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This is a short survey about obstruction theory to and deformation theory of La-
grangian intersection Floer cohomology, developed in our joint paper [FOOO]. The
obstruction to define Lagrangian intersection Floer cohomology is systematically
investigated and a system of the obstriiction classes are constructed. Also, a filtered
A algebra associated to Lagrangian submanifold is constructed and by using it,
deformation of the Lagrangian submanifold and Floer cohomology is described in
terms of the notion of filtered Ao algebra. Moreover, some applications of our
theory to concrete problems in symplectic geometry are discussed.
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§0. Introduction

In symplectic geometry, there are two kinds of Floer cohomologies. One is
the absolute version and the other is the relative version. The absolute version
is related to the periodic Hamiltonian systems and the Arnold conjecture for
the fixed point sets of the Hamiltonian diffeomorphisms of symplectic mani-
fold. The relative version is related to Lagrangian intersection theory. Our
Floer cohomology we will discuss here is the relative one. Roughly speaking,
from the point of view of Morse theory, the generators of the Morse cochain
complex in the absolute case are the set of fixed points of a Hamiltonian dif-
feomorphism. The spaces of the gradient trajectories, which are needed to
define the coboundary operators, are moduli spaces of J-holomorphic maps
from infinite cylinder such that two end points converge to corresponding two
fixed points. By the removable singularity theorem for J-holomorphic maps,
the space can be regarded as moduli space of J-holomorphic 2-spheres. The
fundamental theory of moduli space of J-holomorphic curves without boundary
is now established and we can define the Floer cohomology in absolute case for
general symplectic manifolds. See [FO], [LT], [B] etc. However, in the relative
case, we have new problems and difficulties which do not appear in the abso-
lute case. The generators of the cochain complex correspond to intersection
points of two Lagrangian submanifolds. To define coboundary operators, we
have to study moduli spaces of J-holomorphic maps from infinite strip or disc
with Lagrangian boundary condition. In particular, we have to study mod-
uli space of J-holomorphic curves with boundary. If we define, as in a usual
way, the “coboundary operator” ¢ in Lagrangian intersection Floer theory by
counting the number of certain components of moduli spaces of J-holomorphic
discs, § does not satisfy § o § = 0 in general. This is essentially because the
phenomena that holomorphic disc bubbles off at a point of the boundary of
holomorphic disc happens. This is real codimension one phenomena. (See
§1). This is the main trouble to overcome. We will study the obstruction to
d o § = 0 systematically. Moreover, in the case of our obstructions vanish, we
will develop a deformation theory of Lagrangian intersection Floer cohomolo-
gies. The obstruction and the deformation are described in terms of certain
homological algebra, so called Ay -algebra. Strictly speaking, we introduce
and use a notion of filtered A,,-algebra.

§1. Preliminaries and problems to overcome.

Let (M,w) be a smooth symplectic manifold with real dimension 2n and
Lo, L, closed Lagrangian submanifolds of M. We assume that our Lagrangian
submanifold is always orientable. Although it is enough that we assume that
Lo and L; intersect cleanly in Bott’s sense, we assume here that Ly and L,
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intersect transversally for simplicity.
First of all, we briefly explain our setting. Consider the path space

Q(LQ,LI) = {é : [0, 1] - M I 2(0) (S Lo,e(l) € Ll}

We choose and fix a base point ¢y € §2(Lg,L;) on each connected component

of (Lo, L1). We now describe a covering space of the component (Lo, L;)
of Q(Lg,L;) that contains £,. Consider the set of all pairs (¢, w) satisfying:

(1.1.1)  w(0,-) = &y,
(1.1.2)  w(r,0) € Ly, w(r,1) € Ly forall 0 < 7 < 1,
(1.1.3)  w(l,)=¢,

where w : [0,1] x [0,1] — M. We define an equivalence relation on this set as
follows: First, we consider any closed loop

C: Sl g Qg(,(Lo,Ll)

which will also define a pair of closed loops in Ly and L; for ¢t = 0, 1 respec-
tively. Noting that every symplectic vector bundle over S! is trivial, the bundle
c*T M over S! x [0, 1] is symplectically trivial. Therefore any such trivialization
defines two closed loops of Lagrangian subspaces

o,y . Sl — A(Cn)

by
0!0(7') = Tc(‘r,O)LO, al(T) = Tc(T,l)L1,~

in the trivialization. Here A(C™) denotes the space of all Lagrangian subspaces
in C™. We fix any such trivialization

¥:c*TM — S' x [0,1] x C™

and denote by pyg(a;) the Maslov index of the loop «; in the trivialization ¥.
One can find that the difference

pw(a1) — py(ao)

is independent of the choice of trivialization ¥ but depends only on the loop
c. We denote this common number by u(c) and call it the Maslov index of the
loop ¢ in (Lo, L1). It defines an integer valued homomorphism

(1.2) M ﬂl(Qe(,(Lo,Ll),eo) — Z.
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Using (1.2) and the symplectic form w, we define an equivalence relation ~ on
the set of all pairs (¢, w) satisfying (1.1). We denote by w#w’ the concatenation
of w and w’ along ¢, which will define a loop in €,(Lo, L1) based at 4.

Definition 1.3. We say that (¢, w) is equivalent to (¢,w’) and write (£, w) ~
(¢,w") if the following conditions are satisfied

(1.3.1) /w =/ w i.e. / w=0
w w’ wHw’

(1.3.2) p@#Hw') =0

where W is the disc w with the opposite orientation.

We define a covering space of €,(Lg,L;) by

Qe,(Lo, L) = {(£,w) | satisfying (1.1)}/ ~ .

We denote by [¢, w] the equivalence class of (¢, w). Now we define a functional
A: Qg”(Lo,Ll) - R by

(1.4) A([¢,w]) = /w*w.

A simple standard calculation shows that the set of critical points of A on
Q¢, (Lo, L1) are those [£,, w] where £, : [0,1] — M is the constant path corre-
sponding to an intersection point p € Lo N L;. We denote by Cre, (Lo, L1) the
set of all critical points of

A: Q4 (Lo, L1) — R,

and put Cr(Lo, L) = Ug,Cre, (Lo, L1). We next study the gradient lines of A.
As usual, we fix a compatible almost complex structure J on M and consider
the induced Riemannian metric gy := w(:,J-). This will in turn induce an L?-

metric on g, (Lo, L1). We now define the moduli space MVJ([ep, w), [€g, w']) as
follows: M j([£p, w), [€4,w']) is the set of maps

u:Rx[0,1] - M

with
(1.5.1) u(R x {0}) C Ly, u(R x {1}) C L,

52



(1.5.2) u satisfies -

or "o =0
lim u(r,t)=p, lim u(r,t)=g¢q
T——00 T—+00
(1.5.3) wHu ~ w'.

Here w#tu is the obvious concatenation of w and u along the constant path
Lp.

From now on, we will suppress J from various notations whenever possible.
Then we have the following:

Proposition 1.6. There exists a map u : Cr(Lo,L1) — Z such that the
space ./(/(V([Zp,w], [¢q,w’']) has a Kuranish structure of dimension p([€q,w']) —
p([€p, w]). We also assume that the pair (Lo, L1) is relatively spin. Then the
space will carry an orientation in the sense of Kuranish structure.

Remark 1.7. (1) The space Mv([ép,w], [€4,w']) is not a smooth manifold,
in general. This trouble comes from the transversality problem. In order to
overcome this problem, we have now an established machinery, so called Ku-
ranish structure introduced in [FO]. We do not explain the notion of Kuranishi
structure here. See [FO] and [FOOO]. When we use Kuranishi structure, the
“(virtual) fundamental class” is defined only over Q, not Z. So we can not
work over Z/2Z coefficient in general. In this sense, we can not avoid the
orientation problem. In this note, we do not mention about the transversality
problem no more.

(2) The definition of relatively spin will be given in §2. We should note
that this space is not always orientable, in general. In the absolute version of
Floer cohomology for Hamiltonian diffeomorphism, the corresponding spaces
of gradient trajectories (or connecting orbits) which are used to define the
coboundary operator are always orientable and have a canonical orientation
induced by an almost complex structure. The reason why we can not expect the
space of connecting orbits for the Lagrangian intersection Floer cohomology is
basically that the almost complex structure does not preserve the Lagrangian
boundary condition.

We have an R-action on M ([€p, w], [€4,w']) defined by the translation along
the 7-direction, and put

M([epv w]’ [eq’ wI]) = M([em wI]v [EP? w])/R

The standard Floer’s cochain “complex” (CF(Lg, L1),d0) (actually this is not
a complex, in general) is defined as
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Definition 1.8. We assume that the pair (Lo, L;) is relatively spin.

—

(18.1) CF*Lo, L= @D  Qlyu
e
(1.8.2) Soltpwl = 3, M, ], (b, w])[Eg, ).

wllg, wl=plty w]+1

Here & means an appropriate completion. Since we use the Kuranishi structure
of M([£p, w), [£q,w']), the number in the right hand side of (1.8.2) is a rational
number.

For the absolute case of Floer cohomology, similar constructions have been
used. However, there is a crucial difference for the case of Lagrangian inter-
sections from the absolute case: The boundary dM([£p, w], [£q,w’])) consists
of more than

U M([lp, w], [r,w"]) x M([£r,w"], [€q, w")).
(e, D =p([lp,w]))+1

More precisely, the compactification of M([¢,,w], [{4,w’]) has extra codimen-
sion one components other than those of “split connecting orbits”. The extra
components come from bubbling-off discs. From the index formula, we know
that bubbling-off spheres are phenomena of real codimension at least two (com-
plex codimension at least one), while bubbling-off discs is of real codimension
one in general. Therefore §g 0 §g # 0, in general. Thus we have an obstruction
to define Floer cohomology in the relative case.

Thus we can summarize our problems (modulo transversality problems)
to overcome as follows.

¢ Obstruction problem: We have to study the obstruction to dg o dg = 0
systematically.

¢ Orientation problem: Find a condition for the moduli space of J holo-
morphic curves with boundary (Lagrangian boundary condition) to be ori-
entable. Moreover we have to discuss the problems about the orientations on
various moduli spaces carefully.

§2. Orientation and obstruction classes.

To state our results, let us introduce some notations. We have two impor-
tant group homomorphisms from m2(M, L):

(2.0) A:m(M,L) - R, and pr:m(M,L)— Z.



Here A is defined by A(B) = w(f) for 8 € m3(M, L), which is called symplectic
area (or energy) and uy, is called the Maslov index. We can define py, in a way
similar to u in §1. We omit the precise definition of 1. See [Oh], for example.
We note that up, is always even when L is orientable.

Definition 2.1. For # € m(M, L), we denote by My 1(L, ) the set of all
isomorphism classes of genus zero stable J holomorphic .maps w : D2 — M
with k + 1 marked points on the boundary 8D? such that w(6D?) C L and
[w] = B. We denote by M‘,fcnf{n(L, B3) the component which corresponds to that
the ordering of the marked points are cyclic. We call it a main component.

Remark 2.2. As usual, the stability means that the automorphism group
of ((D;zp,...,2k+1),w) is finite. Here the automorphism ¢ : D — D is the
biholomorphic map such that wo ¢ = w and ¢(z;) = z;. Strictly speaking,
we need impose extra interior marked points, (for example to handle sphere
bubbles), but we omit these points here.

Then we have

Proposition 2.3. My 1(L,8) has a Kuranishi structure of real dimension
n+upurL(8) —3+k+1. Here n = dimL and 3 is dimension of Aut(D?) =
PSLy(R).

As for the orientability of this space, we have to introduce a notion of
relative spin Lagrangian submanifold.

Definition 2.4. (1) An orientable Lagrangian submanifold L in (M,w) is
called relative spin if there exists a class st € H?(M;Z/2Z) such that wo(TL) =
st|r, in H3(L;Z/2Z). In particular, when L is spin, it is relative spin.

(2) A pair of Lagrangian submanifolds (Lo, L;) is relative spin if there exits
a class st € H2(M;Z/2Z) such that wy(TLo) = st|r, and wy(TLy) = st|g,
simultaneously.

Now let us state our results. Firstly, we have the following theorem about
the orientation problem.

Theorem 2.5. We denote by M the space of all J holomorphic maps w :
D? — M with w(dD) C L. Assume that L is relative spin. Then M is
orientable. The orientation is given by the choice of an orientation of L,
st € H*(M;Z/2Z) and a spin structure on TL ® V|, 2), where V is the vector
bundle on 3-skeleton of M determined by st and L(® stands for 2-skeleton of
L. Moreover, if a pair of Lagrangian submanifold (Lo, L,) is relative spin,
then //\/iv([ép,w] [€q,w']) is orientable. The orientation is given by the choice of
orientations of Ly and Ly, st € H2(M;Z/2Z) and spin structures on T Lo ®
VlL(z) and TL, & V|L(2)
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This theorem can be proved by some gluing argument on the indices of
families of linearized Dolbeault operators and an elementary topological argu-
ment.

As for the obstruction problem, we can show the following theorem.

Theorem 2.6. Let L be an oriented Lagrangian submanifold of (M,w). As-
sume that L is relative spin. Then we have the series of homology classes
{ok(L)}k=1,2,... of L which satisfy the following significances:

(1) ox(L) € Hyy ) (5)—2(L; Q). More precisely, ox(L) is in

Ker (Hn+ut,(ﬁk)—2(L; Q) — Hn+u1,(ﬁk)—2(M; Q)).

(2) ok(L) is defined if 0;(L) = 0 in H,(L; Q) for every j < k.

(3) If all or(L) vanish, then we can define the Floer cohomology HF (L, L)
by deforming the coboundary operators.

(4) Assume that a pair of Lagrangian submanifolds (Lo, L;) is relative
spin. (Then we can define the series {ox(Lo)} and {ox(L1)}.) If all ox(Lo)
and ox(Ly) vanish, then we can define the Floer cohomology HF (Lo, L) by
deforming coboundary operators.

We call o, (L) an obstruction class.

Remark 2.7. (1) Let us explain what the (i’s are. These are elements of
w2 (M, L) such that Sy is represented by a J-holomorphic disc. Then Gromov’s
compactness theorem implies that for each C > 0 the number of the set

{B € m2(M, L) | B is represented by a J holomorphic disc and A(8) < C}

is finite. Therefore we have a partial order on the set of all 8 € m2(M, L) which
are represented by J holomorphic discs by the energy .A. Namely, we have

0=A(Bo) < A(B1) S A(B2) < -+ < A(Br-1) S A(Bx) < ---.

Here By = 0 corresponds to constant maps.

(2) Taking (1) in Theorem 2.6 into account, we find that if uuz,(8x) > 3 for
all k, then the obstruction classes automatically vanish. This condition was
essentially used in the earlier work by Y-G Oh [Oh]. Here he defined Floer
cohomology over Z /2Z under some additional assumption which guarantees the
trouble about the transversality problem does not happen, so the Kuranishi
structure is not necessary into account in his case.

(3) We do not specify the coefficient ring of Floer cohomology here. See

§4.

§3. Construction of the obstruction classes.
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3.A) On orientations.

Before we explain the idea of construction of the obstruction classes, we
like to mention a little bit about the orientations on various moduli spaces
which will be used. From now on, we always assume that L is relative spin.
We have an evaluation map at the marked point z;

evj : Mgy (L, B) — L

for each j = 0,1,...,k, defined by ev;((w; 2, ..., 2x)) = w(2;). Let P; be an
oriented chain in L. We put deg P; = n — dim P;. We take a fibre product (in
the sense of Kuranishi structure)

Mk-’rl(LMB)(evl,...,evk) X (Pl XX Pk)

Then, by using the orientations on My 1(L, 3) (defined by Theorem 2.5), P;’s
and L, we can define the fibre product orientation on it. But we use a different
orientation from the fibre product orientation.

Definition 3.1. We put

Myi(B; P, ..., Pi) = (1) Miq1(L, B) (evr,...,ev0) X (Pr X -++ X P)

Here € is given by

k-1 j
e=(n+ 1)ZZdegPi.

j=1 i=1

If we take the fibre product iteratively, we can rewrite the right hand side as

-1 <k
Mi(B; Py, Pr) = (—1)2mim1 2uima e s

("'((MH—I( ﬂ )ev1 X f1 Pl)evg X £, P2) X "')evg X fy Py.

The “feeling” of the sign is an effect from the marked points. Roughly
speaking, there might be two conventions when we consider the effect of the
marked points. One is that we put all the parameters which describe the
marked points on a “one side” in the fibre product. But we use another conven-
tion. We put the one dimensional parameters which describe the each marked
point “one by one” in the fibre product. We call our convention BARAMAKI
way. (We call the first one HAKIYOSE way.) If we change the ordering of
the marked points, then we have another connected component (which are
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homeomorphic to each other). But the orientation might be changed. Under
our orientation in Definition 3.1, we can find that the change is given by the
following.

Proposition 3.2. Let o be the transposition element (i,i + 1) in the k-th
symmetric group Sg. (i=1,...,k—1). Then the action of o on

Ml(ﬂ;Plv'-wPi,PH-l,---,Pk)
by changing the order of marked points is described by following.

U(Ml(ﬂ;Plv--'vPia-Pi+la'--7Pk))
= (_1)(degP.-+l)(deg Pi+l+1)Ml(:6; P11 ) ’Pi+l)Pia ey Pk)

Now we explain the idea of the construction of our obstruction classes. We
construct ox(L) inductively.

3.B) The first obstruction class.
We consider the space M;(3;) with the evaluation map evy,

evy : M1(81) — L.

Note that A((3;) is the minimal (non zero) area. Hence for an element in
M;(B1), the bubbling off phenomena does not happen. Therefore OM;(8:1) =
@. Thus evg(M1(B1)) is a cycle in L, so defines a homology class. We define
the first obstruction class 0;(L) by the homology class:

01(L) = [evo(M1(B1)))]-

The degree is given by n + pr(81) — 2 because of Proposition 2.3.

3.C) The higher obstruction classes.

We suppose that 0;(L) =0 for all 1 < j < k — 1. Under this situation, we
are going to construct the k-th obstruction class ox(L). By the assumption we
have bounding chains B; = B;(L) C L such that

8B;(L) = (-1)"*1o;(L).

Here the orientation on o;(L) is given by the orientation on M, (B,; B, ..., By)
defined in Definition 3.1 and the orientation on B;(L) is given by changing the
boundary orientation by (—1)"*!. This sign plays an important role in the
later argument. We put

Ml(ﬁk;B'ilv" -aBim)

= (1) Mm41(L; Bk — Biy — -+ = Bi)(eviyromrevin) X (H B;,)
=1
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for 41,...,%m < k. Here €; is given by the rule in Definition 3.1, that is
| m(m — 1)
2 ’ ,
because degB;, = pr(Bi,) +1 =1 (mod 2). (Note that since L is orientable,
pr, is always even.) It is easy to see that the dimension of M, (8; B;,,...;B;,.)

is given by n + pr(Bk) — 2. (Recall uy, is a group homomorphism.) Then we
define

Definition 3.3.

€= (n+1)

1
ox(L) = Z W(CUO(Ml(ﬂk; Bi,,- .. ’Bim))’
m=0,1,2,... )
100 erim <k

ﬂk—z;":l Bi, €C4L(1)
where G4 (L) stands for the subset of m2(M, L) whose elements are represented
by J holomorphic discs. Note that the right hand side is a finite sum.

Then we have a chain in L defined by ox(L). What we have to show is
that ox(L) defines a cycle . We can show the following.

Proposition 3.4. dor(L) = 0.

If we ignore the sign problems, the proof is, in a sense, easy. That is, we
have two kinds of boundaries of M;(fk;B;,,.-.,B;,,) like as

aMl(ﬁk;Bilv .- 7Bim)

m

= (_1)61 (aMm-Q-l(L;ﬁk - ﬂil -t /Bim)(ev,:l,...,ev,:m) X (H Bie)
=1
H H(_l)n+m+anm+l(L; ,Hk - /81'1 -t ﬂim)(evil,...,emm) X
=1

(Bz x---xaB,-ex-uxB,-m)).

The first type boundaries correspond to the bubbling off J holomorphic dics
OMpi1(L; B — Biy — -+ — Bi,,) and the second type boundaries correspond
to the case when the bounding chain B;, goes to 9B;, = (—1)"*'0;,(L). We
take the summation in Definition 3.3 over all “lower” strata of moduli spaces.
Therefore these two kinds of boundaries cancel each other. The non trivial
issue is that they cancel each other with sign. That is, we have to show that
the orientations on these two kinds of boundaries are opposite. But in this
note, we omit the proof. '
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Now let (Lo, L1) be a pair of relative spin Lagrangian submanifolds. If all
obstructions ox(Lg) and ox(L;) vanish, then, as we state in Theorem 2.6.(4),
we can define Floer cohomology HF(Lg,L;) by deforming the coboundary
operators as follows. By assumption, we have bounding chains By . = B.(Lo) C
Lo and B, . = B.(L;) C L;. By imposing marked points on the boundaries of
the strip [0,1] x R in (1.5) (¢ marked points on {0} x R and m marked points
on {1} x R), we can define the fibre product like as

M([ep’w]y [eq» wl]v BO,‘ila s 1BO,iz;Bl,j1, R 1Bl.jm)

£ m‘
= (—1)€2Ml,m([€mw]’ [eq’wI])(ev‘l’,...,ev;’,ev},...,ev,ln) X (H BO,ik X H Bl,jk)v
k=1 k=1

where ¢, is given by

)= D+ m = 1)(E+m)

1
2

1

€1 = (n+1)( Z

k=1 j

+m—1 k

which is consistent with the rule in Definition 3.1. Now we define an operator
6ﬂ(),i1.---,ﬁu,i,:ﬂl,jl,---,ﬁx.j,,. by

(530,i, yeoslB0,ig 381,51 50181, imm [ep’ w]’ [eq, w,])
= #M([Z,,, 'LU], [Zq,w’]; BO,i1 goooy Bo’,'l; Bl,ju ey Bl,jm)-

Then we can show

Proposition 3.5. We define our modified coboundary operator é by

1
6:= Z Z m‘sﬂu,il yeesB0,ig 01,5y 3 sBY i *

l,m ﬂ(),il a---yﬂ(l,it;ﬂl,-jl:---vBl,j,n

Then it satisfies § o8 = 0.

§4. A-deformation of Lagrangian submanifold.

We should note that the constructions in the previous section depend, a
priori, on various choices of the bounding chains, the almost complex struc-
tures, and the Kuranishi structures. In this note, we only discuss dependence
on the bounding chains. (As for our conclusions about “independence”, see
Theorem 5.19 and Theorem 5.20.) To do this we use language of certain ho-
mological algebras. The key point is that we have to work at chain level, not
homological level. Firstly, we construct a filtered A algebra associated to a
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relative spin Lagrangian submanifold L. Here we note that we do not assume
the obstruction classes of L vanish.

4.A) A filtered A, algebra.

First of all, we introduce the notion of filtered A, algebra [FOOO]. Let us
introduce the universal Novikov ring.

Definition 4.1. ([FOOO]). Let T and e be two formal variables. The universal
Novikov ring Ay, is the totality of all formal sums Y a;T*:e™ such that
(411) a;€Q,A\;€eRandn; e€Z

(4.1.2)  lim_o Ai = 00.

We define its subset Ag pnoy by

Aonov = {Z a;Tie™ | A; >0,and n; =0 if \; = 0}.

We define the product of elements of A,,, in an obvious way. Then Ao,
is a commutative ring with the unit 1, and Ag oy is its subring. We define the
grading by '

deg T?e™ = 2n.
Roughly speaking, A; stands for a filtration and n; for a grading. Geometrically,
A; corresponds to an energy A in §1 or §2, and n; corresponds to the Maslov
index. When we consider a pair of Lagrangian submanifolds, we use Ao, as
well. (It might be helpful to keep the geometric back ground in your mind.)
We remark the Ag o, is a local ring with the maximal ideal

Adnow = {D_ 0T €™ € Anoy | Ai > 0}

such that Ag oy /A[{nov = Q. So when we reduce the coefficient ring to

Ao nov/ A('; nov = Q, then we do not have filtrations. See (4.0) below.

Let ®mezC™ be a free graded Ag no, module. There is a filtration FAC™
on C™ (X € Rxg), such that

(4.21)  FC™ c FNC™if A > N.

(4.2.2) T*.F>C™ c FAMthocm,

(4.2.3)  ekC™ c o™k,

(4.2.4) C™ is complete with respect to the filtration.

(4.2.5)  C™ has a basis e; such that e; € F°C™ and e; ¢ F*C™ for A > 0.

We denote by C the completion of &,,czC™ with respect to the filtration.
(4.2.3) means that the degree of e is 2. We put (C[1])™ = C™*! and

BiCl)= P (™ e---o(Cl)™.

my,---, Mk
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Suppose that we have a sequence of maps m = {my},>0 of degree +1
my : By(C[1]) - C[1], for k=0,1,---.

We note that mg : Ag noy — C[1]. We assume that

(42.6) my (FMC™ ®--- @ FAC™+) C Flit+regmitotme—k+2

and

(4.2.7) " my(1) € FNC[1] for some X' > 0.
When we put

(4.0) (1, ..., 2k) = me(z1,...,2%) mod A,

fork =0,1,2,..., then {f} defines an Ao, algebra structure on C = C/A{ ., C
over Q introduced by Stasheff [St]. (Strictly speaking, he did not treat the map
my. But this map is important when we discuss the obstruction theory. See
Remark 4.9. Note that the filtration is defined by X which is the power of T.
Thus on the C, we do not have filtrations. In this way (C,m = {mk}e>o0)
becomes an A, algebra over Agnov/A¢ 0 = Q.) We also assume that there

exists a constant \” > 0 such that
(4.2.8) mg(e;,,...,e;, ) — mMg(e;,...,e;,) € F’\"C[l].

Here )" is independent of k and e;,, . . ., e;, . The condition (4.2.8) is used when
we construct a spectral sequence. See [FOOO)] for details. We call (4.2.8) the
gap condition.

Now the direct sum B(C[1]) := @, Bx(C[1]) has a structure of graded
coalgebra. We regard B(C[1]) as a coalgebra and will construct a coderivation
on it. The coproduct A is defined by :

n

(4.3) A1® ®Tn) =) (T1® @ Tk) @ (Tht1 ® - ® Tn).
k=0

We can extend my uniquely to a coderivation

di : @ Bn(C[1]) - D Bn-rr1(C[1)),

by
n—k+1
(44) dk(xl R:-® xn) - Z (_1)degm1+-..+degzz—1+€—1$1 R ®
£=1

mk(l'e, o ,1'2+k—1) - ®mn
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for k < n and dy = 0 for k > n. Here and hereafter deg  means the degree of
z before we shift it. When k = 0, we put mg(1) in the right hand side. Namely
we define dy by

n+1

do(z, ® - - ®xn)-—2( l)deg‘cl+ +deg e_1+- 12/ ® - ®zp-1 ®
=1

m0(1)®mg®~~®xn.

We want to consider the infinite sum d = > dk. Therefore we need to

consider a completion B(C[1)) of B(C[1]). We define a filtration F*By(C[1])
on By (CI[1]) by

F)\Bk(c[l]) - U \ (F)\lcml ®“_®F/\kcmk)
‘ At A=A

Let By (C[1]) be the completion with respect to the filtration.

Definition 4.5. B(C[1]) is the set of all formal sum > Xk where x; €
By (C[1]) such that
xy, € FM By (C[1])

with limg_ o0 A — 00.

Lemma 4.6. If (4.2) is satisfied, then d is well-defined as a map from §(C’[1])
to B(C[1)).

The proof is easy.
Now we introduce the following condition for an element e of C.

Condition 4.7.
(4.71) mgp1(z1,-+ €, ,1%) =0, k> 2, k= 0.
(4.7.2) my(e,z) = (—1)98%my(z,€) = .

Definition 4.8. ([FOOO]) (1) m = {mk}k>o defines a structure of filtered

Ao algebra on C if (4.2) are satisfied and if dod = 0. We call B(C[l]) the
(completed) bar complex associated to the A, algebra (C,m). If a filtered A
algebra has an element e which satisfies Condition 4.7, the we call it an Ao
algebra with unit and e a unit.

(2) For a filtered Ay, algebra (C,m), we say that a ﬁltered Aoo alge-
bra (C’,m’) is an A-deformation of (C,m), if (C ,m’) = (C,m). Here
(5l,ﬁ’ ) and (C,m) are defined by reducing the coefficient ring Ag nop to
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Aonov /Aoy = Q . We also say that a filtered Ao alge/bra (C,m) is an

Aqo-deformation of an Ay algebra (C,m") if (C,m) = (C ,m").

Remark 4.9. (1) The equation dod=0 produces infinitely many relations
among my’s. For example, we have

m;(mg(1)) =0,
my(mo(1), z) + (—1)9%€2+1my(z, mp(1)) + m;(m;(z)) = 0,
m3(mo(1),z,y) + (—1)98 =+ mg(x, mo(1), y)
+(—1)deg=+degv+2m; (7, y, mo (1))
+ma(my(z),y) + (—1)%E=+ my(z, my (y)) + my(my(z,y)) =0,

In general, it is easy to show that dod=0is equivalent to that for each k

k1+k2=k+1 i
my, (:Ely Tt 7mk2(mz’, e 7z‘i+kz—1)a o 'axk) =0.

If mp = 0, then m;m; = 0. So in this case m; plays a role of a (co)boundary
operator. In this sense, mg describes an obstruction to that m;ym; = 0.
(2) In addition to mg = 0, suppose that m; = 0 for k > 3. We put

m(z) = (-1)*¥%dz, and mg(z,y) = (—1)*E=dEVt Ay,

where degz denotes the degree of z as cochain. Then this is nothing but a
DGA (differential graded algebra) and dod = 0 implies that the usual Leibnitz
rule and the associativity of the product structure. We note that the signs here
are slightly different from those in [G-J]. (See also Remark 4.13 (2) below.)

4.B) A filtered A, algebra associated to Lagrangian submanifold L.

Let ._S'-k(L; Q) be a free Q module generated by all integral k-currents on L
which are represented by singular chains. We denote by C*(L; Q) a countably

generated submodule of §k(L; Q). (We will use a method of “smooth corre-
spondence”. To do this we need and use the transversality argument and the
Baire category theorem. This is why we introduce C*(L; Q). But the details
are omitted here, see [FOOO).) Since an element in C¥(L; Q) is represented
by a singular chain, we sometimes write it as a singular chain representative
(P, f). (But when we consider the orientation problems, we have to notice
the difference of signs of boundary orientation and product (intersection) as



chain or cochain, see Remark 4.13 (2) below.) We define C*(L; A nov) by the
completion of C*(L; Q) ® Ag nov- For the convenience of notation, we put

C* = C*(L; Aonov) = (C*(L; Q) @ Ao,nov) -

The degree in C*(L; Ag,nov) is the sum of the degree in C*(L; Q) and the degree
of the coefficients in Ag no,. Using the filtration on Ag noy, We can uniquely
define the filtration on C*(L; Ao nov) which satisfies the following conditions;

CH(L; Q) C F°C*(L; Ao nov)

and
C*(L;Q) ¢ FAC*(L; Ao now)  for A > 0.
We now define the maps
my Bk(C[l](L, AO,nov)) — C[l](L, AO,nov)-
of degree +1 for k > 0. To do this, we recall that My 1(8) is the set of pairs
((%,2),w) where w : (X,0%) — (M, L) is a pseudoholomorphic map which
represents the class 8. Let MJ{"(8) be the subset of Myy1(8) consisting

of elements ((X, Z), w) where the order of the marked points is cyclic. (See
Definition 2.1). For given

(P, f:) € C9(L;Q), i=1,---,k,
we consider
Mkmfin(ﬁ)(evhm,evk) Xfix--Xfr (Pl XX Pk).

Proposition 4.10. Suppose L is relatively spin. Then

M;cnfin(lg)(evl,'--,evk) X fixxfr (P1 X - X Pg)

has an oriented Kuranishi structure. Its dimension isn—> (g; — 1)+ u(8) -2,
where n = dim L.

As in Definition 3.1, we define MP2I%(3; P, ..., P;) by the following.
Definition 4.11.

Mrlnain(ﬁ; P, P) = (—1)€M§cnf}n(ﬁ)(ev1,---,evk) X f1x-+X fx (P X+ x P),
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k
€= (n+1)ZZdegPi.

j=11i=1

Now we define the maps my. We recall that we have the element 5, = 0 €
G4+ (L) which satisfies () = 0 and A(By) =0

Definition 4.12. (1) For (P, f) € C¥(L, Q), we define
my ﬁ(l) = { (Ml(ﬁ) e’Uo) for ﬂ # ﬁO

fOI' ﬂ ﬁO)
_ [ (MPan(B; P)evy) for B #
ml,ﬂ(P, f) - { (l_l)nap 0 for ﬂ — 52,

and
e =[L] (the fundamental cycle).

The notation 0 in the deﬁmtlon of m, g, is the usual (classical) boundary
operator.
(2) For each k > 2 and (P, fi) € C%(L, Q), we define my 3 by

mk,B((Plvfl)’ vy (Pkafk)) = mk,ﬁ((Plafl) ® e ® (Pk,fk))
= (Mxlnain(ﬂ; Pl’ te 7Pk)a 6’00).

(3) Then we define my (k > 0) by
BEm2(M,L) BEm2(M,L)

Remark 4.13. (1) By definition, o = 0. (This is the case corresponding to
B = ,30) But mg # 0.

(2) In the definition of m; g, above, we see P as a chain. If we see P as a
cochain (or a differential form), then we have

(4.13.2) ml,ﬁ()(P) — (_1)n+degP+1dP’

where deg P is the degree of P as a cochain. This is because we can see
the following general formula (under certain our conventions [FOOO] about
orientations of boundary and of normal bundle). For an s-dim chain S in L,
we have

P.D.(8S) = (—1)4eS+14(P.D.(S)).



Here degS = n — s and P.D. denotes the Poincaré duality. Of course, this
sign depends on a convention about the Poincaré duality. Actually, we use the
following convention. For a chain S in L, the Poincaré dual P.D.(S) satisfies

/5 als = /L PD.(S)Aa

for any a € Q9™ S(L). We also note that the universal constant n + 1 in the
power of the sign in (4.13.2) does not affect in the Ay, relations in the case
mg = 0. In this sense, this is consistent with Remark 4.9 (2).

By using the {my}«>0, we define
dy @Bn(c[ll(lﬁ Ao,nov)) — @Bn—k+l(c[1](L; Ao,nov))

as in (4.4). Then the following is our main theorem in this section.

Theorem 4.14. ([FOOO]) Suppose L is a relatively spin Lagrangian subman-
ifold. Then (C(L;Aonov), m) is a filtered A, algebra (with unit e). Further-
more, (C(L; Ao nov), m) satisfies the gap condition (4.2.8).

(Strictly speaking, e is not a unit, but a homotopy unit. (We can deform
(unitarize) e to be unit.) But we omit the details, see [FOOO).) Moreover,
by using moduli space of metric ribbon trees, we can construct an A, algebra
(QX,m) over Q with mp = 0, such that it describes the rational homotopy
type of L and the cohomology of mj; is isomorphic to the cohomology of L
[FOOO]. Then we can show the following.

Theorem 4.15. ([FOOO]) (C(L; Ao nov),m) is an Ax deformation of the:

Ao algebra (QX,m).

Sketch of the Proof of Theorem 4.14: To prove dod = 0, we analyze the
boundary of MPa1(3; Py, ... P). We find that its boundary is the sum of

> MPANB Py, 0P, Py)

1

and the terms described by the bubbling off holomorphic discs. On thé other
hand, in order to prove d o d = 0, we note that it is enough to show that

(4.16.1) > 3 (—1)des Prthdeg P ti-1

B1+B2=0 k1 +ka=k+1 i
mg,,6, (Pl’ tee ’mkz,ﬁz(Pi’ T ?Pi-i-kz—l)v T 7Pk) =0.
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(See Remark 4.9.) We divide the left hand side into 3 terms, according as
B1=0(= fBp) and k; =1, B3 = 0(= Bp) and k2 = 1, and the other cases. Then
we can rewrite the left hand side in (4.16.1) as follows:
m; omy,g( Py, -, Pg)
(416.2)  + ) (~1)desPrtoddegPoatizly (P, myo(P), -, Pr)

i

+ Z Z(_l)degP1+~--+degP,-_1+i—1

B1+B2=R, k1+ko=k+1; 4
A1#0 O kq#1,
Ba#0 O ko#1

mg, g, (Pl’ Tt ’mkz,ﬁz(Pz" Tty Pi+k2—l)a T ,Pk)-

By Definition 4.12, we have m; o = (—1)"9, where 9 is the classical boundary
map. Hence the first term in (4.16.2) is nothing but

(4.16.2.1) (=1)"(MPN(G: Py, ..., P), evp),

and the second term in (4.16.2) is the sum of

(4162.2) (~1)2m @SR (_pyn(amain(g . py ... 6P, -, Py, evo).

The third term in (4.16.2) geometrically corresponds to moduli spaces de-
scribed by bubbling off holomorphic discs. This is the sum of

i-1 X
(4.16.2.3) (=1)25-1de8 Pi+D) pqmaing . p .
aPi—laMllnam(ﬁ2; Pi1 Tty Pi+k2—1)a Tty Pk)’ 61}0).
Moreover, as for the orientations of these spaces, we can show the following:
i-1 .
(4163.1)  (~1)2m PNy pqmaingg . py . 0P, By)
C (=1)"HOMPAN(B; Py, - -, Py)
and
(4.16.3.2)

i—l . .
(=1)2sm (B PHD pqmaing - p . pqmaineg . p P ) P
C (-1)*HamMPan(g. p, ... Py).

Therefore we find that (4.16.2.1) and the sum of (4

(4.16.2.2) and (4.16.2.3) cancel
each other. Namely (4.16.2) is zero. This implies dod =

0. We recall that we

&.)l\?
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have an element 31 € m2(M, L) such that it is represented by J holomorphic
disc with the minimal (non zero) area. We take A” > 0 such that

N < (.U[,Bl].
Then we can find that {my} satisfies the gap condition (4.2.8).

§5. Bounding cochains and deformatlon

From now on, we are working on cohains (or cohomologies), not on chams
(or homologies) via the Poincaré duality, because they are fitted with the
framework of obstruction theory.
5.A) Bounding cochains and the master equation.

For a cochain b € C[1]°(L, Ag no») With the shifted degree 0, we put

(5.1) e =14b+b0b+b@bRb+--- € B(C[1)(L, Ao nov)-

(We do not put the factorials here unlike definition of the exponential, because
we use only the main component among (k+1)! components of M1 to define
the map my.)

Definition 5.2. We say that b is a bounding cochain if de® = 0. A filtered A
algebra is said to be unobstructed if there exists a bounding cochain and ob-
structed otherwise. Similarly, we call a Lagrangian submanifold L unobstructed
if the associated filtered A, algebra (C(L; Ao nov), m) constructed in Section

4.B) is unobstructed. We denote by M (L) = M (L; J, E) the set of all bound-
ing cochains b. Here J stands for a compatible almost complex structure and
= for a parameter of the Kuranishi structure.

From the construction in §3, we put

(53) b=) B(B)®[6]=
Then we can show that

Lemma 5.4. The chains B(f;) bound o;(L) inductively if and only if b in
(5.3) is a bounding cochain, i.e., deb = 0.

€ C[1]°(L; Ao,nov)-

Remark 5.5. The equation deb = 0 is equivalent to
mo(1) + m;(b) + ma(b,b) + m3(b,b,b) +--- =0.

If my = 0 and my = 0 for k > 3, by putting m; = d and ms = A, the equation
is equivalent to
db+bAb=0,
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which is nothing but the classical Maurer-Cartan equation for DGA. Our equa-
tion de® = 0 is an inhomogeneous A.-version of Maurer-Cartan or Batalin-
Vilkovisky master equation [BV]. The relation of Batalin-Vilkovisky master
equation to the deformation theory is discussed in [Sch], [ASKZ], [BK], [K].

The deformation of the Floer coboundary operators in §3 can be inter-
preted as follows. Here for simplicity, we discuss the case for one Lagrangian
submanifold L. (The case for two Lagrangian submanifolds Lo and L; is
similar, but needs more notations and argument, e.g., we have to use Anoy.)
Suppose that the filtered A algebra (C(L; Ao nov), m) we constructed in §4 is
unobstructed in the sense of Definition 5.2. Then we have bounding cochains
b1,ba € C[1)°(L, Ao nov)- (They may coincide.) By using these cochains by, b,
we define

061,62 : C(L; Monov) — C(L;Ao,nov)

by

(56) 6b1,b2 (IE) = Z mk1+k2+1(bls b,z by, -, b2)
: k1,k2>0 ks k2

Then we can find that
d(eP1ze®?) = €6y, 4, (z)e?? + d(eb )ze?? + (—1)de8 =+ ebrxd(ed?).

The second and the third term vanishes if g(ebl) = d(e®?) = 0. Thus we have
Proposition 5.7. If [i\(eb‘) = c’i\(e'”) =0, then dp, b, © 0b, b, = 0.

5.B) Deformation of A, algebra.

Now let b € C[1]°(L, Ag,nov) be a cochain, which is not necessary a bound-
ing cochain. For the cochain b, we next deform our filtered A, algebra as
follows.

Definition 5.8. Using this cochain b, we put

mz(xl,"'yxk) = Z mk+zei(b1“'.7b7$1’b7"°’ba'"’bv"'vbaxkaba"',b)

bose- s Ly 131 £y 4y,

= m(ebxlebxg ‘.- xk_lebxkeb)

fork=0,1,2---.

We note that mj(1) = m(e®). Since we can find that

de® = e’mf(1)e,
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we have the following.

Proposition 5.9. (C,mP) is also a filtered A, algebra. In addition, g(eb) =0
is equivalent to m§ = 0.

This implies that an unobstructed filtered A, algebra can be deformed to
a filtered Ao, algebra with mg = 0. ‘

5.C) Homotopy equivalence, dependence and independénce.

Let (C;,m%), i - 1,2, be filtered Ao, algebras over the ring Agno». For
k=0,1,2,---, let us consider the family of maps

fi : Br(C1[1]) — C2[1]

of degree 0 such that

(5.10.1) £ (F*By(C:[1])) € F*Cal]
and
(5.10.2) fo(1) € F)‘/Cg[l] for some \ > 0.

Note that f5 : Agnov — C2[1]. These maps induce

@k - Bi(C1[1]) — B(C2[1)),

SOk(wl@“'@xk): Z fkl(xl;""xk1)®"'
(511) ""®fk,~,+1—k,‘(mki+la"',xki.}.l)@'”
o @ e (Thp 4157 Th),

and (5.10) implies that ) ¢ = @ converges. We note that when fo appears
in the right hand side of (5.11), we put fo(1) there. Thus, in particular, o is
given by

wo(1) = 1+ fo(1) + fo(1) @ fo(1) + - - = eV

in our notation. (See (5.1)). Then it is easy to see that { : B(Cq[1]) — B(C3[1))
is a coalgebra homomorphism. ' :

Definition 5.12. We call f = {fx}x>0 a filtered Ao, homomorphism from Ci
to Cyif pod! =d?o .
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Let e;; be a basis of C; as in (4.2.5). We say that f satisfies the gap
condition if

(5.12.1) fr(ei,...,e,) —k(ei,...,e;,) € FY Gl

where \” > 0 is independent of i; and k. (Here f denotes the induced map on
the (not filtered) Ao algebra over Ag nov/Adnon = Q, (see §4.))

Let f} : Bx(Ci[1]) — Ciy1[1] (i = 1,2) define a filtered Ao, homomorphism.
Then the composition 2 o f1 = {(f2 o f!);} of f! and 2 is

(f2 o fl)k(xlv te sxk)

=3 > fAE (e Th)y B (ks TR))-

m k1++k"l=k

which defines a filtered Ay, homomorphism from C; to Cj.

Let (C;,m*) (i = 1,2) be filtered Ao, algebras over Agnop and f :
(C1,m!) - (Ca,m?) a filtered A, homomorphism. Then f naturally induces
an As homomorphism f : (C;,m!) — (Co, m?), where (C;, ") are the Ao
algebras over Q = Ag nov/Ag nop- 1f Mo = 0, then we note that m,mm,; = 0,
(see Remark 4.9).

Definition 5.13. Let (C;,m*) (i = 1,2) be filtered A, algebras over Ag noy
such that M} = 0. For these filtered A, algebras, we say that a filtered Ao
homomorphism f : (C;,m!) — (Cz,m?) is a weak homotopy equivalence, if the
induced Ao, homomorphism f : (C;,m') — (C3,m?) induces an isomorphism
?1 . H*(El,ﬁ}) — H*(@g,fﬁ%).

We recall that the condition Ty = 0 is satisfied in our filtered A, algebra
(C(L, Ao, nov), m), see Definition 4.12.

Hereafter we assume that the filtered A., algebras (C;,m?) are unob-
structed and weakly finite. Here, a filtered Ao, algebra (C,m) is called un-
obstructed if there exists a bounding cochain b € C[1)° such that d(e®) = 0,
and weakly finite if there exists a finite Ag no, module cochain complex (C’, §')
such that there is a filtered A, homomorphism f’ : (C’,§') — (C,m) with

“satisfying the gap condition (5.12.1) which induces an isomorphism between
H*(C’",4') and H*(C[1],m}), (see Definition 5.8 and Proposition 5.9 for m®.
We also note that our unobstructed filtered Ao, algebra (C(L, Ag nov), m) as-
sociated to Lagrangian submanifold L is weakly finite, see [FOOO] Theorem
A4.28 in §A4). Under these assumptions, we can obtain the following lemma.
(Kontsevich shows a similar lemma in the case of Lo, algebra [K]).



Lemma 5.14. Let (C;,m®) be unobstructed and weakly finite filtered Ao
algebras (i = 1,2). If a filtered Ao, homomorphism fl is a weak homotopy
equivalence and if it satisfies the gap condition (5.12.1), then there exists a
filtered Ao, homomorphism £2 such that both of the compositions (f! of?); and
(£2 o f1); induce the identities on the cohomologies H*(C;[1], m}).

Definition 5.15. Let (C;, m*) be filtered Ao, algebras over Ag 0y With m;, =
0 (i = 1,2). We assume that (C;, m*) are unobstructed and weakly finite.
Then (C1,m!) and (Cy, m?) are said to be weakly homotopy equivalent if there
exist filtered Ao, homomorphisms f! and f2 from C; to C; and C; to C;
respectively such that the compositions f! o f2, f2 o f! are weakly homotopy
equivalences.

Now we recall from Proposition‘5.7 that two boundingcdchains b1, b2 on
filtered Ao algebra (C, m) induce a coboundary map

Oy b, 1 C —C

as in (5.6). We next prove that a weak homotopy equivalence induces a natural
isomorphism between the cohomology of (C, , 5,). We first note the following
lemma.

Lemma 5.16. For a non-zero element x of B(C[1]), x = €® for some b €
B1(C[1]) = C[1] if and only if Ax = x ® x, where A is the coproduct as in
(4-3).

Since $ : B(C[1]) — B(C[1]) is a coalgebra homomorphism, if x satisfies
Ax = x®x, so does $(x) and so we have an element (by) such that p(e>) =
e?(®) by Lemma, 5.16. More explicitly, we have

(5.17) ¢(bo) = fo(1) + f1(bo) + £2(bo, bo) +---.

Proposition 5.18. Let (Co,m°) and (C1, m") be the filtered Ao, algebras such
that g =0 (i = 0,1). We assume that (C;, m*) are unobstructed and weakly
finite. Let £ = {fx }x>0 define a weak homotopy equivalence between them. Let
d°, d! be obtained from m®, m', and ¢ obtained from fi.. Let by € (Co[1])°.
Then d% =0 of and only if dlev®) = 0.

If we moreover assume the gap condition for (Co,mP), (Cy,m!) and f,
then the cohomology of 5,?1 b, 8 tsomorphic to that of 5;(,)1)&(,,2), et = 0.

For the proof of the last assertion, we need a spectral sequence argument.
To construct the spectral sequence, we need the gap condition. See [FOOO)]
for more details.
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Next, we can define an equivalence relation ~ in the set of bounding
cochains M(L), (see Definition 5.2). This can be regarded as a sort of “gauge
equivalence” relation. A similar notion is introduced in [K] for L, algebra. We
do not explain it here." See [FOOOQ]. Anyway, we can show that the following.

Theorem 5.19. Let (L, L’) be a pair of relative spin Lagrangian submanifolds.
Let by, by € K/I\(L) and by, b] € A/Z(L’)' Assume that by ~ by and by ~ b}. Then
the deformed Floer cohomology H F((L,bo), (L', b )) is canonically isomorphic
to HF((L,br), (I/, %))

More generally, we can show the followings. We set M(L) = M (L)/ ~.

Theorem 5.20. Let (L,L’) be a pair of relative spin Lagrangian submanifolds
of M. Then we have the following:

(5.20.1) M(L; J,E) is independent of the choice of J,Z. Namely there exists
a canonical isomorphism M(L; J,E) = M(L;J',Z'). (Hereafter we omit J, =
and write M(L) in case no confusion can occur.)

(5.20.2) Floer cohomology is also independent of J,Z. More precisely we
have the following : Let by € M(L;Jo,Zp), by € M(L'; Jo,Zp). Let by €
M(L; Jy,Ey), and by € M(L'; J1,Z]) corresponds to them by the isomorphism
in (5.20.1). Then there exists a canonical isomorphism

HF((L,bo), (le :))a JO,EOaE:)) = HF((L’bl)s (L,, ’1)’ Jl:‘E'l’EII)'
Hereafter we write HF ((L,bp), (L', bg)) in place of
HF((L,bo), (L', b3); Jo, Eo, Zp)

when no confusion can occur.
(5.20.3) Any Hamiltonian diffeomorphism v induces a map

¥u : M(L) = M(9(L)),

which depends only on the homotopy class of the Hamiltonian diffeomorphism

Y : L — ¢(L). Namely if ¥° be a family of Hamiltonian diffeomorphisms such

that ¥*(L) is independent of s then %0 = ¢!,

(5.20.4) Let ¥ = {Y"}o<r<i and ¥ = {¢'"}o<r<1 be Hamiltonian iso-

topzes with ° = 1/)’0 = id. Let by € M(L), and b, € M(L'). We put
= ¢}(bo) € M(YY(L), 1), ¥i2(by) = b} € M(’l/)'l(L')) Then ¥, ¥’ induces

an zsomorphzsm

(¢, ¥'). : HF((L, bo), (L', b)) = HF (%' (L), b1), (%" (L), b})),
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which depends only on homotopy types of Hamzltoman zsotopzes between zd and
Y¥! and between id and 't ‘

Theorem 5.20 says, up to ambiguity of the choice of B, the obstruction
class and Floer cohomology are independent of the Hamlltoman isotopy and
of the almost complex structure.

Moreover, we can show that M(L) can be described as some quotient
space of the zero set of certain formal map (Kuramshl map). So it descrlbes
the deformation space. See [FOOO].

§6. Some applications.

In this last section, we give some applications of our theory to ‘some con-
crete problems in symplectic geometry. For the proofs, see [FOOO)].
The first one is the Arnold conjecture for Lagrangian intersections.

Theorem 6.1. Assume that L is relatively spin closed Lagrangian subman-
ifold of (M,w) and that the natural map H,(L; Q) — H.(M;Q) is injective.
Then for any Hamiltonian diffeomorphism i : M — M such that L and (L)
intersect transversally, we have

H(LNyL) > Y rankHi(L; Q).
k

The assumption that the natural map H.(L; Q) — H.(M;Q) is injective
implies that all our obstruction classes vanish. (See Theorem 2.6). We remark
that this theorem implies the Arnold conjecture for the fixed point sets of
Hamiltonian diffeomorphisms (over Q-coefficients) which is proved by [FOJ,
[LT] etc. Namely, let us consider L = A (the diagonal set) in (M x M,w® —w).
Then the intersection points are nothing but the fixed points of 1. The relative
spinness for A and the assumption above are automatically satisfied by the
Kunneth formula. :

More generally, by using our spectral sequence, we can get the following.

Theorem 6.2. Let L be relatively spin and assume that the associated A,
algebra is unobstructed. Denote A = rank H(L; Q) and
B =) rankker(H(L; Q) — H(M;Q)).
Then we have ‘
#(LNny(L)) > A-2B

for any Hamiltonian diffeomorphism ¢ : M — M such that L and (L) inter-
sect transversally.
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Next application is so called Arnold-Givental conjecture, which is a variant
of Arnold conjecture. In general, the most naive statement such as

(6.3) (LN (L)) > rankH,(L; Z/2Z)

is not true for general L and general Hamiltonian diffeomorphism ¢. In this
respect, Givental made a conjecture that (6.3) is true at least if L is the fixed
point set of an anti-symplectic involution. However a careful analysis on the
orientation of the moduli space shows that this cancellation does not happen
over Q (or over Z) but works only over Z/2Z-coefficient in general. Now we
can prove the following :

Theorem 6.4. Let L = Fix 7 be the fired point set of an anti-symplectic
inwolution 7 : (M,w) — (M,w) and L be semi-positive. Then the inequality
(6.3) holds.

Here the n dimensional Lagrangian submanifold L in (M, w) is called semi-
positive, if w(8) < 0 for any 3 with

3-n<puL(B)<O.

Note that if n < 3, the semi-positivity automatically holds. This condition
plays a role similar to the case of absolute case. The reason why we need to
assume the semi-positivity is to handle the negative multiple cover problem.
We recall that we should use Z/2Z-coefficient to have the cancellation of quan-
tum effects in general which forces us to use integral cycles rather than rational
cycles. We would like to emphasize that since we use Z/2Z-coefficients, we do
not have to assume our Lagrangian submanifold is relatively spin.

The third application is so called the Maslov class conjecture. The general
folklore conjecture says that the Maslov class u; € H'(L;Z) of Lagrangian
embedding L C C" is non-trivial for any compact Lagrangian embedding
in C". (We note that if the ambient symplectic manifold (M,w) satisfies
c1(TM) = 0, then py can be regarded as an element of H!(L,Z).) We can
give a new partial answer.

Theorem 6.5. Let L be a compact embedded Lagrangian submanifold of C™
that satisfies H*(L;Z/2Z) = 0. Then its Maslov class py, € HY(L;Z) is
nonzero.

Moreover we can show the following estimate.

Theorem 6.6. Let L be a compact embedded Lagrangian submanifold of C™.
Suppose that it is unobstructed in the sense of Definition 5.2. Then we have
the following inequality;

1<¥;<n+1.
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Here X1, is a non-negative integer defined by Image (ur) = L1Z, where py, s
the Maslov index homomorphism in (2.0).

References.

[ASKZ] M. Alexandrov, A. Schwarz, M. Kontsevich and O. Zaboronsky, The
geometry of the master equation and topological quantum field theory, Intern.
J. Modern Phys. A, 12 (1997) 1405 - 1429.

[BV] I. Batalin and G. Vilkovsky, Quantization of gauge theories with linearly
dependent generators, Phys. Lett. B, 311 (1993) 123 - 129.

[B] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math.,

127 (1997) 604 - 617. ‘

[FOOO] K. Fukaya, Y-G Oh, H. Ohta and K. Ono, Lagrangian intersection
Floer theory — Anomaly and Obstruction —, to appear.

[FO] K. Fukaya and K. Ono, Arnold conjecture and Gromov-Witten invariants,
Topology 38 (1999) 933 - 1048.

[GJ] E. Getzler and J. Jones, A, algebra and cyclic bar complex, Illinois J.
Math. 34 (1990) 256 - 283.

[K] M. Kontsevich, Deformation quantization of Poisson manifolds,
q-alg/9709040

[LT] G. Liu and G. Tian, Floer homology and Arnold conjecture, J. Diff.
Geom. 49 (1998) 1 - 74.

[Oh] Y.-G. Oh, Floer cohomology of Lagrangian intersections and pseudo-
holomorphic disks I, II, Comm. Pure and Appl. Math. 46 (1993) 949 - 994
and 995 - 1012. Addenda, ibid, 48 (1995), 1299 - 1302.

[Sch] V. Schechtman, Remarks on formal deformations and Batalin-Vilkovsky
algebras, math/9802006

[St] J. Stasheff, Homotopy Associativity of H-Spaces I, II, Trans. Amer. Math.
Soc. (1966) 275 - 312.

7



