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DEFORMATION OF OKAMOTO—PAINLEVE PAIRS AND
PAINLEVE EQUATIONS

MASA-HIKO SAITO

0. ABSTRACT

In this note, we will explain how Painlevé equations can be understood
from algebro-geometric viewpoint of deformation of Okamoto—Painlevé
- pairs.

1. PAINLEVE EQUATIONS

In this section, we review briefly how the Painlevé equations are discovered and
why it is important. Main reference will be [3.1, Ch. 3, [IKSY]].

Let us consider the following algebraic ordinary equation

dz d’z d'z
F(taxa'gl‘{a'&?{a"'vg)=0 (1)
where
F(ta Loy L1y T2, " ’xn) € C(t)[zmxl’ o 7$n]
is a polynomial in x = (zo, 1,2, - ,Z,) With coefficients rational in ¢.

Take (to,c0) = (to,0,¢1,"+ ,¢n) € {(to,C0) € C**?|F(to,co,C1,¢2,* yCn) = 0}

and consider the Cauchy problem for (1) to find a solution z(¢) = ¢(t) such that
£i,t—"f(to) =¢, (1=0,...,n). _ (2)

The function obtained by an analytic continuation of the local solution = = ()
is also denoted by ¢(t).

If an ODE (1) is a linear ordinary differential equation, that is, if F'(¢, zg, 2, - ,2,)
is linear with respect to the variables z; ( ¢ = 0,--- ,n), then the sigularities of the
solution ¢(t) can be detected from the differential equation and do not depend on
the initial values (¢o,cp). These kinds of singularities of the solutions are called
non-movable singularities of the solutions of (1). On the other hand, the solutions
of non-linear algebraic ODE may have movable singulairities. For example, let us
consider the following famous ODE:

(z')’ = 42° — gz — g3, 92,95 € C, g} — 2793 #0. (3)

(Here we denote by ' the derivation with respect to t.)
Let 7 € H = {z € C|Imz > 0} be the normalized period of the elliptic curve
y% = 423 — g,z — g3 so that 1,7 is the fundamental periods of the elliptic curve and

let
p(2)=zl2+ > ( 1 1 )

(m,n)€Z%-(0,0) (z—m—n1)2 (m+n1)?
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be the Weierstrass p-function with the periods Z + Z.
If we consider the solution of (3) with the initial values (¢,z,2') = (0,a,b) € C®
such % = 4a® — g;a — g3, the solution can be written as

z=p(t+c)

with @ = p(c) and b = @'(c). It is well-known that p(t) has poles of order 2 at
t =0 mod Z+ Z7. Therefore the solution z(t) = p(t + ¢) has poles of order 2
at t = —¢ mod Z + Z7. The singularities of the solution z(¢) do depend on the
initial values and this is an example of movable singularities of a non-linear ODE.

There are many examples of non-linear algebraic ODE whose solutions have mov-
able essential singularities or movable branch points and one can easily realized that
it is rather rare that the movable singularities of ODE are only poles.

Definition 1.1. An algebraic ODE (1) has Painlevé property if the generic solution
of (1) has only poles as its movable singularities.

Theorem 1.1. (L. Fuchs, H. Poincaré). For n = 1, an algebraic ODE (1) has
Painlevé property if and only if (1) can be transformed, by a holomorphic change of
the variable t and by a linear fractinal change of the unknown = with coefficients in
holomorphic functions of t, into one of the following equations:

1. The equation of the Weierstrass p function .

(2')’ = 42® — g,z — g3 (4)
2. Riccati equation
' = a(t)z? +b(t)z + c(t). (5)
Remark 1.1. By the change of unknown
1 d 1
A | v
=—rma Y = e (6)

the Riccati equation (5) is transformed into the linear equation
0

a(t)

Hence the solutions u(t) of (7) has only nonmovable singularities and only movable

singularities of z(t) is the zero of u(t). Since the zero of u(t) has a finite order, then
the movable singularities z(t) are only poles.

+ b(t)]u' + a(t)c(t)u = 0. (7)

E. Picard took a pessimistic view of finding ODEs with with Painlevé property in
case of n > 2. However it is Paul Painlevé (1863-1933) who attacked te classification
problem for n = 2.

Definition 1.2. Painlevé equation is a second order algebraic ODE of fatz'onal type,
that is,

¢ = R(z,2',t), R(z,y,t)€ C(z,y,t) (8)

satisfying Painlevé property.
Painlevé and his student B.O. Gambier showed that Painlevé equation reduces,
by an approptiate transformation of the variables, to an equation which can be

integrated by quadrature, or to a linear equation, or to Py, J = I, 11, I11,1V,V,VI.
(See Table 1). Here a, 3,7 and ¢ are complex constants.
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d*z

P] : :it—2 = 6.’172 + t,
d2
Py d_t:: = 2:1:3+t:1:+a,

d’z 1 (dz\*> 1dz )
Pur: G = ;(z) B Gt R

2
Py : de = 51_(:1_:0) +§x3+4t:c2+2(t2—a)x+é,
T

dt? dt 2 T
d’z 1 1 de\® 1dz  (z—1) 8
Fri @ = (ﬂn_l)(;ﬁ) Tt e ("“;)
v~ +5—x(x_+11)

P.dzx_l(l+1+1>£1_:c_2(l+1+l)i:{c_
VI“ e T 2\z "z—-1 " z-t)\dt t—1 z—-t/\dt)’

P e et G- K5

TABLE 1

It is known that Painlevé equations appear in many fields of mathematics and
physics. For example, Painlevé equations can be derived from isomonodromic de-
formations of linear ordinary equations over P!. ([IKSY]). Besides the important
relation to correlation functions of Ising models, the later is deeply related to the
notion of Frobenius structure or Frobenius manifolds due to Dubrovin [Du]. Frobe-
nius structure is a kind of generalization of WDVV equations, which is equivalent
to the fact that related quantum cohomology rings are associative. (Note that the
Frobenius structure is essentially same as the flat structure, originally introduced
by Kyoji Saito in case of versal deformation of isolated singularities. )

2. OKAMOTO’S SPACES OF INITIAL CONDITIONS FOR PAINLEVE EQUATIONS

In this section, we recall a series of works of Okamoto which shows the importance
of study of the space of initial conditions of Painlevé equation. Later we will intro-
duce the notion of Okamoto-Painlevé pairs, which is a generalization of Okamoto’s
space of intial conditions.

First, let us recall that each P; is equivalent to a Hamiltonian system H; (cf.
[Mal], [O1], [IKSY], [MMT)):

dr _ 0H,;

dt Oy’
H;): Y 9
(H) dy OH; ®)

dt oz’
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where the Hamiltonians H; = H;(z,y,t) are given in TABLE 2.

1
H](l',y,t) = §y2'—2 S—txa
: 1 t 1
H[[(l',y,t) - §y2_ ($2+§)y— (a+—2') z,

1 .
HIII(mv y7t) = ; [2$2y2 - {2"loot:’72 + (2""0 + 1)‘7" - 2770t} Yy + Moo ("‘:0 + K'oo) tm])

Hiy(z,y,t) = 2zy* — {x2 + 2tz + 2&:0} Y + Koz,

Hy(z,y,t) = % [a:(a: —1)%y% - {no(w — 1)+ mz(z —1) — nta:} y+ k(z — 1)],
1 2 _ 2
(n =7 {(no + Ky)C — noo}),
Hy(z,y,t) = 1t 1_ 1) [m(x —1)(z — t)y* = {ro(z — 1)(z — 1)

+rr1z(z —t) + (ke — L)z(z — 1)}y + w(z — 1))

(li = i{(&o + K1+ K — 1)2 — rego})

‘TABLE 2

Let us consider the Hamiltonian system H; from now on. Let ¥; = {a;,... ,a;} C
C be the set of non-movable singularities for (H;) and set

BJ:C—EJ=SpecC[t,—1-,.. !

t— aq Vt—q

!

Note that the non-movable singularities can be easily detected from the differential
equation itself.

Consider the product space C?> x B; > (z,y,t) and the projection map = :
C? x By — Bj. On the product space C* x By > (z,y,t), we can consider
the Hamiltonaian system (Hj). Let us take a relative compactification of :

C?xB; — P!x By

L ! (10)
B = Bj

If (H;) satisfies Painlevé property, all movable singularities of the solutions of (Hj)
are just poles. The solution curve (z(t),y(t),t) of (H) starting from an initial vaule
(%0, Yo, o) € C? X By may have singularities at some point at t; € B; depending on
the initial vaule (z¢,yo,t0). However Painlevé property ensures that the solutions
z(t),y(t) have only poles as it singularities, hence they have limits in P? x Bj;
thanks to the properness of P2. Setting L = P?—C?, the solution curve (z(t), y(t),t)
starting from (o, yo, %) € C? x B; passes through a point at the boundary L x {t}.
Such a singulairity of solution curve is called an accesible singularity. For a classical
Painlevé equation Py, or equivalently Hamiltonian system ( Hj), for each fixed t = ¢,
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Case of Painlevé IV Py = Ej

FIGURE 1

there are only finitely many accesible singular points at the boundary L x t;. At
those points, infinitely many solution curves come together.

Okamoto analyses these kinds of singularities in details [O1]. He blowed up at
the accesible singular points including infinitely near points of boundaries, so that
all of solution curves of (Hy) can be separated (see FIGURE 1). More precisely, he
constructed a smooth morphism 7 : S — Bj by blowing up P2 x Bj.

l T (11)
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From the construction of Okamoto, one can obtain the following theorem (cf.

[O1], see also [Sakai], [STa], [STT)).

Proposition 2.1. For a general t € By, a fiber S = S; of # : § — Bj over
t is obtained by blowing ups of P? at 9 points of boundary L (including infinitely
near points). The anti-canonical divisor —Kg of S = S, is an effective divisor
Y = YI_,m;Y;. Moreover the configuration of an effective divisior Y is same as
in the list of Kodaira—Néron’s minimal model of singular elliptic curves of additive
types (Figure 2).

We remark that the cases D7, Ds did not appear in Okamoto’s paper [O1]. These
cases really appear when parameters in Painlevé III equations take special values.
Moreover we can show that for the case Ds the S — Y,.q4 does not contains C? but
S can be obtained by blowing up of P2.

Note that in Figure 2, the real line shows that a smooth rational curve C’ ~ P!
with C? = —2 and the number near the each rational curve denotes the multiplicity
inY = —Kg.

Let us set

—Ks=Y = Zr:miY}
=1

Under the assumption that S is a rational surface, one can show that Y has the
same configuration as Kodaira—Néron’s minimal model of singular elliptic curves if
and only if the following conditions are satisfied (cf. [Kod], [STa]).

deg—(Ks)y, = —Ks-Y; =Y -Y; =0 forallz, 1<7i<m| (12)

Here we should remark that rational surfaces S appeared above are not elliptic
surface. Actually, one can show that the dimension of the linear system |— Kg| = |Y|
is zero, while for an rational elliptic surface S’ one should have | — Kg/| = |Y| ~ P1.
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FIGURE 2
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3. OKAMOTO-PAINLEVE PAIRS

From the construction of Okamoto, one can understand that the following defini-
tion is natural.

Definition 3.1. Let (S,Y) be a pair of a complex projective surface S and an
anti-canonical divisor Y € | — Kg| of S. Let Y = Y i_; m;Y; be the irreducible
decomposition of Y. We call a pair (S,Y) a (generalized) Okamoto—Painlevé Pair
if forall 7,1 <1<,

Y -Y; = deg Yjy, = 0. (13)

An Okamoto-Painlevé pair (S,Y) is called rational, if S is a rational surface. We
will consider only rational Okamoto—Painlevé pairs from now on.
“The first assertion of the following propositon is proved in [Sakai] and the rest is
proved by Riemann—-Roch theorem and standard arguments.

Proposition 3.1. Let (S,Y) be a rational Okamoto—Painlevé pair. Then S can be
obtained by 9 points blowings-up of P2. Moreover
1. dim| —nKs|=dim|nY| <1 for alln > 1.
2. Ifdim|—nKs| = dim|nY| =1 for some n > 1, there exists an elliptic fibraiton
f:S — P! with f*(co) =nY.

Definition 3.2. A rational Okamoto—Painlevé pair (S,Y) is called of fibered—type
if there exists an elliptic fibration f : S — P! such that f*(c0) = nY for some
positive integer n > 1. If (S,Y) is not of fibered type, we call (S,Y) “of non-fibered
type 7.

Note that a rational Okamoto-Painlevé pair (S,Y) is of fibered-type if and only
if dim [nY| > 1 for some positive integer n > 1. Moreover, if (S5,Y") is of fibered type
and ¢ : S — P! is an elliptic fibration with ¢*(c0) = nY with n > 1, ¢*(00) is
called a multiple fiber. This happens only when Y is of elliptic type or multiplicative
type in the notation below.

Let Y = Y7_, m;Y; be the irreducible decomposition of Y. Denote by M(Y) the
sublattice of Pic(S) ~ H?*(S,Z) generated by the irreducible components {Y;}_;.
Here the bilinear form on Pic(S) is (—1) times the intersection form on Pic(S). Then
{Y;}:_, forms a root basis of M(Y) and we denote by R(Y') the type of the root
system. (The root system R(Y') is of affine type.)

According to the type of Y, R(Y) can be classified into three classes: elliptic
type when Y is a smooth elliptic curve, multiplicative type when Y is a cycle of
rational curves, additive type when the configuration of Y is tree. These types also
correspond to the types of generalized Jacobians Pic’(Y) of Y.

For the classification of ratinal Okaomoto—Painlevé pairs (.S, Y") with normal cross-
ing divisor Y;.q4, we can easily show the following theorem.

Proposition 3.2. Let (S,Y) be a rational Okamoto—Painlevé pair such that Y,..q is
a divisor with only normal crossings. Then the type of Y is same as one in the list

of Table 3.
The following proposition is technically important (cf. [STT]).

Proposition 3.3. Let (S,Y) be a rational Okamoto—Painlevé pair. The following
conditions are equivalent to each other.

1. (S,Y) is of non-fibered type.
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~ ~ ~ ~ ~ ~ ~ ~ ~ ~ %

Y or R(Y) Eg Dg E7 D7 De Ee D5 D4 Ar—l AO

Kodaira’s notation || II* | Iy |I1I1*| I3 | I} (IV*| I} | I3 I, Iy

Painlevé equation P[ PII;BI PII PII;} PI” P]V PV PVI none none

TABLE 3

2. H(S — Y,0%9) ~ C, that is, all regular algebraic functions of S — Y are
constant functions.

4. DEFORMATION OF RATIONAL OKAMOTO-PAINLEVE PAIRS

Let (S,Y) be a generalized rational Okamoto—Painlevé pair. Recall that ¥ =
=1 m;Y; is the anti-canonical divisor —Ks. Moreover we set D; = Y,.a = Y 1_, Y.
We will consider the deformation of smooth pairs (S, D) = (5, Yeq) [Kaw], [SSU]
and [STT)]. By a generalization of Kodaira-Spencer theory due to Kawamata [Kaw],
the set of infinitesimal deformations of (.S, D) is isomorphic to the cohomology group

H'(S,05(~1log D)) (14)
and the set of obstructions to lift the infinitesimal deformations to higher order ones
are contained in

H?*(S,05(—log D)). (15)

The following results are proved in [STT]. (See also [AL], [SU]).

Proposition 4.1. For a rational Okamoto—Painlevé pair (S,Y), we have the fol-
lowing.

1. HY(S - D,C) =0.

2. H°(S,0QL(log D)) = 0.

3. H*(S,05(—log D)) = 0.

4. H*(S,05) = 0.

5. If furthermore S is of non-fibered type, H°(S,0s(—1log D)(H)) = 0 for any

effective divisor H supported on D.

From the above results, one can obtain the following proposition [STT].

Proposition 4.2. Let (S,Y) be a generalized rational Okamoto—Painlevé pair such
that D = Y,.q is a simple normal crossing divisor and Y # Ao-type. Then we have

c2(S) = topological Euler characteristic = 12, (16)
b2(S) = rank H*(S,Z) = 10, (17)
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dim H'(S,0s) = 10, (18)
and
dim H'(S,05(—log D)) =10~=r - (19)

where T is the number of irreducible components of Y. Moreover, the Kuranishi
space of the local deformation of the pair (S, D) is smooth and of dimension 10 —r.

5. LOCAL COHOMOLOGY SEQUENCES AND TIME VARIABLES
Let (S,Y) be a generalized rational Okamoto-Painlevé pair and set D = Y,q.

Moreover, in this section, we assume that

1. (S,Y) is of non-fibered type and
2. Y,.4 is a normal crossing divisor with at least two irreducible components, i.e.
(r > 2) so that all irreducible components of Y,.q are smooth rational curves.

In what follows, Qs and Os_p denote the sheaves of germs of algebraic regular
functions on S and S — D respectively. Moreover all sheaves of Os-modules are con-
sidered in algebraic category unless otherwise stated. Let us consider the following
exact sequence of local cohomology groups ([Corollary 1.9, [Gr]])

H°(S,05(—log D)) — H°(S — D,0s(—log D)) — Hp(Os(—log D)) — (20)
HY(S,05(—log D)) =3 HY(S — D,05(—log D)) . (21)
Since (5,Y) is of non-fibered type, from (2), Proposition 4.1, we see that
H°(S — D,05(—1log D)) = H°(S — D,0s) = {0}.
Hence, we have the following

Proposition 5.1. For a generalized rational Okamoto—Painlevé pair of non-fibered
type, we have the following exact sequence:

0 — HL(0s(—logD)) — H'(S,0s(—1logD)) = HY(S - D,05(—log D))

(22)

The following theorem is proved in [T].

Theorem 5.1. Let (S,Y) be a generalized rational Okamoto-Painlevé pair (S,Y)
with the condition above. Moreover D =Y, .4 is of additive type. Then we have

dimHO(D,es(— log D)@ND) =1. (23)
Here we put Np = Og(D)/Os.

Since we have a natural inclusion

H®(D,®s(~log D) ® Np) — Hp(Os(~log D)),

we obtain .
dim H},(0s(—log D)) > 1. (24)

This theorem plays an important role to understand the Painlevé eqﬁation related
to (S,Y). Note that for a generic rational Okamoto-Painlevé pair (S,Y’) in Theorem
5.1, one can show that

HY(©s(—log D)) ~ H°(D,B0s(—log D) ® Np) ~ C. (25)
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From the exact sequence (22), we see that the subspace H}(S,0s(—logY)) of
H'(S,05(—logY)) coincides with the kernel of x. This implies that:

Hp(S,0s(—log D)) =~ {

Infinitesimal deformations of (S, D) whose restriction
to S — D induces the trivial deformation '

We can construct semi-universal families of Okamoto—Painlevé pairs with nice

coordinate systems ([Sakai], [STT], [ShT]).

Proposition 5.2. Let R = R(Y) be one of types of the root systems appeared in
Proposition 3.2 which is additive type, so that

dim H°(D,©s(—log D) ® Np) =1

for corresponding generalized rational Okamoto—Painlevé pair (S,Y) (cf. Theorem
5.1). Moreover denote by r the number of irreducible components of D = Y,q.

Let Mg be an affine open subscheme in C* = SpecClay,--- ,a,] of dimension
s =s(R) = 9—r and Bg be an affine open subscheme of C = Spec C[t]. Then there
exists the following commutative diagram satisfying the conditions below.

S <~ D
ml P (26)
MRXBR .

1. The above diagram is a deformation of non-singular pair of projective surfaces
and normal crossing divisors.
2. There exists a rational relative 2-form

ws € T(8, 2% mpx8 (D))

whose pole divisor is Y with V,.q = D.

3. If we denote by Y the pole divisor of ws, then for each point (a,t) € Mg x Bp,
(Sats Va,t) is a generalized Okamoto-Painlevé pair of non fibered type with type
R = R(Y). Moreover Y,.q = D.

4. The family is semiuniversal at a general point (a,t) € Mg x Bg, that is, the
Kodaira-Spencer map

p: Ta,t(MR'X BR) — H! (Sa,t, esa,,(—'log Da,t)) (27)

is an isomorphism for a general point (v, t).
The Kodaira-Spencer class p(gt-) of t-direction (= Bg) lies in the image of
the natural map :

6:C = HDay,0s,,(—10g Day) ® Np,,) = H(Say,Os,. ,(—log Da)).
(28)

5. Let Mg and Bg denote the affine coordinate rings of Mg and Br respectively
50 that Mg = Spec Mp and Br = Spec Bg. (Note that Mp and Bpg is obtained
by some localization’s of Cleu,- - ,a,) and C[t] respectively. ) There exists a
finite affine covering {U;}'t¥ of S relative to Mg x By such that there exists
an isomorphism for each i

~

Ui ~ Spec(Mg ® Br)[z:,yi;, =] C Spec Cla, t, z;, 3] ~ C*+3 ~ C127
filzi,yi, a,t) (29)
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Here fi(zi,yi,a,t) is a polynomial in (Mg ® Bg)[zi,y:]. Moreover we may
assume that S—D can be covered by {U;}._,. Moreover for each i the restriction
of the rational two form ws can be written as
dz; A dy;
we1g. =
Sio: ff(xiv Y, o, t)mi

(30)

6. For each pair1,j such that U,-ﬂf]j # 0, the coordinate transformation functions

T = fij(xjayjaaat)a Y = gij(wb y.;va7t) (31)

are rational functions in variables z;,y;, a,t.

6. FROM GLOBAL DEFORMATIONS TO HAMILTONIAN SYSTEMS

In this section, we will explain how one can derive differential equations from the
one dimensional global deformation of rational Okamoto-Painlevé pairs of additive
type which arises from the image of linear map

§:C =~ H°(D,04(—log D) ® Np) — H'(S,04(—log D)).

We will be able to obtain a global rational vector field ¥ on S —s Mg x Br whose
poles are only supported on D, which is a lift of %. Hence the restriction of ¢ to
S — D gives a global regular algebraic vector field.

Moreover we will show that such a lift ¢ of % is unique. The restriction of © to

the open affine subset U; of S — D gives an explicit system of algebraic ODEs of 1st
order, which is equivalent to Painlevé equation.

Let R = R(Y') be one of types of additive affine root systems appeared in Propo-
sition 3.2 and let

S « D
™| v p (32)
MRXBR

be a global deformation of generalized Okamoto—Painlevé pairs of type R as in
Proposition 5.2. The total space S has a finite affine covering {U;}}£¥ such that

. 1
Uigs M B I T N C )t, 1 S
pec(Mg ® Bg)[z;,y Fow a,t)] C Spec Cla, t, z;, yi] (33)
as in (29). Moreover, we may assume that S — D can be covered by {U;}!_,, that is,

Let us recall that the coordinate transformations in (31) for U; N U; # 0 are given
by the rational functions

zi = fij(z,yi,00t), v = gii (@5, 95, 0, t) (34)
The Kodaira—Spencer class p(%) can be represented by the Cech 1-cocycles
9 _0fi; 0  9gi; 0

) =105 =7 9z; | Ot Oy;

€ F(Uz N U], (-)S/MRXBR(—IOgD)) }
(35)

Recall that (cf. Proposition 5.2, 3) on Mg x Bg the corresponding Okamoto—
Painlevé pairs (Sqat, Va,t) are of non-fibered type.
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From (28) of Proposition 5.2, we may assume that p(2) is non-zero element of
the image of ¢:

C~ HO(D,Gsayt(—logDa,t) ® ND) C H%)u,t(Sa,t,@sav,(—log Da,t))-
o\ i
H'(Sayt, Os,,(—log Day))  (36)
Since the local cohomology group is the kernel of the natural restriction map (cf.
Proposition 5.1)

res : H' (Sa,t, eSa,,(_ log Da,t)) — Hl(Sa,t - Da,ta esa,t(— log Da,t))7
(37)

46

the Kodaira-Spencer class p(2) is cohomologus to zero in H!(Sa,t—Dat, Os, . (—10g Da ).

More precisely, we see that the 1-cocycle p(%) is cohomologus to zero in
Hl(Sa,t, @5‘:.‘(— lOg Da,t) ® OS(Da,t))- (38)

Since dimensions of these cohomology groups are constant as functions of (a,t),
by an argument using the base change theorem, we can see that for 1 <: <[+ k
there exist rational vector fields

0 o .
0i(zi,yi, a, t) = ni(ziayiaa,t)a_xf + Ci(xivyi’a7t)a_y—_ € ['(U;,0p,(-1logD) ® O((D)g
1 : 1 39

such that
oij(wi’ Yi, t) = aj(xja Y, «, t) - 05(1:{7 Y, o, t)- (40)

Note that for 1 < i < [l one has U; N D = 0. Hence for 1 < i < l, 0i(zi,yi,x, ) is
a regular algebraic vector field, that is, n;(z;, yi, o, t) and ((z;,y;, a,t) are regular
algebraic functions on U;.

For any pair ¢, 7 such that U; N Uj # 0, we can obtain the identity on U; N U;

0 0
(&)J = (E)' + 0;j(a, t), (41)
and hence we have

(%)] B (gt—), + (0j($j’yj’avt) —0i(zi, yi, . 1)), (42)

or

0 0
(a):’ - 0j(zj,yj,a,t) = (a)l — 0,-(:0,~,y,-,a,t). (43)

This means that the vector fields
0
{(E) —0i(zi, yi, o, t) hici<iak (44)
can be patched together and define a global rational vector field

% € I'(S,0s(— log D) ® O(D)).

Note that this global rational vector field v is a lift of % viam: S — Mpg X Bg
and

B|s-p (45)

is a regular algebraic vector field. Now we obtain the following
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Theorem 6.1. Let R = R(Y), §,D, Mg x Br be as above. Then there exists a
unique global rational vector field '

% € I(S,0(~ log D) ® Os(D))

on S which is a lift of %. The restriction os_p to S — D is a regular algebraic

vector field. Moreover the restriction © to each open covering Ui for1 < i <1
(corresponding to the open coverings of S — D) can be written as

9 9 a .9

b, = 5 — 0= 57 — g —G 46
T B o "o Yoy (46)
and defines a system of differential equations :

d:L','

= _771'(5% Yi, &, t)
dt (47)

Cgf - —Gi(zs, yi-a, t)

Here the functions n;, (; are regqular algebraic functions on U;.

Moreover we will be able to explain the reason why the systems obtained as above
are Hamiltonian systems as in (9). Our proof is geometrically clear. In fact we will
be able to show that global vector field ¢ preserves the relative 2 forms ws in (30) .
This fact can be expressed as (cf. [STT])

where ds/a is the relative differential with respect to the morphism § — M
and © - (ws A dt) denotes the contraction of vector fields and 3-forms.

On an affine open subset U x Mg x Br with U ~ C? and coordinate systems (z,y)
such that wsicz = dz A dy, the equation (48) implies that the differential equation
obtained as above becomes a Hamiltonian system with a polynomial Hamiltonian.

We note that in the case of R = D, Dg, E7 S— D can not be covered by affine open
sets all of which are isomorphic to C2?. On such affine open subsets, the differential
equation (47) can not be written in Hamiltonian systems globaly.

Furthermore, one can obtain explicit description of differential equations 47 by
using the explicit affine coordinates (cf. [STT], [STe]).
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