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MULTI-DIMENSIONAL QUANTUM AZEMA MARTINGALES
UWE FRANZ

ABSTRACT. We introduce a multi-dimensional generalization of the quantum
Azéma martingale.

1. INTRODUCTION

We will study the process defined by the quantum stochastic differential equa-

tions
(11) ) = 40+ Y [ CEx:)e)
.k, =1 0
(1.2) dvi) = At)+ Y, / tC_;Ich"(s)dAi(s),
0

Jskil=1

where A}, A;, A;'- are the creation, annihilation, and conversation processes on the
boson Fock space I'(L*(R;, C")),

A;‘-(t) = A+(1[0’t[ ® e.-), A,‘(t) = A(]-[O,t[ ® e,-), A;(t) = A(l[o,t[ ® Ie,-) (ej|),

and C?} are complex coefficients.

The special case n = 1 and C}! = g—1 leads to the quantum Azéma martingales
defined by Parthasarathy [Par90] to get a quantum version of the classical Azéma
martingales introduced by Emery in [Eme89]. Emery proved that the classical
Azéma martingales have the chaotic representation property, i.e. the iterated
integrals

QUM =1, QW) =M, Q@)= / tQ‘"“’(s)dM,, n=23,...
0

are total in L2(S2, F, P), where (2, F, P) is the probability space on which (M;).cr,
is defined and F the o-algebra generated by the process.

Other martingales having this property are, e.g., the Brownian motion and the
compensated Poisson process. The Azéma martingale provided the first example
of a martingale having the chaotic representation property that is not a Lévy
process. The problem of the classification of all normal martingales having the
chaotic representation property is still open.



Uwe Franz

Parthasarathy’s [Par90] construction of the quantum Azéma martingles lead
to a new proof of their chaotic representation property.

It was shown by Schiirmann [Sch91, Sch93] that the the quantum Azéma mar-
tingales arise as a component of a Lévy process on an involutive bialgebra.

The goal of this paper is to construct multi-dimensional analogues of the quan-
tum Azéma martingales and to show that they lead to classical processes hav-
ing the chaotic representation property. For some results on classical multi-
dimensional Azéma martingales, see [AK94, AE96].

Roughly speaking, Parthasarathy’s proof of the chaotic representation property
relies on three properties of the quantum Azéma martingale defined by

t
X)) = 40+ [ @-1X (A,
0
t
V(i) = A(t) +/ (g — D)V (s)dA,.
0
He shows that the symmetric linear combinations

Zt) =X +V(), teR,

are self-adjoint for —1 < ¢ <1 (even bounded for —1 < ¢ < 1). Furthermore, he
shows that they commute for all times, i.e.

[Z2(t), Z(s)] =0

for all s,t € Ry. These two properties imply that there exists a classical pro-
cess (Z,)ser + having the same distribution as the joint spectral density of the
commuting family of self-adjoint operators (Z(t)), cr, €valutated in the vacuum
state. Then he shows that the iterated integrals of Z(t) generate the same space
from the vacuum as the quantum Browian motion @, = A*(t) + A(t). Since
we know that the Brownian motion has the chaotic representation property, this
allows one to show that the classical process (Z;)icr . also has this property.

In this paper we will look for the conditions on the coefficients Cf in the
quantum stochastic differential equations (1.1) and (1.2), that guarantee that

the multi-dimensional process defined by
Zi(t) = Xi(t) + V(1)

has similar properties. In the end we get a multi-dimensional version of Parthasa-
rathy’s result by combining these conditions.
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Note that the Z;(t) can be defined directly by one single quantum stochastic
differential equation

(1.3) Zi(t) = AF () + Ai(t) + Z / C7,(s)dAL(s),
Jik€=1
if the coefficients satisfy
o~ f
foralll1 <i,j5,k,€<n.

2. MULTI-DIMENSIONAL AZEMA PROCESSES AS NON-COMMUTATIVE LEVY
PROCESSES

Let B be the free algebra generated by z;, aj-, i, =1,...,n. Setting
Az, =z;®al +1®1;, Ad} = a; ® af, e(z:) =0, a(a ) = 6ij,
and extending A : B = B® B, ¢ : B = C as algebra homomorphisms, we
get a bialgebra. Taking the free *-algebra B generated by these elements, and
extending A : B > B®B,e: B- C as algebra homomorphisms, we get an
involutive bialgebra B. For the adjoints v* = (z;)* and b} = (a ;) we have
Avt =1 @b +1® ', Al =bE @b, (') =0, e(b])=24;

Recall the definition of a Lévy process on an involutive bialgebra.

Definition 2.1. [Sch93] Let (B, A,¢) be a an involutive bialgebra. A quantum
stochastic process {jst }o<s<t<T On B over some quantum probability space (A, @)
is called a Lévy process on the involutive bialgebra B, if the following four condi-
tions are satisfied.

1. (Increment property) We have
Jra*Jst = Jrt forall0<r<s<t<T,
Jju = €ly forall0<t<T.

2. (Independence of increments) The family {j,}o<s<t<7 is independent (w.r.t.

d), i.e.
(l) q)(jsltz (bl jsntn (bﬂ)) (jsltl (bl)) Q(jdntn (bﬂ)) for all bla e bn €
B,andall0<s5; <t <5<+ <t, <T and

(ii) [4se(b1), Jorer (b2)] = O for all by, b2 € Bandall s,t,¢',¢ with0< s <t <
T,0< s <t <T,and |s,t[n]s,t[=0.
3. (Stationarity of increments) The distribution ¢, = ® o j,; of j,: depends
only on the difference ¢ — s.
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4. (Weak continuity) The quantum random variables j, converge to j,, in
distribution for £ ™\ s.

If {jst}o<s<t<r is @ Lévy process on an involutive bialgebra, then the marginal
distributions ¢;_; = s = ® 0 ji form a convolution semi-group of states, i.e.
Yo = € and s x Yy = g4y for all s,t. It can be shown that there exists a umque
hermitian linear functional 9 : B — C such that ¢, = exp, t) = € + ty) + & 5 1,1) *
¥ + - - -. Furthermore, % is conditionally positive, i.e. positive on B° = ker¢, and
kills the unit of B, i.e. ¥/(1g) = 0. Such functionals are called generators.

Conversely, given a generator ¢ : B — C, we can define a convolution semi-
group of states by ¢; = exp, t¢ and reconstruct a Lévy process on B from it.

Let us briefly describe how one can construct a realization of the Lévy pro-
cess on a boson Fock space. By a GNS-type construction one can complete a
generator ¢ to a Schiirmann triple (p,7,%), i.e. a triple consisting of a unital
x-representation p of B on some pre-Hilbert space D, a linear map n : B - D
that satisfies

(2.1) n(ab) = p(a)n(b) + n(a)e(b), for all a,b € B,
and a hermitian linear functional ¥ : B — C that satisfies
(22)  9(ab) = e(a)¥(b) + (n(a*), n(b)) + ¥(a)e(b), for all a,b € B.

The realization of the Lévy process associated to 1) on the boson Fock space
I'(L*(R4, D)) is then given as solution of the quantum stochastic differential
equations

t
(2.3) Jst(b) = e(b)id + (/ Jsr ® dIT) A(b), for all b € B,
where the integrator d/ is given by

dL;(b) = dA¢(p(d) — €(b)id) + dA] (n(b)) + dAx(n(b")) + (b)de.

For details and proofs see [Sch93].
Set

R;cji = Czjl + 6,']'5);[
and define a Schiirmann triple (p, 7, %) on B, acting on C*, by
p(ad)er =Y Rifer, p(z:) =0,
k=1

n(al) =) =0, n(z;)=e, n(')=0,
P(ai) =0, (=) =0,
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where ey, ... , e, are a basis of C*. There exists a unique Schiirmann triple having
these values on the generators of B. The quantum stochastic differential equations
for the associated Lévy process are

ja(@h) = Gyid+ Zyn(ak RSP — dujdpg) dAL(7),

s k,p,q

(@) = AF(E)— AF(s)+ / Zaw(x,)( bpq) dAL(r),

Comparing the second equation with (1.1), we see that we have
Joe(xi) = Je(z:) = X;i(2), joz(vi) = jt(’Ui) = Vi(t)-

The theory of Lévy processes now implies that the domains of the X;(t), V;(¢)
obtained by solving the quantum stochastic differential equations (1.1) and (1.2)
contain [,cg, doma”, where N denotes the number operator on the boson Fock
space.

Note finally that we can also define the same Lévy process as a solution of the
backwards quantum stochastic differential equations

(2'4) jat(a;‘) = uld +/ Z( 6ik6pq) dAg(T)j‘rt(a;),

* kpg

@) ) = [ 3 aar@inted)
of. [Sch93].

3. WHEN ARE OUR MULTI-DIMENSIONAL AZEMA MARTINGALES
COMMUTATIVE?

In this section we find conditions on the coefficients that quarantee that the
processes commute. In the one-dimensional case[Par90], no conditions were nec-
essary, but the commutativity already followed from the form of the quantum
stochastic differential equations.

Proposition 3.1.  (a): The two-sided ideal I of B generated by the elements

Z;Tj — T;T;, ,i=1,...,n
k k_ _k k S
a;T; + Tiaj — a;zi — Tia, i,5,k=1,...,n
a"a‘-—a"a‘ i, kE=1,...,n

18 a cotdeal.
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(b): The two-sided ideal T of B generated by the elements
(zi + v')(z; + v9) — (x5 + v9)(z; + vP), j=1,...,n
afz; + miaf — afz; — zjaf + afvi + viah — dbvi —vief, i k=1,...,n
;i + ziby — bz — o5 + b + o' — bt — vl 4G, k=1,...,n
afal — ataf, afb) — akbj, bial — blal, bLY, — BB}, L,k l=1...,n

s a coideal.

Proof. We only show (a), the proof of (b) is similar.
We have to show

A(T)CI®B+BRLI.

and €(Z) = {0}. It is sufficient, to verify this on the algebraic generators of Z.
We get
A(ZL'i.’L'j - IL‘]'IL‘,‘)
= (:ck®af+1®x,~)(x¢®a§+l®zj) — (:c¢®a§ +1Qz;)(zx ® a¥ + 1 ® ;)
k

= zx7¢ ® (afa; — afaf) + 7 ® (afz; + zi0k — asz; — zjaf) + 1 ® (ziz; — T;T:),

similarly
A(afz; + z:af — afz; — zj0f) = afzm @ (afa] — afal) + Tmaf ® (alal — aTaf)
+af ® (az; + z:0f — afz; — za),
and finally
A(atd} - afaf) = afal® (a]a} — ajal).

Corollary 3.2.  (a): If the coefficients R satisfy
R = R
and
RS = R
for all i, j, then we have
[Xi(s), X;(®)] =0
(b): If the coefficients RS satisfy
R = n

and
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for all i, 7, then we have
[Zi(s), Z;(8)] = 0

Remark 3.3. Expressed in terms of the coefficients CJ"; appearing in the quantum
stochastic differential equations (1.1) and (1.2) the conditions become

and

Proof. ]

4. WHEN ARE OUR MULTI-DIMENSIONAL AZEMA MARTINGALES BOUNDED?

Lemma 4.1. Suppose that there exists a constant 0 < M < 1 such that

(Z a—,:btn;‘-':) < Milall o]

k.t 1<k, t<n '
a) ' b1

for alla = :],b= : € C*. Then the operators j,t(a;) are contrac-
a, by,

tions.

Proof. Using the first fundamental lemma [Par92, Proposition 25.1], we get the
integral equations

(E),il@)E@) = S5(E(F)E)
+ / S 5a(a)E @R = 6456, FrD)ag (t)ds

k,q.p

for the matrix elements of the operators j,t(a;'-), where f,g € L*(R,,C"). If we
set

Ay o(t) = (E(f), 5e(a5)E(g))
and

Rf,y(t) = (Z R;’;Tpmgq(t)) )

P

ﬁf,g(t) = (Z(R;Z—5ij‘5pq)mgq(t)) )
1<%,j<n
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then we get the matrix-valued differential equation

d —
a-ZAf,g (t) = Af!g (t) Rf,g (t) ’

with the initial condition

A7(0) = ((€(£),£(0))

<ihj<n

The unique solution of this equation is

t
Azt = ArgO)exp ([ Ra(s)ds).
and therefore we get

(4.1) (E(), @) E(9)) =
(exp (JF Ryg(s)ds) ) _exp (3 () g(rdr + [(F(r), g(r))dr)

Using this identity, we get the desired estimate. O

Proposition 4.2. Suppose that there exists a constant 0 < M < 1 such that

(Z ZﬁbeR;'Z) < Mllall|[b]|

k.t 1<kt<n
a by

for all a = : ,b = : € C*. Then the operators X;(t), V*(t) and
an b,

Zi(t) = Xi(t) + V*(t) are bounded for allt <¢.

Proof. Using the first fundamental lemma [Par92, Proposition 25.1] and the back-
ward stochastic differential equation (2.5) for X;(t) = j,(z;), we get

D XEw) = [ (EP), jula)E (@) FiE)ds

Using (4.1), this implies that the X;(t) are bounded, and therefore also the V;(t)
and the Z;(t). O

[FSS01]
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5. CHAOS COMPLETENESS

Define the iterated integrals

Qi,,.. i (1) = / dQ;, - --dQ;,,
< <

et <t

where Q;(t) = A} (t) + Ai(t), and

L. ()= / dz;, ---dZz,
. 0<t) <t <t
then we have

Qi,,.;, )2 =T, ;. (1),

forallr € N, 4y,...,i, € {1,...,n},and ¢ > 0.
This implies that we can copy Parthasarathy’s proof of the chaos completeness
whenever the Z; define a bounded and commutative self-adjoint operator process.

Theorem 5.1. Suppose that the coefficients satisfy ...

Then there exists a classical process ((Zl @®),... ’Z"(t)))t . having the same
€R+

joint distribution as the quantum stochastic process ((Zl (®),... ,Z,,(t))) . and
teR4
havin the chaotic representation property, i.e. the iterated integrals

~

foo i) = / 4z, .-z,
0Kty <-tr <t

withr € N andiy,... i, € {1,...,n} are total in the L?-space over the underlying
probability space (where we assume that the o-algebra is generated by the process).
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