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The Symmetric Groups and
Algebraic Central Limit Theorems

Akihito HORA (I} 240

Okayama University
Okayama 700-8530, Japan

Abstract

In this note, we review some of our results on central limit theorems in algebraic
probability and report an attempt to develop their quantum aspects. We illustrate
our approach with materials concerning the symmetric groups.

1 Introduction

Let G be a discrete group and S generate G with S™! = S (as a set) and S Z e (the
identity element in G). (G, S) forms a Cayley graph X, in which G is the vertex set and
z,y € G are adjacent (denoted by = ~ y) if and only if 3s € S such that sz = y. The
adjacency operator A on X acts by definition on a suitable function space on G as

(Af)=)= > fly), (f € Fun(G)),

yy~zx

which is a formal expression when the degree k = |S| = oco. Let us take a normalised
positive-definite function ¢ on G or let ¢ be a state on a suitable algebra A(G) generated
by G. We are interested in asymptotic spectral structure of A on large X’ through some
scaling limit. To be more precise, let S™ S with |[S™)| < co and S™-1 = §(. The
adjacency operator A™ at a finite level is

AP = Y f@), (f € Fun(G)).

yy~z,yr—1eSr)

We can formulate our central limit theorem by considering convergence of moments or
spectral distribution of

(A®) — o(A) /(A — p(A))2)

with respect to ¢. The asymptotic is taken along the size n and possibly other addtional
parameters contained in the state ¢. (See later sections.) More generally, we can discuss
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several adjacency operators Ag,, As,, As,, - - - associated with subsets S;, Sz, S3,--- of S
and their mixed moments or joint distribution (if A;’s are commuting) with respect to
p. It is straightforward to extend the consideration to other regular graphs than Cayley
graphs.

In this note, we treat Cayley graphs of the symmetric groups S, and distance-regular
graphs appearing as homogeneous spaces of the symmetric groups. Spectral structure
of these groups is at finite level studied well by using combinatorial and representation-
theoretical technique. The algorithmic results, however, become very complicated as the
size of the graph grows. In order to make the limiting procedure more transparent, we
intend to apply quantum decomposition of an adjacency operator, which is a basic idea
widely used in quantum probability.

2 Working on Johnson Graph

A Johnson graph is an important distance-regular graph as well-known as a Hamming
graph. For v,d € N, let X = {z C {1,2,---,v}||z| = d} be the d-subsets of a v-set.
(2d < v without loss of generality.) By definition two vertices z,y € X are adjacent if
lzNy| = d — 1 in Johnson graph J(v,d). It has diameter d and degree k = d(v — d).
J(v,d) is regarded as a homogeneous space Sq X S,_q4\S,. We fix a base point zy € X.
The vacuum state is defined as (®(0), - ®(0))¢(x) where ®(0) = 4.

In [7], we showed the following central limit theorem by using spectral data of Johnson
graphs(e.g. seen in Bannai-Ito [3]).

Theorem 1 For a growing family of J(v,d), the distribution of normalised adjacency
operator A/\/k with respect to the vacuum state converges weakly to:

2
(i) e“(z+l)I[_1’°°)(:z;)dz as d— oo and ’—'Jd‘ — 1 ’

X 2(1-p); p \} 2d
ii ) 20-p) , a8 d—o0oand — —pe€ (0,1].
( ) g) 2-p (2 - P) _vp(2—P)+\/p(2fp)l v ( ]

(The original statement in [7] contained an extra condition in (ii), which proves to be

inessential.)

We can extend Theorem 1 to a quantum central limit theorem by introducing quantum
decomposition of the adjacency operator: A = A% + A~. Let ['(X) = @2%_, ®(n) be
the finite-dimensional Fock space associated with a Johnson graph X', where ®(n) is a
normalised number vector. Let

I'= {(En) = Z£nen € Cool Z("!)zlfnP < oo}
n=0 n=0

be a 1-mode interacting Fock space. Let B*, B~ and N denote the creator, the annihilator
and the number operator on I'. For an interacting Fock space and operators on it, we
refer to Accardi-Bozejko [1] and Accardi-Obata [2].
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Theorem 2 For a growing family of J(v,d) such that d — co and 2d/v — p € (0, 1],

we have 44 4 Aem
(‘I)(l) \/—\/— \/—q)(])) (X) o (61,061062"'05"‘6]’)1’*

for Vm € N, Ve, €3,---,€m € {+,—}, V1,57 € {0,1,2,---}, where

Ci=05:3i+—1 N.

VP2 —p)

Theorem 2 yields Theorem 1 as classical reduction with an interesting observation of
relations to orthogonal polynomials. Including the definition of quantum decomposition
A = A" + A, full details of Theorem 2 and more general version about distance-regular
graphs will be included in [11] (partly announced in an ITAS workshop 20 - 22 / 2 / 2001).
As for a quantum central limit theorem on Hamming graphs, we refer to Hashimoto-

Obata-Tabei [6].
Motivated by Hashimoto [4], we introduced Gibbs state ®, on the adjacency algebra
A(X) of a distance-regular graph X in [9]:

,(Q) = (2(0), (hX_j 4)Q2(0)  (Q € AX)).

Here A; is the ith adjacency operator on X'. ®, becomes actually a state on A(X) for
0 < g < 1 if the graph X is nice, e.g. if X is quadratically embedded into a Hilbert
space. Then the temperature T' of X’ is introduced as T' x —1/loggq. In [9], we showed
the following central limit theorem (low temperature limit).

Theorem 3 For a growing family of J(2d,d), the distribution of
(A = y(A))/y/@,((A - B,(4))?)
with respect to ®, converges weakly to:
(i) eI _10)(z)dr asd v ocoand g=r1/d* =0 (r>0,a>1: fixed)
(i) V2 + le~@V2ril+artl) 5 12\/ (zv2r +1+7r+ DM oo)(:x:)d:z;

asd > ocoand g=r/d — 0 (r >0: fixed), where

22 k
Jo(z) = 3 24 kéf) (z€C)

k=0

is the Oth Bessel function.

Seen from the viewpoint of Theorem 2, Theorem 3 can be interpreted as convergence
of a superposition of matrix elements. Finding the limit distribution of (ii) is equivalent
to computing the moments

0 en)I‘ (p € {0?1,27"'})
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for operators B, B~ and N on the interacting Fock space I'. It can be done through a
combinatorial argument by using an appropriate Bratteli diagram. It turns out that the
limit distribution is a translation of that of Xy + X; + --- + X where Xo, X;, Xo,---
are independent random variables obeying the exponential distribution e™*dz and M is
also independent random variable of X;’s obeying Poisson distribution with parameter r.
Details of these observations and computation of the moments will be contained in [10].
See Hashimoto [5] for the discussion of Haagerup states on the free group algebras.

3. Working on the Infinite Symmetric Group

Let Seo = U2, Sy be the infinite symmetric group with the identity element e. The
nontrivial (# {e}) conjugacy classes of S, are parametrised by D, the set of the Young
diagrams without a row consisting of only one box. Let C, denote the conjugacy class
corresponding to p € D. We use the cycle notation p = (2F2(P)3ks(P) ... jki(e) ...} which
means that diagram p € D contains k;j(p) number of j-rows. Set |p| = X; jk;(p), the
number of boxes of p. Let 7(p) denote the number of rows of p and I(p) = |p| — r(p) the
“length function”. In fact, for given p € D, taking sufficiently large n and g € C, N S,
and letting [g], denote the number of cycles of g € S,,, we see the minimal number of the
transpositions in S,, expressing g as their product is equal to

n—[gln =n —{§ of rows of [p = (lo| + |leg]) = (r(p) + |leg|)
le;f = 1Up) -
It is convenient to arrange the diagrams in D according to {(p), which is induced by adding

“one column to the left side (as indicated below) of each diagram in the usual arrangement
of the Young lattice.
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The assignment of edges is in a different way from the Young lattice, as is mentioned
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An adjacency operator is formally written as A, = > gec, 9 for p € D. Taking n > |p|
and setting C{") = C, N S,, we get an adjacency operator at n-level, AW = Pe o 9-
Let ® = (J., - 0c)r2(s.,) be the vacuum state. In [8], we showed the followmg central
limit theorem. Hy(z) denotes the Hermite polynomial of degree k obeying the recurrence

formula
tHy(z) = Heqa(z) + kHi1(z) , Ho(z) =1, Hi(z)==x.

Theorem 4 For Vm € N, Vp1,p3,---,pm € D, Vry,72,-- -, T € {0,1,2,---}, we have
_ A A A
Jim @ (( Ig(n)l) ( |£2(n)l) "'(W) )
_H/ Hk (m)(x))ﬁ(Hk (pz)(f))rz _ (Hk,-(pm)(x))fm
jz2/R Vo \/k](m)- Vki(p2)! VEi(pm)!

This result extended Kerov’s theorem in [12]. Indeed, restricted to S, such that n > |p|,
the spectral decomposition of A, acting on ¢2(S,) is given by

C(n) 2
A=) | d1m|i\(p Ey, ®(E)) = du;l! A (Plancherel measure)

AEYn

where ), denotes the set of Young diagrams with n boxes and x;} is the value of the
irreducible character corresponding to A taken on C,.

As an attempt to develop a quantum aspect of Theorem 4, let us discuss at first a
decomposition of Ag for simplicity. For e # g € S,,, we define operators g* and g~ on
%(S,) as

o[ 8 il <l o[ b it [g2] > [d
* 0 otherwise, ”" 0  otherwise.

Set AT = decmms g%. Clearly Ap= At + A~. Let P, denote the intersection number
of the group assoc1at10n scheme X(S,,), namely, if z,y € S, and z~ 'y € C,,

po=Hze&le7lzeCr,27ly e C,}| .

(This quantity does not depend on the choice of z,y whenever 71y € Cy .) The action
of A* to number vectors is as follows.

Proposition 1 Set v, = ¥ ;¢¢,ns, 0z for p € D. We have

A*v, = > Pgp Vo -
a:l(o)=l(p)£1
Proof Note that, if g = (3 j),
[g9z] < [z] <= [gz] =[z] =1 < i and j are contained in different cycles of z,
[gz] > [z] <= [gz] = [z] +1 <= i and j are contained in the same cycle of z.
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Atv, = 3 > g'%

Z‘ECPQGCQ

= Y H(g:z)|lz €Cphyg € Gq,y = g7, [9z] = [2] — 1}| 4,
yESn

= 3 ¥ {(g:2)lc € Cpg € G,y = g, [92] = [2] — 1}[ 4,
o yeCy

= 3 Y g2z €Cpge CGyy =gz}

a:l(o)=1(p)+1 y€Cs

= Z pm:v” :

a:l(o)=l(p)+1

The action of A~ is similar. (Alternatively, use the adjoint relation.) QED

Let us a.ssume that o, p € D satisfy (o) = I(p) + 1 and consider g ¢ in sufficiently
large Sy,. If pgy > 0, then we can specify the number j such that a j-row of o splits into
two rows of p (pos31bly 1-rows). According to the cases: (i) |o| = |p| +2, (ii) |o| = |o| + 1,
(iii) || = |p|, we have

(if) jk;(o) = 3(k;(0) + 1)

{ (i) ka(0) = k2(p) +1
Pop
(iii) Cyk;(0) = C;(k;(p) + 1)

where C; is the number of cutting a j-polygon into two pieces so that each has at least two
vertices. In particular, pg% does not depend on 7 if l(o) = l(p) +1. This property enables
us to assign multiplicity pp; for pair (p, o) such that (o) = l(p) + 1 in D. (Especially,
they are joined by deﬁmtlon if p,5 > 0.) We define a normalised number vector ®(p) =

v,/4/|C,| with respect to the usual inner product in £%(S,) and a finite-dimensional Fock
space ['(S,) = C®(0) ® @ cp,jpj<n C®(p). Proposition 1 yields

1 |Cs |
A*®(p)= Y Do ——®(0) .
ICIDI : a:l(o)=l(p)*1 et ile lCP|

Clearly |C,| < nl?. If i(d) = I(p) + 1, only the term of |o| = |p| + 2 survives in the right
hand side sum as n — oo, for which we have

o | 1Cs| _
Do |C||C — \k2(p) +1 (o = pUm).

= |C,|pgs, We see, if I(d) = I(p) — 1, the only surviving term of lp| = |o|+2

Pop |Cm| |C — k(o) (0 =p\m).

Using |C,
satisfies

D0t
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Let us introduce a Fock space I' = C'¥(0) ® @,cp C¥(p), where ¥(0) (the vacuum state)
and ¥(p)’s are normalised vectors. The above discussion leads to the following assertion.

Proposition 2  Associated with the decomposition Az= A* + A~ on S,,, the following
quantum central limit theorem holds:

A A=
chml VGl \/ICmI

asn — oo for Vm € N, Vey, ez, --,6m € {+,—}, Vo,p € DU {0}, where the limit
operators a* are defined as

a ¥ (p) = \ka(p) + 1¥(pUm) , 0" ¥(p) = /k2(p)¥(p\m) .

Hence, if we start from the vacuum state ¥(0), a* do not take us out of C¥() ®
@2, C¥((2F)) and act on it in the same way as the creator and the annihilator on a
Boson Fock space. Obviously, classical reduction of Proposition 2 yields a well-known
Gaussian limit (included in Kerov’s theorem [12]).

Beyond the vacuum expectation, let us discuss a central limit theorem measured by the
state associated with Kerov-Olshanski-Vershik’s generalised regular representation of the
infinite symmetric group Seo. In [13], Kerov-Olshanski-Vershik introduced an interesting
deformation of the regular representation of S, by using a 1-cocycle containing a complex
parameter z. The representation space is the L?-space on a projective limit of probability
spaces (S, u?). Here p({z}) = tlFl/(t), for z € Sp, t = |22 and (), = t(t +1)--- (t +
n — 1). This representation gives a central positive-definite function ¢, on S, which can
be expressed on S, as

®(p))ris.y) — (¥(0), aa®---a*"¥(p))r

e 3 letulf H X%,
¢z‘5n( ) ug (t)n )\g (A)d A ( € Cann),
M. ( () I ]z+]—z|2dlm)‘ (z € C\ {0}).
™ (ij)ex

We obtain a tracial state ¢,|s, by C-linear extension. The limiting case z — oo corre-
sponds to the regular representation, and then ¢, is interpreted as the vacuum vector
state. Set ¢,(p) = ¢,(w) where w € C,.

Let us work on S,,. Our state ¢, has density matrix 3|, <, ¢.(p)A,. A simple compu-
ation yields ¢.(m) = (z +Z)/(t + 1). If 2+ Z = 0, then Ayhas mean 0 and variance

n(n — 1) 2n—-2) (n—2)(n-3)
2 {1+ t+2 +(t+2)(t+3)}'

$:(Ag) =

This suggests a central limit theorem for the adjacency operator Agpwith respect to ¢, as
n — oo and n/t converges to a nonzero value. (Compare it with Theorem 3.)

It is interesting to understand the limiting expectation with respect to ¢, as a su-
perposition of matrix elements similarly to the discussion following Theorem 3. In that
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situation, g",/k, converged as d — oo and ¢ = r/d — 0. However, we have now a diffi-
culty that ¢,(p)+/|C,| does not converge in general as n — oo with t = |2|? < n. Assume
that z + Z = 0. For special diagrams (2'), we have

+ O(tl'l)) if [ is even

-I_(Lt’
¢:((2)) =1 () (1/2)!
0 if { is odd.

Hence ¢,((2'))4/|Ca1)| converges as t < n — oo. On the other hand, for the cycles, we

have
polynomial of degree k in ¢
#:((2k ~ 1) = o . 8:((2R) =0.

Actually, we conjecture that, for p = (2k23ksgks...)

¢z (p) — O(tk3+2k3+2k4 +3k5+3k¢+4k7+~-')/(t)lpl
O(l/tkz+ks+2k4+2k5+3ke+3k7+4ks+---)

holds and hence ¢.(p)4/|C,| may possibly diverge by nks+ks+kr+-)/2 35t < n — co. If we
take another normalised number vector

o [¢A
®'(p) = ”p/\/m ;

this problem is overcome and we can still control the convergence of the branching
coefficients of the action of A+ under the appropriate normalisation. However, the
limit operators at* in Proposition 2 have more complicated actions on the Fock space
CY (D) ® @ cp C¥(p). Details will appear elsewhere later on.
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