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Abstract

In this paper, we shall outline a mathematical attempt to under-
stand the Gopakumar-Vafa conjecture [GV]. We shall explain a math-
ematical defintion of BPS invariant, a new invariant of Calabi-Yau
3-folds from stable sheaves of dimension one. Some evidences for the
Gopakumar—Vafa conjecture as an equivalence of the Gromov-Witten
invariants and BPS invariants are given.

1 Gopakumar—Vafa Conjecture

Let X be a Calabi-Yau 3-fold (m;(X) = {1}) and let us fix an ample line
bundle Ox(1) on X. We denote Gromov-Witten invariants by

Nyg(B) := [Myo(X, )" € Ao(Mjo(X,0)) ~ Q,

and their generating functions by

FgX:: Z Ny(ﬂ)qﬁ-

.ﬁEHQ (X)Z)

Based on the string duality between Type IIA and M-theory, physicists
Gopakumar and Vafa [GV] introduced the following remarkable formula for
the generating function of Gromov-Witten invariants.
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Conjecture 1.1. ([GV))

(1) There should exisi:integers ny(06) called BPS invariénts such that

Sramte S e (za) o

g>0 k>0,h>0,0€Hz (X Z)

(i1) Let My be moduli of M2-branes wrapped around the curves in X. Then
there exist support map mg : Mg — Sg, where Sp is a suitable moduli
space parameterizing the deformation of curves (support of D-branes)

in X. ,
(iii) np(B) should be deﬁned by the spin contents of the BPS states. More

precisely, there exists (sly)r X (sly)r-action on some suitable cohomology
group H*(Mpg) and ny(8) are defined by the following formula:

ny(B) ::- Tréh(ﬁ)(_l):ZHRv

®h
1) = D [(ro20s] o )
h>0

One can always define conjectual BPS invariants n{"(8) € Q recursively
in terms of Gromov-Witten invariants N,(8) by the GV formula(1). In this
approach, it is the problem to prove that n;”*’(8) € Z. In [BP], Bryan and
Pandharipande proved for some super-rigid curves in a Calabi-Yau 3-fold.
Also, we are informed that Fukaya—Ono [FO] proved. the genus 0 part of this
conjecture in the symplectic category.

What we would like to do is to define BPS invariants of Calabi—Yau 3-
folds independently by the moduli space of sheaves and to formulate GV
conjecture as an equivalence of GW and BPS invariants. For this purpose,
we have to ‘ '

(i) define the rﬁoduli space of D-branes,

(ii) prove the existence of (sly)r X (slz)R‘faétion on a suitable cohomology
on the above moduli space,

(iii) prove the Gopakumar—Vafa formula.

In this paper we present the idea of the first two steps based on our work-
ing hypothesis (table 1) and give nontrivial evidences for Gopakumar—Vafa
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conjecture. A mathematical definition of BPS invariants is given in section 2
and evidences are given in section 3. Especially, we can provide the answer
of the problem (ii) using the intersection cohomology of the D-brane moduli
spaces and the decomposition theorem due to [BBD]. This paper is a kind
of survey article and the details can be found in [HST1|[HST2][Ta].

LHS of eq.(1) RHS of eq.(1)
Object Stable Maps Stable Sheaves £
' f:E8,-X with x(€) =1

B € Hy(X,Z) B = f«([Z]) Supp(€) = U;Y;
| B=Y, UE) V]

(2sin 4)%-2 Degenerate Instanton Jacobian
Terms with k£ > 1 Multiple Covering Strictly
in RHS of eq.(1) X, e Semistable Sheaves

Table 1: Working hypothesis
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2 Moduli Space of D-branes

2.1 “D-brané: wrapped around the cycle”

What is the mathematical definition of the “D-brane wrapped around
the cycle” and the moduli space of them? Usually one may think “D-brane
wrapped around the cycle” as cycles with flat U (1) bundles. This trans-
lation is sufficient in many cases, but since the cycles may have singulari-
ties, it is more useful for our purpose to regard D-branes as stable sheaves
(Narasimhan—Seshadri theorem, Kobayashi-Hitchin correspondence). Let us
first recall the notion of stability.

Definition 2.1. A coherent sheaf £ on a scheme X is pure of dimension k
if dime¢ Supp(F) = k for any nontrivial coherent subsheaf F C &. |

Definition 2.2. Let £ be a coherent sheaf which is pure of dimension d on
a projective scheme X and let \

d
P(E,m) := x(X,E(m)) = Zai(fﬁ)ﬁ

be the Hilbert polynomial of £. Then p(€,m) := P(E,m)/a4(E) is called a
reduced Hilbert polynomial of £. |

Definition 2.3. (Stability)
Let £ be a coherent sheaf which is pure of dimension d on a projective scheme
X. & is stable (resp. semistable) if for any proper subsheaf F,

p(f',m) < p(g, m), for m >> 0.
(resp. p(F,m) < p(E,m), for m >>0).

One can define the moduli spaces of semistable sheaves by the Sifnpsoh’s
construction (see, for example [HL}):

Definition 2.4. Let X be a Calabi-Yau 3-fold and let us fix an ample line
bundle L on X. Let My, (X) be the moduli space of semistable sheaves 5
on X with Hilbert polynomial

P(€,m) =dm+x.

It is known that My, (X) is a projective scheme (Theorem 4.3.4 [HL]).
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2.2 Support morphism

We must take extra care if we consider the fiber space structure of the
moduli spaces, i.e., if we consider the deformation spaces of the support of
the sheaves in addition. For example, let us consider the following case:

(i) n copies of D-branes wrapped around the cyclé C once.

(ii) Large single D-brane wrapped around the cycle C n-times.

Mathematically, the first one corresponds to a sheaf of rank n on C and the
second one corresponds to a sheaf of rank 1 on non-reduced scheme with the
same topological space C' (but multiplicity along C is n). Sometimes the
above two objects have the same Hilbert polynomial and hence they define
points of the same moduli space. Such. a situation makes it very difficult to
deal the support map of the moduli space of stable sheaves of dimension one
on a Calabi-Yau 3-fold. In fact, in the above example there exist at least
two natural scheme structures C and nC on their topological space C. Thus
it is very difficult problem to define a suitable “support morphism” since the
subscheme structure of the support of coherent sheaves are not unique.

Our solution to this problem is to use the Chow variety Chow(X) param-
eterizing algebraic cycles on X. It is known that Chow(X) is a projective
scheme.

Let X be a smooth projective scheme over C and £ be a coherent sheaf on
X pure of dimension 1. Let Supp(€) be the support of £, Y;, -, Y] be the
irreducible components of Supp(€) and v; be the generic point of Y;. Then
the stalk £,, = £ ®0, Ox,y; is an Artinian module of finite length {(&,,). One
can define an algebraic cycle s(€) by

l
s(€) := Y IU(&,) Y. (2)

=1
Definition 2.5. Let Mp(X) be subspace of My;(X) with [s(§)] = B €
Hy(X,Z), d = fﬁ cai(L).
Let us assume that Mp(X) is normal (In general, we take the normaliza-
tion of Mg(X) and denote it by Mp(X) again.).

Proposition 2.1. ([HST2))
The natural map

5: Ms(X) — Chow(X). ;
& e s(8) B )

becomes a morphism of projective schemes. 0
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Let us denote by Sz(X) the normalization of the image of Mg(X) in
Chow(X). Since Mg(X) is normal, the morphism factors through Sz(X)
from the univesal property of the normalization, and we obtain the natural
morphism

s Ma(X) > Se(X). (&)

Note that 74 is pIOJectlve since Mﬁ(X) and Sg(X) are projective.

Remark. If X is a smooth projective surface, then mg coincides with the
support morphism given by Le Portier [LeP].

2.3 BPS Invariants

We can prove the following theorem and give mathematical definition of
BPS invariants.

Theorem 2.2. ([HST?2))
Let w5 : Mp(X) — Sg(X) be the projective morphzsm defined in (4). Let us
fiz a relative ample line bundle Ly on Mg(X) and an ample line bundle L,
on Sp(X) respectively.

Then IH*(Mg(X)) is a representation of an (sly)y, x (sly)r defined by the
relative Lefschetz operator wy, and by the Lefschetz operator wgr of the base.
TH*(Mp(X)) is decomposed as an (slz)r, X (slz)r-representation as follows:

TH(M5(X)) = @) N (1)1 © (i) )
J1,J2 1 oh
= @ [(§)L ® 2(0)L] ® Ri(B)- (6)

where we denote by (7). the spin-j representation of the relative Lefschetz
(sly)-action and by Ry, (8) a (virtual) representation of the (sly)g-action. O

Definition 2.6. (BPS invariants)
By using the decomposition (5), we can define mtegers ny(B) by the following
formula:

na(B) = Traye)(—1)""*. (7)
ny(B) will be called BPS invariants.

Conjecture 2.1. Integers nh(ﬁ) defined in (7) should be deformation in-
variants satisfying the Gopakumar-Vafa formula (1). In particular, no(3)
should be the holomorphic Casson invariants defined by Thomas [Th).
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Since neither Mg(X) nor the morphism 73 may not be smooth in gen-
eral, we cannot prove the existence of such an action on H*(Mg(X),C) by
the usual Leray’s spectral sequence. However, the “perverse” Leray spectral
sequence tells us the origin of the (sl3)r x (slz)r-action on intersection co-
homology IH*(Mp(X)). Not only physics but also mathematics can explain
(sla)r x (sl2)r quite naturally!

Let us give a sketch of the above theorem. Let M be a normal algebraic
variety. We use the theory of perverse sheaves to show the existence of
(sl2)L x (slz)r-action on intersection cohomology I H*(Mp(X)). First of all,
let us recall some definitions. '

Definition 2.7. (Constructible Sheaves)
A Cjps-module F is called constructible if there exists a stratification M =
[ M; such that restrictions F|ys, are local systems on M;.

We denote by D%(Cys) the derived category of bounded complexes of
Car-modules with constructible cohomology sheaves.

Definition 2.8. (Perverse Sheaves)
A perverse Cp-module is an object K* € D%(Cps) such that the following
conditions are satisfied:

(i) (Support condition)

dimc suppH*(K*) < —i, i€ Z.

(i1) (Support condition for Verdier Dual)
dimc suppH (D K®) < —i, i€ Z,

where Dy is a Verdier dualizing functor. Let PD<°(Cy,) (PD2°(Cpy)) be

the subcategory of D%(Cjys) whose objects are complexes K* € D%(Cj,)

satisfying the support condition (Support condition for Verdier Dual),
- respectively. Let us set

Perv(Cyy) :=?D=%(Cy) NPDZ%(Cyy).

The category of perverse Cpy-modules is an abelian category which is
both Artinian and Noetherian. The simple objects are of the form

tL[dime V] := Im(uL — ¢, L)[dim¢ V],

where V < M is the immersion of locally closed subvariety of M and L is a
local system on V.
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Theorem 2.3. (Théoréme 1.3.6 [BBD]) .
Inclusion PD<°(Cpr) < D2(Cpr) (PD2°(Car) <> D5(Cur)) gives a right (left)

adjoint functor <o (T>0).
pHO ‘= T>07<o0 - D‘b:(CM) — PCT"U((CM)
is a cohomology functor. PH® is called a perverse cohomology functor. O

Definition 2.9. (Perverse Derived Functor)
Let m : M — S be a morphism of normal algebraic varieties.

PR*f.: Perv(Cp) — Perv(Cy), K*®w—PRFf,K*:=PH°(Rf.K*[—k]).

Definition 2.10. (Intersection Cohomology)
Let us set ICy; := t1,Cppsmoatn. The intersection cohomology is defined by

[H!(M) := H!(M, IC};) = PRT,ICY,, i€ Z.

The key is the following two main theorems of the theory of perverse
sheaves by Beilinson—Bernstein—Deligne.

Theorem 2.4. (Decomposition Theorem (Theoréme 6.2.5 [BBD]))
Let m : M — S be a proper morphism and K* € Perv(Cyp) be a simple
object. Then

Rm,K* ~ (D" R*n. K*[k]. o (8)

k |

=

Theorem 2.5. (Relative hard Lefschetz theorem (Theoréme 6.2.10

[BBD]))
Let w be the first Chern class of the relative ample line bundle for the pro-
jective morphism w: M — S. Then for k > 0, we have

WA PRFr K® ~PRFr K°. (9)
A O

There is a spectral sequence

Ey* = H'(S,?R°mChy, x)) = TH™*(Ms(X),C), (10)
which degenerates at Ej-term because of the decomposition theorem. By
applying the relative hard Lefschetz theorem to projective morphisms 7 :
Mp(X) — Sp(X) and Sp(X) — SpecC, we have two sl; action

WiN: Ey7° ~ B
and :
WAt E37° ~ B}
which give the (sl3) X (sly)g-action on TH™**(Mp(X),C) = @, E;”.
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3 Evidences

In this section we shall give evidences for Conjecture 2.1. For details,
please see [HST1][HST2][Ta] for example.

3.1 Contractable smooth Plin X

Let us consider a smooth rational curve C € X with NC/X = Oc(—-1)®
Oc(—1). One can calculate the local contribution of Gromov-Witten invari-
ants which counts the number of maps whose images are C. The relevant
local Gromov-Witten invariants are given by

Ny(n-C):= /_ e ceop(R'mp*Neoyx), n >0,
[Mo.0 @2 m[P1))]

where : . L '
T Mg,l(]P’l,n[IP’l]) — Mg,o(IPl,n[]Pl])
1s a universal family,
g Mg (PLn[P)) =P, (f:3, 2> PLzeX,)m f(z) e P!

is an evaluation map.
Faber and Pandharipande proved the following theorem for the generating
function of local Gromov-Witten invariants N,(n - C):

Theorem 3.1. ([FP))

3 Ny(n-C)gmamt = Z}g (2 sm(ﬂ)) ¢.

1 g>0,n>1 k>1
J

* One can define the conjectural local BPS invariants ne™(d-C) € Q by
Gopakummar—Vafa formula (1)

EX O\ 2h-2
Z Ny(n - C’)q"/\29 —2 = Z c°"7 -C)=— (2,sin(7)) q".

'9>0,n>0 E>0,A>0,n>0
| (11)

;From this formula, the conjectural local BPS 1nvar1ants nc™(n - P') can be
given by

1 forh=0andn=1
0 otherwise.

P = { (12)

The generalization of Theorem 3.1 to a contractable smooth rational curve
C are given in [BKL]. First we recall the notion of Kollar’s length.
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Definition 3.1. (Kolldr’s length)

Let C be a smooth rational curve.in Calabi-Yau 3-fold X and suppose that
there exists a birational morphism f : X — Y with f(C)=p € Y. Kollar’s
length | is defined to be the length at the generic point of C of the sheaf
Ox/f~'my, where the my, is the maximal ideal sheaf of p€ Y.

It is known that p € Y is a compound DuVal singularity and N¢yx is
Oc(—l) b Oc(-—l), Oc @ Oc(—Q) or Oo(l) & Oc(—3)

Let Yp be a generic hyperplane'section and let X, be the proper transform
of Yy. By Reid’s result, the minimal resolution Zy of Y; factors through X,.
Hence the length [ can be computed by the length of Ox,/f™!|x,(my, )
and coincides with the multiplicity of C in the fundumental cycle of the
corresponding ADE singularity.

Let C,, C Xo be subschemes defined by the symbohc power Ié) of the
ideal I defining C C Xp, and let k, be the multiplicities of C, in Hilbert
scheme. The theorem by [BKL] gives the following conjectual local BPS

invariants.

Theorem 3.2. ([BKL}])

Let C s a contractable smooth rational curve in a Calabi-Yau 3-fold X. C,
deforms to k, super-rigid rational curves with homology class n[C] under a
generic deformation of X. Since Gromov-Witten invariants are deformation
invariants, conjectual local BPS invariants are given by

ki forh=0n=1,2,...,1
conj . _ 1 ’ 3 “y y
my o (n - C) = { 0 otherwise. - (13)

O

Let us calculate local BPS invariants nj(n-C') defined by (7) and compare
np(n-C) with nj” (n-C). In order to have the local BPS invariant n,(d-C),

let us consider the subset M,.c(X) (or more explicitly the subfunctor) of
M,,;c1(X) defined by

Moc(X) = {€ € Muey(X) | $(€) = n- C} C Muey(X).

Theorem 3.3. Let C C X be a contractable smooth rational curve on a
Calabi-Yau 3-fold X and let | be the Kollir’s length for C. Then M, ¢ is
isomorphic to the component of Hilb(X) containing n - C and our local BPS
invariants coincides with conjectual BPS invariants:

[k forh=0n=1,2,...,
nh(n-C')—{ 0 otherwise. (14)
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The proof of this theorem is given in [HST1] when N¢/x ~ Og(—1) &
O¢(—1) and in [Ta] for general cases. The key facts to prove this theorem are
‘that there exists a nontrivial homomorphism Ox — € for £ € M,,.c by the
condition x(£) =1, & ~ O, for all £ € M,,.¢c by stability condition and one
can prove that M, ¢ is isomorphic to the component of Hilb(X) containing
C, by the construction of Simpson’s moduli space.

3.2 Super-rigid elliptic curve in X

Let £ C X be asuper-rigid elliptic curve, i.e., a smooth elliptic curve £ € X
with the normal bundle N ~ L @ L~! where L is a non-torsion element of
the Picard group of E.

Pandharipande [P] showed the following:

Theorem 3.4. ([P])

ﬂﬁl =>.. 3 forg=1,n>1
. E = tln ¢ 9= 1
No(n - E) { 0 otherwise. (13)
Therefore |
| 1 forh=1,n2>1
con] y v
(n- B) = { 0 otherwise. (16)
O
M, g and local BPS invariants ny(n - E) are given as follows:
Theorem 3.5. ([HST2)])
Mn-E ~ F.
Thus we have
1 forh=1n2>1
na(n - E) = { 0 {)therwise. (17)
O

More precisely, we have proved that the moduli M, g of stable sheaf on
X with x = 1 and support E coincides with the moduli of stable sheaf on
E of rank d with x = 1. The latter moduli space is well-understood by the
work of Atiyah and elements are of the form W, ® L where L is a line bundle
of degree 0 and W, are stable bundles of degree 1 defined recurswely by the
unique nontrivial extension

00 =W, =W,y =0, W;:=0Og(po). (18)
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3.3 Rational elliptic surface in a Calabi—Yau 3-fold

Let 7 : S — P! be a rational elliptic surface, and let o and F' be a section
and fiber of p, respectively.

Theorem 3.6. ([HST1|[HST2])

2r—2
Z n.(o + gF) (2sin %) q

9>0,r>0
1. H . 1 (
(e=V=TM2 — ov=TN2)2 Ll (1 _ o—vmTagn)2(] — ev/=Trgn)2(1 — gn)8°

19)

n>1
g

Remark. Tt is important that our theorem also holds for other elliptic sur-
faces in a Calabi—Yau manifold. In particular, if we consider the case of K3
surface, we have the same results as that of Kawai—Yoshioka [KY], i.e., the
both generating functions of BPS states become x10,1(7, ). They considered
the Abel-Jacobi map and counted the number of BPS states from D0-D2
system. On the other hand, we use the relative Lefshetz action on the rela-
tive Jacobian and counted the spin contents of BPS states from M2 brane.
The coincidence of these results is very natural since the original physical
theory should be equivalent.

If we allow some physical arguments (holomorphic anomaly equation), we
have the nontrivial evidence for Gopakumar—Vafa conjecture. Let us write
the generating functions of Gromov—Witten invariants as

Zg;n(q) = Z N, ,d;nqd7 Ng,d;n = Z Ng(lB)v n Z 17 (20)
d (B,0)=d,(B,F)=n ‘

where N,(3) € Q are genus g Gromov-Witten invariants for 8 € Hy(S, Z)
defined by ’

N@ = [ wlBraNex). (@)
[Moo(5:8)]™

Especially, Zo.1(q) is given by

Zon(g) = Ea(9) [

k>1

1

=y 2

Proposition 3.7. (Holomorphic anomaly equation [HST1])
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(1) Zgn(q) has the following expression

P2g+6n——2(E2(Q)7 E4(Q)> E6(‘1))
HkZI(l — gF)in ’

where Ppgren—2(E2(q), E4(q), Fs(q)) is a homogeneous polynomial of
weight 2g + 6n — 2 and E,(q) are Eisenstein series of weight *.

Zyn(q) = (23)

(i) Pagren—2(FE2, Fa, Eg) satisfies the following equation:

0Py 6n-2

_gl+gll s=1

n(n+1
+ %Pﬂg—l)%ﬁn—% (24)

O

If n = 1, we can solve the holomorphic anomaly equation easily and the
generating function of Z,,;(q) is expressed as

3 Zua(a)¥ = Zoa(g)exp (224 Bu(a) () ) (29

g>0 k>1

By the famous Jacobi’s triple product formula, we have

2 exp (2 ; C(2F) (27)2'“)

_ 1 (1-g¢")*
- (e—\/——lA/2 — e\/:TA/2)2 ;!.1 (1 _ e\/—_lAqn)2(1 — e—\/:T/\qn)2. (26)

Multiplying Zo.1(q) both sides, we can easily verify the Gopakumar—Vafa
conjecture, which was given in [HST1] where nj(o + gF') are obtained with
some intuitions (of course we had no mathematlcal proof of (sly)r X (sl2)r
decomposition).
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