,.

The Schatten decompositions ¢ = Y ¢(n) o, correspond to o-encodings, the
extreme d-encodings o, = 1,1}, p(n) = q(n) characterized by the orthogonality
am@n = 0, m # n . For each Schatten decomposition of o they form a convex
subset of d-encodings with mixed commuting o, .

4. QUANTUM ENTROPY VIA ENTANGLEMENTS

As we have seen in the previous section, the encodings @w : A — B;, which are
usually described as in (17) with a discrete Abelian A, correspond to the case (12)
when the general entanglement (7) is d-encoding, with the diagonal coupling 7 = w7
in the eigen-representation of a discrete probability density p on non-Abelian A.
The true quantum entanglements with non-Abelian A cannot be achieved by d-,
and more general, c-encodings even in the case of discrete .A. The nonseparable,
true entangled states w called in [22] g-compound states, can be achieved by ¢-
encodings, the quantum-quantum nonseparable correspondences (6) which are not
diagonal. in the eigen-representation of p.

As we shall prove in this section, the self-dual standard true entanglement w, =

@] to the probe system (AO,QO) = (g, 5), which is defined in (9), is the most

informative for a quantum system (B,¢) in the sense that it achieves the maximal
mutual information in the coupled system (A & B,w) when w = wj is given in (10).
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Let us consider entangled mutual information and quantum entropies of states
by means of the above three types of compound states. To define the quantum
mutual entropy, we need to apply a quantum version of the relative entropy to
compound state on phe algebra M = A4 ® B, called also the information divergency
of the state w with respect to a reference state ¢ on M. The relative entropy was
defined in [20, 21, 24] even for most general von Neumann algebra M, but for our
purposes we need the following its explicit description.

Let M be a semi-finite algebra with normal states w and ¢ having the density
operator viv and ¢ € M with respect to the pairing

<M,UT’U> = (T_JIL/(\M/)'U) ., MeMpplveM

given by a normal faithful weight 7 on the transposed algebra M= JIMJ (not
necessary decomposable as 7 = 1 0 ¥ in (3) in the case of M = 4 ® B). Then the
relative entropy R (w; ) of the state w with respect to ¢ is given by the formula

(21) Rw:¢)=7(v(nviv—Ing)v') =7 (w(nw—1Ing)).

(For the notational simplicity here and below we identify the state w with its density
operator viv). It has a positive value R(w : ¢) € [0,00] if the states are equally
normalized, say (as usually) 7 (w) = 1 = 7 (¢), and it can be finite only if the state
w is absolutely continuous with respect to the reference state ¢, i.e. iff w(E) =0
for the maximal null-orthoprojector E € M, E¢ = 0. Note that this definition
depends on the choice of the semi-finite weight 7, and it can be extended also to
the arbitrary normal w and ¢ with unbounded self-adjoint density operators viv
and ¢.

The most important property of the information divergence R is its monotonicity
property [20, 25], i.e. nonincrease of the divergency R (wp : ¢,) after the application
of the pre-dual of a normal completely positive unital map K : M — M? to the
states wg and ¢, on a von Neumann algebra M?:

(22) w=wiK,p=pK=R(w:¢) <R(wo:¢g).

The mutual information |(r) = | (7*) in a compound state w achieved by a
coupling 7 : B — A,, or by 7* : A — B, with the marginals

o(A)=w(Axl)=(4,p),, s(B)=w{l ®B)=(B,0),
is defined as the relative entropy
(23) I(m) =T (w(lhw—-In(pxI)—In(I®ec))) =R(w:p®g).

of the state w on M = AxB with respect to the product state ¢ = px¢ for 7 = 0.
This quantity, generalizing the classical mutual information corresponding to the
case of Abelian A, B, describes an information gain in a quantum system (A, o)
via the entanglement @™ = 7 , or in (B,¢) via an entanglement @ : A — B,. It
is naturally treated as a measure of the strength of the generalized entanglement
having zero value only for completely disentangled states w = p ® .

Proposition 4.1. Let (A% py) be quantum system with a normal faithful semifi-
nite weight, and my : A — B, be a normal coupling of the state gy = v o mg
on A° to ¢ = pom, defining an entanglement w = m* of (A, ) to (B,s) by the
composition m* = moK with a normal completely positive unital map K : A — AC.
Then | (m) < 1(x%), where n° = n§. In particular, for each normal c-coupling given
by (15) such as m = w], there exists a not less informative d-coupling m° = w]
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with Abelian A° corresponding to the encoding wo = 7y of (B,¢), and the standard
¢-coupling 7° = m,, my (B) = 0}/2Bc'/2? to gy = ¢ on A° = B is the mazimal one
in this sense.

Proof. The first follows from the monotonicity property (22) applied to the ampli-
ation K (A ® B) = K(A) ® B of the CP map K from A — A% to A®B — A% = B.
The compound state wg (K ®I) (I denotes the identity map B — B) is achieved
by the entanglement w = woK, and gy (K®I) = p® ¢, o = goK corresponding
to ¢y = 09 ® . It corresponds to the coupling m = K*mg which is defined by
K*: A° — A, as K*p, = J (KT p,)" J, where

(A,K"pg), = (KA, pg),, , YAEAPp €A

This monotonicity property proves, in particular, that for any separable com-
pound state (18) on A ® B, which is prepared by the c-entanglement 7, = w],
there exists a d-entanglement my = w} = m, with (Ao,go) having the same, or
even larger information gain (23). One can take even a classical system (AO, go),
say the diagonal sublalgebra A® >~ L2 on Gy = L2 with the state g,, induced by
the measure p = p, and consider the classical-quantum correspondence (encoding)

®
@0 (A°)=/a(m)0mp(d:c), A°=/ a(z)p(dr),a € LY

assigning the states ¢, (B) = (B, 0;), to the letters x with the probabilities p ().
In this case the state g is described by the density p = I the multiplication by iden-
tity function in Lg, w is multiplication by #. in L?, ®H, and the mutual information
(23) is given as

(24) | () = / Ve (0z(Inoy —Ino))p(dz) =S(o) — /S(am)p(dm) ,

where S (7) = —¥ (o In ). The achieved information gain | (7°) is larger than | ()
corresponding to w = [ p, ® ogp(dz) because the c-entanglement w, in (15) is
represented as the composition @woK of the encoding wq : A° — B; with the CP
map

®
KW= [ o.(A)pes), AcA
given by a(z) = g, (A) for each A € A. Hence

™ (A) = w (A) = weKA = 1o (KA), VA€ A
where 7o = wp, and thus | (70) > 1 (K*7%) =1 (m), where 7° = 7§ = @].
The inequality (22) can also be applied to the standard entanglement corre-
sponding to the compound state (10) on B « B. Indeed, any normal entanglement
w (A) = p (3" (A I) ) on A into B; as a CP map A — B, can be decomposed
as

(3 (Aw I)3) = 0 2p (XT (Aw ) X) 0'/2 = @y (KA),

where KA = p (X' (A I) X) is a normal unital CP map A — B. It is uniquely
given by an operator X : E ¥ H — G® F with £ = G,, H = F, satisfying the
condition X (I ® n)l/ 2 = %, and thus X € A B’ due to the commutativity of 3
with A’ B and o with B. Moreover, the partial weight u of X1 X is well-defined by
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p(5dt) =casp (XTX) = J. Thus w = wyK and 7 = K*ry, where K is a normal
unital CP map A — B, and K* : B; = B, — A,. Hence the standard entanglement
(coupling) (9) corresponds to the max1mal mutual information, | (7g) > | (K*7g) =
(). B '

Note that the mutual information (23) is written as

Hm) =S (p) +5(0) = S(w/ep),

where ¢ = pov, S(p) =S (o/p), S(¢) =S(s/v) and
(25) S(w/¢) = —¢ (v (Invv) v!) = —¢ (vivInviv)

denotes the entropy of the density operator viv € M of the state w with respect
to the weight ¢ on M. Note that the entropy S (w/¢), coinciding with —R (w : ¢)
(cf. with (21 in the case 7 = @), is not in general positive, and may not even be
bounded from below as a function of w. However in the case of irreducible M it
can always be made positive by the choice of the standard trace 7 = Tr on M, in
which case it is called the von Neumann entropy of the state w (= vtv), denoted
simply as S (w):

(26) S(w/rt) =-Twlhw=S (v).

In the following we shall assume that B is a discrete decomposition of the irre-
ducible B; = L(H;) = B; with the trace v = Try = ¥ induced on B, = B,. The
entropy S (a) = S(s/v) of the density operator ¢ for the normal state ¢ on B can
be found in this case as the maximal information S(¢) = supl(m.) achieved via
all c-encodings w : A +— B, of the system (B,¢) such that, @ (I) = 0 @' = «_.
Indeed, as follows from the proposition above, is sufficient to find the maximum of
| () over all d-couplings 7° = @™ mapping B into Abelian A with fixed @ (I) = o,
i.e. to find maximum of (14) under the condition [ o,p(dz) = . Due to positivity
of the d-conditional entropy

(27) S (ry) = — /Tr (02 In0y) p(dz) = / S (02) p (dz)

the information | (%) = 1(7r4) has the maximum S (¢) which is achieved on an
extreme d-coupling 74 when almost all S (0,;) are zero, i.e. when almost all o,, are
one-dimensional projectors 0% = P, corresponding to pure states ;. One can take
for example, the maximal Abelian subalgebra A° C B generated by P, = |n)(n| € B
for a Schatten decomposition ¢ = )__ |n)(n|p(n) of 0 € B;. The maximal value
In rank B of the von Neumann entropy is defined by the dimensionality rank B =
dim A of the maximal Abelian subalgebra of the decomposable algebra B, i.e. by
dimH.

However, if 7 is not c-coupling, the difference S (7) = S(0) — I () can achieve
the negative value, and cannot serve as a measure of conditional entropy in such
case.

Definition 4.1. The supremum of the mutual information
(28) H(c) =sup{l(m):pomr=c}=1I(m,),

which is achieved on A = B for a fized state ¢(B) = TryBo by the standard
q-coupling mq (B) = al/2Ba1/2 is called q-entropy of the state c. The mazimum

S(c)zsup{l(ﬂ'c):uowczq}zl(wg)
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over all c-couplings m. corresponding to c-encodings (15), which is achieved on an
extreme d-coupling 9, is called c-entropy of the state s. The differences

H(m) =H(¢) = 1(m), S(m)=S5(c)—-1(m)
are called respectively, the g-conditional entropy on B with respect to A and the
(degree of) disentanglement for the coupling # : B — A. A compound state is said
to be essentially entangled if S(7) < 0, and S(7) > 0 for a c-coupling m = m. is
called c-conditional entropy on B with respect to A.

Obviously, H (¢) and S (c) are both positive, do not depend unlike S (7) = S (¢/v)
on the choice of the faithful weight v on B, and H () > S(5). The same is true for
the conditional entropies H(7) and S (7), where S (7) has always a positive value

S(m)>S(n°%) >0
in the case of a c-coupling 7 = 7. due to 7} = 73K for a normal unital CP

map K : A — A%, where 7° = 7, is a d-coupling with Abelian .A°. But the
disentanglement S (7) can also achieve the negative value

(29) inf {S(m):pomr=c}=5S()—H(s) = ZM)S(U,

as the following theorem states in the case of the discrete B. Here the o; € L (H,)

are the density operators of the normalized factor-states ¢; = 3 (i) ™' ¢|£ (H;) with
s (i) = ¢ (I*), where I* are the orthoprojectors onto H;. Note that H(s) =S (<) if
the algebra B is completely decomposable, i.e. Abelian. In this case the maximal
value In rank B of S(s) can be written as Indim B. The disentanglement S (7) is
always positive in this case, and S (7) = H () as in the case of Abelian A.

Theorem 4.2. Let B be a discrete decomposable algebra on H = h;H;, with a
normal state given by the density operator o = (ho (i) with respect to the trace

= Try on B, and C C B be its center with the state x = <|C induced by the
probability distribution (i) = Tr o (i). Then the c-entropy S (s) is given as the von
Neumann entropy (26) of the density operator o, and the g-entropy (28) is given
by the formula

(30) H(¢) =Y (3¢(4) In3¢ (5) — 2Trs,0 (3) Ino (3)) .

This can be written as H () = Hpc (¢) + Hc (s), where He (5) = — Y, 5 (4) In s (4),
and '

Hgic () = —22%(’5)1‘1”%,:01' Ino; = 25g)c (5),

with 0; = a (i) /3(3). H(s) is finite iff S(s) < oo, and if B is finite-dimensional,
it is bounded, with the mazimal value H (¢°) = Indim B which is achieved for o° =
(hags® (2)

= (dim™;) "' I}, ° (i) = dim B (i) / dim B,
where dim B (i) = (dimH;)?, dim B = ¥, dim B (3).
Proof. We have already proven that S (¢) =S (o), where
S(@) = = > Trwo (i) Ino (3) = Se (<) + Smie (<),
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with Sc (C) = HC (C), SB[C (C) = Z%(l) S ((T,;) = %HBIC (C)

The g-entropy H (¢) is the supremum (28) of the mutual information (23) which
is achieved on the standard entanglement, corresponding to the density operator
w = (w (i, k) with w (i, k) = 5 (3) |(T:/2)(03/2I6}C of the standard compound state

(10) with B = B, p = 0. Thus H(s) = | (7,), where
() = Trw(lnw-In(e®I)-In(I®eo))=S(w)—2S(0)
= > x(i)lnx(i) —2Trolno == (i) (Inx (i) + 2Trs,0:Inay).

Here we used that Tr wlnw = Y, ¢(4) In 3¢ (3) due to

1/2
i

winw = My ew (i, k) Inw (i, k) = M3 (@) |or/2) (01 *| In 5 (3)

and that Tr olno = >, s (2) (Ins2 (i) — Sp, (si)) due to
alno = ;0 (i) Ine (3) = Byse (i) o; (In 32 (2) + Inoy)

for the orthogonal decomposition o = ();3¢ (i) o;, where s (i) = Tro (7).
Thus H(c) = Hp|c (¢) + He (6) = 25p)c (s) + Sc (s) < 25(c), and it is bounded
hy

Cg = supr(z’) (QSup Sn() (si) — ln%(z’))
n - Ci
= —inf ) 3(i) (In3 () ~ 2IndimH;) = In dim B.

Here we used the fact that the supremum of von Neumann entropies S (¢;) for the
simple algebras B (i) = £ (H;) with dim B (i) = (dimH;)? < oo is achieved on the
tracial density operators o; = (dimH;)”" I* = 0%, and the infimum of the relative
entropy

R(s:3%) =3 (i) (Ins (i) — In»° (3)),
where 5° (i) = dim B () / dim B, is zero, achieved at > = »°. |}

5. QUANTUM CHANNEL AND ENTROPIC CAPACITIES

Let 'H; be a Hilbert space describing a quantum input system and H describe
its output Hilbert space. A quantum channel is an affine operation sending each
input state defined on H; to an output state defined on H such that the mixtures of
states are preserved. A deterministic quantum channel is given by a linear isometry
U: Hy — H with UTU = I' (I' is the identify operator in ;) such that each
input state vector n; € Hy, ||n;|| = 1, is transmitted into an output state vector
n = Uny; € H, ||n|| = 1. The orthogonal sums ¢; = (hs3 (n) of pure input states
1 (B,n) =m (n) Bn, (n) are sent into the orthogonal sums ¢ = ()¢ (n) of pure
states on B = L (H) corresponding to the orthogonal state vectors 7 (n) = Un, (n).

A noisy quantum channel sends pure input states ¢; on an algebra B! C £ (H;)
into mixed ones ¢ = ¢; A given by the composition with a normal completely positive
unital map A : B — B!. We shall assume that B! (as well as B) is equipped with
a normal faithful semifinite weight v defining the pairing (B , u“u)1 = ('&TB&)
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of B! and B! = Z’ﬁ’\i Then the input-output state transformations are described by
the transposed map AT : Bl — B;

(B,AT (¢1)) = (A(B),o1),, B€B,o € B

defining the output density operators ¢ = AT (o) for any input normal state
¢1(B) = (B,o1),. Without loss of generality the input algebra B! can be as-
sumed being the smallest decomposable algebra generated by the range A (B) of
the channel map A (B! is Abelian if A (B) consists of only commuting operators on
H1)

The input generalized entanglements w! : 4 — B%, including encodings of the
state ¢; with the density o; = w? (I), will be defined by the couplings x* : B! — A,
as w! = k . Here k : A — B! is a normal TCP map defining the state p = v; ok
of a probe system (A, ) which is entangled to (B',¢;) by & (A) = Jk (A') J, and
the adjoint map k* is defined as usually by

(Als* (B)), =w:1 (A ® B) = (k(A)|B);, VA€ A,BE€B,

where w is the corresponding compound state on A % B!.

These (generalized) entanglements describe the quantum-quantum correspon-
dences (g-, c-, or o-encodings) of the probe systems (A, g¢) with the density oper-
ators p = kT (I'), to the input (B?,¢;) of the channel A. In particular, the most

informative standard input entanglement w; : Bl — B} is the entanglement of

the transposed input system (.AO, QO) = (Ei ,q"l) corresponding to the TCP map
kg (A) = Jai/?Ata}/2J. In the case of discrete decomposable A° = Bl = B!

with the density operator o7 = (I);7; (i) this extreme input g-encoding defines the
following density operator
(31) we=(I®AT) (W), wq =i () (o1 (6)*]

of the input-output compound state wq A on A% % B = B! ® B.

The other extreme case of the generalized input entanglements, the pure c-
encodings corresponding to (12), are less informative then the pure d-encodings
w) = K, given by the decompositions & = Y |n)(n|c; (n) with pure states ¢; (B, n)
n (n)T Bn(n) on B;. They define the density operators

(32) wi=(100AT) (wa1), war =) |n}n|0mn, (n)n (n)t,

of the B! x B-compound state wqi A = wgq; © (I« A). They are known as the Ohya
compound states w, = wo1A [10] in the case

a1 (n) =03 (n)n3 (n)t, 02 (n)!ng (m) = p1 (n) 677,

of orthogonality of the density operators o, (n) normalized to the eigen-values py (n)
of @;. The o-compound states are achieved by pure o-encodings w) = «, described
by the couplings k, = _ |n)(n|s§ (n) with ¢§ corresponding to n§. The input-output
density operator

(33) wo =10 AT)wor, wor =) In)(n| 03 (n) 73 (n)"
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of the Ohya compound state w, is achieved by the coupling A = k*A of the output
(B,¢) to the extreme probe system (.Ao, Qo) = (Bl,cl) as the composition of k*
and the channel A.

If K: A— A% is a normal completely positive unital map

K(A) =Trr XAX!, Ac A,

where X is a bounded operator F_ %Gy — G with Trz_ XX = I°, the compositions
r = koK, m = A*k describe the entanglements of the probe system (A, g) to the
channel input (B%,;) and the output (B, <) via this channel respectively. The state
0 = poK is given by

KT (pg) = X (I" ®pg) X € A,

for each density operator p, € A9, where I~ is the identity operator in F_. The
resulting entanglement m = A\*K defines the compound state w = wp1 o (K ® A) on
A « B with

wo1 (AO ® Bl) =Tr AOKZS (Bl) =Tr ’5‘31 (AO ® Bl) f’Ol
on A° x Bl. Here vg; : Go ® H1 — Fo1 is the amplitude operator uniquely defined
by the input compound density operator wg; € A(T) Y B% up to a unitary operator

U° on Fyi. The effect of the input entanglement x and the output channel A can
be written in terms of the amplitude operator of the state w as

v=(X®Y) (I Qv It)U

up to a unitary operator U in F = F_ ® Fo1 ® F4. Thus the density operator of
the input-output compound state w is given by wg; (K ®0 A) with the density

(34) (K®A)" (wor) = (X ©Y)wor (X ®Y)T,

where wg; = vmvgl. ‘
Let }C; be the set of all normal TCP maps « : A — B} with any probe algebra A

normalized as Trx (I) = 1, and K, (s1) be the subset of all x € K} with & (I) = ;.

Each x € K can be decomposed as k4K, where &, : A® — B! defines the standard

input entanglement w}l = K,;, and K is a normal unital CP map A — B,
Further let K} be the set of all CP-TCP maps k described by the combinations

(35) K(A) = 0. (A)01(n)

of the primitive maps A — g,, (4) 01 (n), and K} be the subset of the diagonalizing
entanglements k, i.e. the decompositions

(36) k(A) =) (nlAln)oy (n).

n
As in the first case K. (1) and K4 (1) denote the subsets corresponding to a fixed
r(I) = ¢1. Each K. (s1) can be represented as the composition K = kgK, where
rq normalized to ¢; describes a pure d-encoding w) = k, of (Bl, gl) for a proper
choice of the CP map K : A — B*.
Furthermore let X! (and K, (s1)) be the subset of all decompositions (36) with
orthogonal o1 (n) (and fixed ), 01 (n) = a1):

op(m)oy;(n) =0, m#n.
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Each k € K, (1) can also be represented as k = KK, with K, describing the pure
o-encoding @} = k, of (B, 1) = (A° g)-
Now, let us maximize the entangled mutual entropy for a given quantum channel

A (and a fixed input state ¢; on the decomposable B! = B!) by means of the
above four types entanglements k. The mutual information (23) was defined in the
previous section by the density operators of the corresponding compound state w
on A B and the product-state ¢ = g ® ¢ of the marginals g, ¢ for w. In each case

w:“JOl(K(X)A)7 Soz(POl(KOOA)a

where K is a CP map A — A° = B!, wg; is one of the corresponding extreme
compound states w,1, wer = wai, wop on B! 0 B!, and @y, = py ® ¢3. The density
operator w = (K x A)T (wq;) is written in (34), and ¢ = p ® o can be written as

b =kT (I) AT (1),
where AT = ATn{. This proves the following proposition.

Proposition 5.1. The entangled mutual informations achieve the following maxi-
mal values

(37) sup F(k*A)=1lg(s1,A) :=1(k3A),
KEK, (1)

le(s1,A) := sup 1 (k*A) = supl (k3A) = la (51, A),
K.E’C(:(Cl) Kd

(38) sup 1(k*A) =1, (s1,A) :=supl(k3A),
KEK (<) Ko

where K. are the corresponding extremal input couplings A° — Bl with pok* = ¢,.
They are ordered as

(39) lg (s1,A) 2 le (s1,A) =g (s1,A) > 1o (51, A).

In the following definition the maximal informations l.(s1,A) = lg(s1,A) is
simply denoted as |; (¢1,A).

Definition 5.1. The suprema

Cy(A) = sup I (k*A) = suply(s1,4),
KEK) S

(40) sup | (k*A) = Cy (A) :=suply (s1,4A),
KEK) Si

Co (A) = sup I{k*A) = supl, (s1,4),
KEK), (9]

are called the q-, c- or d-, and o-capacities respectively for the quantum channel
defined by a normal unital CP map A : B — B!.

Obviously, the capacities (40) satisfy the inequalities
Co(A) <Ci(A) <Cq(A).

80



QUANTUM SEX AND MUTUAL INFORMATION

Theorem 5.2. Let A(B) = U'BU be a unital CP map B — B! describing a
quantum deterministic channel. Then

Il (gl,A)zlo(gl,A)=S(§1), lq((],A)=Sq(§1),
where Sy (s1) = H(s1), and thus in this case
Ci(A) =Co(A) =Inrank B!, C,(A) =IndimB.

Proof. It was proved in the previous section for the case of the identity channel
A =1, and thus it is also valid for any isomorphism A : B +— U'BU describing the
state transformations AT : @ +— Y oY1 by a unitary operator U = Y. In the case of
non-unitary ¥ we can use the identity '

TrY (100 I*) Y Y (0610 I*) YT =Tr S (o3 ® IT)InS (03 0 ),

where S = Y1Y. Due to this S(s;A) = ~Tr S(o; 0 It)InS (o7 0 I), and
S (wor (K o0 A)) = |

—Tr (RxS) (I” ®0wor 0 I)In(R®S) (I” ®wer 0 IT),
where R = XTX. Thus S (¢1A) = S (1), S(wo1 (K® A)) = S (woy (Ko ID)ifYTY =

I, and
H((miA)) = S(eoK) +S(s1) = S (wor (K ®I))
< S(eg) +S(s1) — S(wo1) = I (wo1)

for © = koK with any normal unital CP map K : A — A° and a compound
state wg; on A% 0 B'. The supremum (37), which is achieved at the standard
entanglement, corresponding to wg; = wg1, coincides with g-entropy H(s;), and
the supremum (?7), coinciding with S (s1), is achieved for a pure o-entanglement,
corresponding to wo1 = we1 given by any Schatten decomposition for o;. Moreover,
the entropy H (1) is also achieved by any pure d-entanglement, corresponding to
wp1 = wgqy given by any extreme decomposition for oy, and thus is the maximal
mutual information Iy (g1, A) in the case of deterministic A. Thus the capacity
Cy (A) of the deterministic channel is given by the maximum C, = Indim H; of the
von Neumann entropy S, and the g-capacity C, (A) is equal Cg1 = Indim B!. g

In the general case, d-entanglements can be more informative than o-entanglements
as can be shown by an example of a quantum noisy channel for which

hi(s1,A) > 1o (s1,4), Ci(A)>Co(A).

The last equalities of the above theorem will be related to the work on entropy by
Voiculescu [26].
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