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Spherical 5-Designs Obtained from
the Unitary Group Us,,(2)

Akihiro Munemasa (5ZEX H33L)

1 Introduction

The purpose of this talk is to give an infinite series of spherical 5-designs
constructed from the unitary group over the finite field of four elements. Let
G = Uy (2) be the unitary group of dimension 2m over GF(4), V = GF(4)*™
the natural module of G. Then G acts transitively on the set Q of (maximal)
totally isotropic m-spaces of V. This permutation representation (over R)
contains an irreducible representation of dimension d = (4™ + 2)/3. Then
one can embed the set () into the unit sphere S%~! in the Euclidean space
Rd

Theorem 1. Q < 59! C R? is a spherical 5-design.

The inner product among the vectors of () embedded in R? can be made
rational-valued, so one obtains integral lattices after a suitable normalization.
Shimada. [5] considered a related family of lattices, and presented in a talk

in January, 2000 at RIMS.

2 Preliminaries

A spherical t-design (t € Z, t > ()) is a finite set § C S9! such that

o fz
fbd — Z f
fsd 1 1da 'Ql
for all polynomial f € R[X},... , X4] of degree at most t. Equivalently,
D Qilmy) =0 (1<i<t) (1)

z,y€EN
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QO( ) =1, QI(X) = dX,
k+ d+ k-3
T Qun(X) = XQuX) = T Qe (X)

are suitably normalized Gegenbauer polynomials. See [1, 4] for more details
on spherical designs. In what follows we simply say a t-design for a spherical
t-design.

Examples of spherical designs include the 196, 560 vectors of norm 4 in the
Leech lattice (a 11-design), the 240 roots of the root system Eg (a 7-design).
Moreover, if O(d,R) D G is a finite irreducible subgroup, then every G-orbit
on S%!is a 2-design. Sidel’nikov [6] showed that there exists a finite group
G C O(2",R) such that every G-orbit on 5?"~! is a 7-design. In general,
the Molien series of G on the space of harmonic polynomials determines ¢ for
which every G-orbit on the unit sphere becomes a t-design. [1, p.102].

To see that @ — §47! (d = (4™ + 2)/3) is a 5-design, we shall verify
the condition (1) with ¢t = 5. We note that the values of inner products
(z,y) are known to be (—2)77, 0 < j < m (see Table 6.1 (C3) of [3]), and
(z,y) = (—=2) if and only if the dimension of the intersection of z and y is
m — j (recall that z,y are m-dimensional subspaces of V). The number of
pairs (z,y) € Q2 such that (z,y) = (—2)77 is given by |Q|k;, where

ﬁ22h 1(4m h+1 __ 1)
4h — 1 .

h=1

With these formulas at our disposal, we can verify (1) for any given values of
m. However, we shall employ a more general framework to prove Theorem

1.
A comment on the peculiarity of this embedding can be found in [3,

Remark, p.276).

3 The Q-polynomial property for the dual
polar space associated to Uy, (2)

As in the previous section, we let m be a fixed positive integer, and denote by
Q the set of totally isotropic m-spaces in the natural module V = GF(4)*™ of
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Usm(2). The set Q is called the dual polar space associated to Uy (2), because
it is a combinatorial dual of the polar space of absolute points and totally
isotropic lines of the projective space PG(V) with a unitary polarity. Then
Uzm(2) acts on (), and the permutation representation (over R) decomposes
as follows:

RO=Vy LV, L--- LV, (2)

where V; is the trivial module. Let E; € Mg(R) be the orthogonal projection
of RQ onto V.. If we rearrange the ordering of V;’s if necessary, then there
exists a polynomial v¥(X) of degree ¢ (0 <1 < m) such that

Q1E; = vi(|19E1) (0 <i<m),

where, if

then
i (IQE:) = ) | Ero---0 By,
|
J=0 j
where o denotes the entry-wise product. Roughly speaking, the existence
of such polynomials is refered to as the Q-polynomial property (see [2] for
details). It is known that there exist a}, b}, ¢’ € R such that

Xvi(X) = ¢ip 0531 (X) + i (X) + b0, (X) (3)

and {v*(X)} is a system of orthogonal polynomials.

More generally, one can define a combinatorial structure called an as-
sociation scheme on which the vector space of real-valued functions on the
underlying set {2 can be decomposed into a direct sum like (2), and one can
define Q-polynomial property for association schemes. For precise definition,
we refer to [2]. The following theorem reveals a relationship between the
QQ-polynomial property and spherical designs. Here we denote by E;({1) the
set of unit vectors obtained by normalizing the column vectors of the matrix
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Theorem 2. Suppose that ) is a Q-polynomial association scheme.
(i) If a7 = 0, then E;(Q) is a 3-design.
(ii) If moreover, bbics + 2(bic; — b2 +b3) = 0, then E; () is a 4-design.
(iii) If moreover, a3 = 0, then E,(f2) is a 5-design.

If Q is the dual polar space for Us,, (2), then all hypotheses of the theorem
are satisfied, and {} becomes a 5-design. To check this, we reproduce a more
general formula for these numbers for the dual polar spaces associated with
Uam(r), where 7 is a prime power. They can be deduced from the formulas
in [2, Section 3.5].

b — ( 2m+,r)(r2m+2+( 1)1 i+1)
t ( 1)(r2m+2 + 7.2z+1) ’
o T (ST )

i (r+1)(r2m+r2z 1) ’

al =by— b — ¢

From these formulas, one checks easily that the conditions (i)-(iii) of Theo-
rem 2 are satisfied precisely when r = 2.

One can find a more general formula describing these numbers for known
P- and Q-polynomial association schemes [2, Section 3.5]. Thus, it is natural
to consider the following problem.

Problem. Classify P- and Q-polynomial association scheme ) such that
E,(Q) is a spherical t-design for t = 4,5,6,....

4 Proof of Theorem 2

We use the orthogonality relation of the polyomials {v}(X)}™, given by

Zkhv (63)v;(67) =0 (i #3), (4)
h=0
where 05 = dimVp = rankE; = b}, and E;({2) has ||k, pairs of elements
with inner product 6; /0"‘ We shall write d instead of 6 to simplify the
notation. In view of (1), in order to prove E,(f2) is a t-design, it suffices to
show

Y kQi(6i/d)=0  (1<i<t). (5)
h=0
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Lemma 3. If the polynomials Q,(X/d) (1 < s < t) are linear combinations
of the polynomials v} (X),... ,v;(X), then F;(f) is a t-design. ]

Proof. Since v3(X) = 1, the orthogonality relation (4) implies
D ki () =0 (i>0).
h=0 .

Then the condition (5) is seen to be satisfied. O

It follows from the definitions that @;(X/dX) = X = vi(X), so E{(Q) is
always a 1-design. Also, one has

Qa(5) = (k3 (X) + afvi (X)),

and hence F;(f) is always a 2-design.
To prove part (i) of Theorem 1, we assume a} = 0, so that

XQzé) d;;lzc;Xv;(X) (6)
Then
d
0(3) = 5 (Fo) - - haud)

d+ 4 X

= (XQ2(7) —(d— 1)Q1(—d—))
d+4 (d+2 ,_ . .

= g ( 57 c X z(X)—(d—l)vl(X))

= DG (G5() + azui (X))

d+4)((d+2)c3b; — 2d(d — 1
6d?
Thus Q3(X/d) is a linear combination of v} (X), v(X), v3(X).
Under the assumption of (ii), we have
X (d+4)(d+2)c;

Qs(7) = 642

(c303(X) + azv3(X)). (7)



126

o) = (o) - 7550)
_ ([@d+6)(d+4)(d+2)g d+6

(5 Xv3(X) + a3 Xv3(X)) —

vz (X).

2443

It follows from (3) that Q4(X/d) is a linear combination of vj(X), v;(X),
v3(X), v3(X).

Under the assumption of (iii), we have
X, (d+6)(d+4)(d+2)
Q"(—d_) = 2443
which is a linear combination of v3(X), v3(X), v;(X) by (3). Thus XQ4(X/d)
is a linear combination of vj(X), v;(X), v3(X), v;(X), vi(X) by (3). Since

X, d+8/X X  d+1 X
o) =2 (Faud) - Fheu )

and Q3(X/d) is a scalar multiple of v3(X) by (7), we see that Qs(X/d) is a
linear combination of v}(X), v;(X), v3(X), vi(X), vs(X). This completes
the proof of Theorem 2.

d+6

G axuy(X) - 000 (x),  (8)
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