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0. Introduction

In the symposium, Italked about the recent joint work with Rahul
Pandharipande. See the papers [FP1, $\mathrm{F}\mathrm{P}2$ , $\mathrm{F}\mathrm{P}3$ ] for more details and
references; some results have not yet been written up.

It is apleasure to thank Rahul Pandharipande for the continuing
collaboration and Masa-Hiko Saito, the organizer of the symposium,
for the invitation and hospitality.

1. Results

Let $\overline{M}_{g,n}$ be the moduli stack of stable $n$-pointed curves of genus $g$ .
Denote by $\mathrm{E}$ the Hodge bundle on $\overline{M}_{g,n}$ , the rank $g$ vector bundle with
fiber $H^{0}(C,\omega_{C})$ over $[C,p_{1}, \ldots,p_{n}]$ . Let $\lambda_{j}=c_{j}(\mathrm{E})$ . For $1\leq i\leq n$ ,
let $\mathrm{L}_{:}$ be the cotangent line bundle on $\overline{M}_{g,n}$ with fiber $T_{C,p:}^{*}$ , and let
$\psi_{:}=c_{1}(\mathrm{L}:)$ . AHodge integral over $\overline{M}_{g,n}$ is an integral (intersection
number) of products of the Aand $\psi$ classes.

More generally, for $X$ anonsingular complex projective variety and
$\beta\in H_{2}(X, \mathbb{Z})$ , one has the moduli stacks of stable maps $\overline{M}_{g,n}(X, \beta)$

with evaluation maps $e$: : $\overline{M}_{g,n}(X,\beta)arrow X$ (for $1\leq i\leq n$). Hodge
integrals over $\overline{M}_{g,n}(X,\beta)$ are integrals against the virtual fundamental
class $[\overline{M}_{g,n}(X,\beta)]^{\mathrm{v}\mathrm{i}\mathrm{r}}$ of products of the Aand $\psi$ classes (defined anal0-
gously) and classes of the form $e_{i}^{*}(\gamma_{i})$ , with $\gamma\dot{.}\in H^{*}(X)$ . If no Aclasses
occur, these are the descendent Gromov-Witten invariants of $X$ .

Here are some of our results (briefly stated).

1. The set of Hodge integrals over moduli stacks of maps to X may be
uniquely reconstructed from the set of descendent integrals.
2. For $g\geq 2$ ,

(1) $\int_{\overline{M}_{\mathit{9}}}\lambda_{g}\lambda_{g-1}\lambda_{g-2}=\frac{|B_{2g}||B_{2g-2}|}{8g(g-1)\cdot(2g-2)!}$ .

Note that $(-1)^{g} \chi(\mathrm{Y})\int_{\overline{M}_{\mathit{9}}}\lambda_{g}\lambda_{g-1}\lambda_{g-2}$ is the genus 9, degree 0Gromov-
Witten invariant of aCalabi-Yau threefold $\mathrm{Y}$ [BCOV, $\mathrm{G}\mathrm{e}\mathrm{P}$ ]
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3. For $d\geq 1$ , let $\overline{M}_{g}(d)=\overline{M}_{g,0}(\mathrm{P}^{1}, d)$ , with universal curve

$\pi$ : $U=\overline{M}_{g,1}$ $(\mathrm{P}^{1}, d)arrow\overline{M}_{g}(d)$

and universal map $\mu$ : $Uarrow \mathrm{P}^{1}$ . Let $N=\mathcal{O}_{\mathrm{P}^{1}}(-1)^{\oplus 2}$ . Put

$C(g, d)= \int_{[\overline{M}_{\mathit{9}}(d)]^{\mathrm{v}\mathrm{i}\mathrm{r}}}c_{\mathrm{t}\mathrm{o}\mathrm{p}}(R^{1}\pi_{*}\mu^{*}N)$.

In suitable circumstances, $C(g, d)$ is the contribution to the genus $g$ ,
degree $d$ Gromov-Witten invariant of aCalabi-Yau threefold $\mathrm{Y}$ coming
from degree $d$ covers of afixed $\mathrm{P}^{1}\subset \mathrm{Y}$ with normal bundle $N$ . We
prove

$C(g, d)= \frac{|(2g-1)B_{2g}|}{(2g)!}d^{2g-3}(=|\chi(M_{g})|\cdot\frac{d^{2g-3}}{(2g-3)!})$ .

This was known for $g=0$ and 1. The formula in parentheses makes
sense for $g\geq 2$ only; $\chi(M_{g})=B_{2g}/(2g(2g-2))$ is the Harer-Zagier
formula for the orbifold Euler characteristic of $M_{g}$ .

4. Define $F(t, k)\in \mathbb{Q}[k][[t]]$ by

$F(t, k)=1+ \sum_{g\geq 1}\sum_{i=0}^{g}t^{2g}k^{i}\int_{\overline{M}_{g,1}}\psi_{1}^{2g-2+i}\lambda_{g-i}$ .

Then

(2) $F(t, k)=( \frac{t/2}{\sin(t/2)})^{k+1}$

Putting $b_{0}=1$ and $b_{g}= \int_{\overline{M}_{g,1}}\psi_{1}^{2g-2}\lambda_{g}$ for $g\geq 1$ , we have for example

$\sum_{g\geq 0}b_{g}t^{2g}=F(t, 0)=\frac{t/2}{\sin(t/2)}$ ,

hence for $g\geq 1$

$b_{g}= \frac{2^{2g-1}-1}{2^{2g-1}}\frac{|B_{2g}|}{(2g)!}$ .

Also, by repeated diiFerentiation w.r.t. $k$ of (2) one obtains in particular

$\int_{\overline{M}_{g,1}}\psi_{1}^{3g-2}--\frac{1}{24^{g}g!}$

for $g\geq 1$ . This is an immediate consequence of Witten’s conjecture
[W] proved by Kontsevich [K1]. See [FP1,\S 3.1] for adirect proof of this
identity
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5. The integrals over $\overline{M}_{g,n}$ of $\psi$ classes against $\lambda_{g}$ , the Euler class of
the Hodge bundle, are completely known [FP2]:

(3)

$\int_{\overline{M}_{g,n}}\psi_{1}^{a_{1}}\cdots\psi_{n^{n}}^{a}\lambda_{g}=(\begin{array}{lll}2g -3+ na_{1} \cdots a_{n}\end{array})$ $\int_{\overline{M}_{g,1}}\psi_{1}^{2g-2}\lambda_{g}=(_{a_{1},\ldots,a_{n}}^{2g-3+n})b_{g}$

for nonnegative integers $a_{1}$ , $\ldots$ , $a_{n}$ with sum $2g-3+n$ .
6. For g $\geq 1$ ,

(4) $\int_{\overline{M}_{g,1}}\psi_{1}^{g-1}\lambda_{g}\lambda_{g-1}=\frac{1}{2^{2g-1}(2g-1)!!}\frac{|B_{2g}|}{2g}$ .

More generally, define polynomials $P_{g}(k)$ in k by

(5) $\frac{|B_{2g}|}{2g}P_{g}(k)=\sum_{j=0}^{g-1}(-1)^{j}k^{g-1-j}\int_{\overline{M}_{g,1}}\psi_{1}^{g-1-j}\lambda_{j}\lambda_{g}\lambda_{g-1}$

and write $P_{g}(k)= \sum_{=0}^{g-1}\dot{.}c_{g,i}k^{i}$ . These polynomials show up in [FP3]
and were studied in detail by Zagier [Z]. For example, Zagier proved
the following. Define polynomials $Q_{:}(y)$ using the recursion

$Q_{0}(y)=y$ , $Q_{:+1}(y)= \int_{0}^{y}\frac{x-1}{x}Q:(x)dx$ $(i\geq 0)$

(so $Q_{1}(y)= \frac{1}{2}y^{2}-y$ , $Q_{2}(y)= \frac{1}{6}y^{3}-\frac{3}{4}y^{2}+y$ , $\ldots$ ). Then

$c_{g},$:equals the coefficient of $x^{2g-1}$ in the over series $Q_{:}( \frac{x}{1-e^{-x}})$ .

For i $=1$ , this is equivalent to (1).

In order to prove the first result, one begins by interpreting Mum-
ford’s Grothendieck-Riemann-Roch calculation of the Chern character
$\mathrm{c}\mathrm{h}(\mathrm{E})$ of the Hodge bundle [M] in Gromov-Witten theory. Combining
this with properties of the cotangent line classes and of the restriction
of the Hodge bundle to virtual boundary divisors, one obtains differ-
ential equations for anatural generating function for Hodge integrals.
The generating function is determined by these differential equations
and initial conditions corresponding exactly to the descendent integrals.
See [FPI,\S I].

The main idea in the proofs of the remaining results is to use the
virtual localization formula of Graber and Pandharipande $[\mathrm{G}\mathrm{r}\mathrm{P}]$ in re-
verse. The localization formula expresses an integral of suitable C’-
equivariant cycle classes over (e.g.) $\overline{M}_{g,n}(\mathrm{P}^{r}, d)$ as asum over the fixed
point loci; the summands are products of Hodge integrals. Applyin$\mathrm{g}$
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this procedure to aknown integral yields arelation among Hodge in-
tegrals. Usually we take an integral that vanishes for obvious reasons.
One can also obtain arelation among Hodge integrals by computing
anot necessarily known integral via two different linearizations of the
torus action.

So far, we have exclusively used spaces of maps to $\mathrm{P}^{1}$ . Even in this
case, it is important to have some control on the number of summands.
By acareful choice of integrand and linearizations one can sometimes
arrange that many fixed point loci don’ $\mathrm{t}$ contribute, so that one obtains
amanageable relation among Hodge integrals that is hopefully non-
trivial. An example is given in \S 3.

2. Remarks

The following remarks are intended to provide some explanation for
the results above and to put them into context.

Recall that on $\overline{M}_{g,n}$ one defines the kappa classes $\kappa_{i}$ by
$\kappa_{i}=\pi_{n+1,n*}(\psi_{n+1}^{i+1})$

where $7\Gamma_{n+1,n}$ : $\overline{M}_{g,n+1}arrow\overline{M}_{g,n}$ is the map obtained by forgetting the
$(n+1)\mathrm{s}\mathrm{t}$ point and stabilizing. That these are the ‘right’ kappa classes
in this context was demonstrated by Arbarello and Cornalba [AC]. For
example, the pullback of $\kappa_{i}$ to the product $\prod_{j}\overline{M}_{g_{\mathrm{j}},n_{j}}$ canonically cov-
ering aboundary stratum is the sum of the product classes consisting
of $\kappa_{i}$ on one factor and the identity on the other factors. Also,

$\kappa_{i}=\pi_{n,n-1}’\kappa_{i}+\psi_{n}^{i}$ .

To compare $\kappa_{i}$ with $\pi_{n,n-1}^{*}\pi_{n-1,n-2}^{*}\kappa_{i}$ , combine this with Witten’s ob-
servation

$\psi_{j}=\pi_{n,n-1}^{*}\psi_{j}+\delta_{0,\{j,n\}}$ $(1\leq j\leq n-1)$

where $\delta_{0,\{j,n\}}$ is the boundary divisor of curves possessing arational tail
containing only the marked points $j$ and $n$ .

As adirect consequence of the results in \S 1, the integrals (for $g\geq 2$ )

$\int_{\overline{M}_{g}}\kappa_{3g- 3}$ , $\int_{\overline{M}_{g}}\kappa_{2g-3}\lambda_{g}$ , $\int_{\overline{M}_{\mathit{9}}}\kappa_{g-2gg- 1}\lambda\lambda$ , $\int_{\overline{M}_{\mathit{9}}}\lambda_{g}\lambda_{g-1}\lambda_{g-2}$

are nonzero. As explained in [FP3,\S 0], this shows that the evaluations
on the quotient rings of the tautological ring $R^{*}(\overline{M}_{g})$ considered there
are non-trivial.

We extend the perspective of [FP3] to pointed curves and consider
the natural sequence of quotient rings of the tautological ring $R^{*}(\overline{M}_{g,n})$ :

$R^{*}(\overline{M}_{g,n})arrow R^{*}(M_{g,n}^{\mathrm{c}\mathrm{t}})arrow R^{*}(M_{g,n}^{\mathrm{r}\mathrm{t}})arrow R^{*}(X_{g,n}^{\mathrm{r}\mathrm{t}})$
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associated to the filtration
$\overline{M}_{g,n}\supset M_{g,n}^{\mathrm{c}\mathrm{t}}\supset M_{g,n}^{\mathrm{r}\mathrm{t}}\supset X_{g,n}^{\mathrm{r}\mathrm{t}}$ .

Here $M_{g,n}^{\mathrm{c}\mathrm{t}}$ is the moduli space of stable pointed curves of compact type
(i.e., the dual graph is atree). It is the complement of the bound-
ary divisor $\Delta_{\mathrm{i}\mathrm{r}\mathrm{r}}$ (empty for $g=0$) parameterizing irreducible singular
curves and their degenerations. ( $M_{g,0}^{\mathrm{c}\mathrm{t}}$ was denoted $M_{g}^{c}$ in [FP3].)

Next, $M_{g,n}^{\mathrm{r}\mathrm{t}}$ is the moduli space of stable pointed curves with rational
tails (i.e., one component has geometric genus $g$ and the other com-
ponents (if any) have genus 0). Note that $M_{1,n}^{\mathrm{r}\mathrm{t}}=M_{1,n}^{\mathrm{c}\mathrm{t}}$ while $M_{g,n}^{\mathrm{r}\mathrm{t}}$

equals the inverse image of $M_{g}$ under $\pi$ : $\overline{M}_{g,n}arrow\overline{M}_{g}$ for $g\geq 2$ . (So
$M_{g,n}^{\mathrm{r}\mathrm{t}}=M_{g,n}$ for $n\leq 1.$ )

Finally, let $X_{g}$ be ageneral nonsingular curve of genus $g\geq 2$ . With
$X_{g,n}^{\mathrm{r}\mathrm{t}}$ we denote the fiber of $M_{g,n}^{\mathrm{r}\mathrm{t}}$ over $[X_{g}]$ . This equals the Fulton-
MacPherson compactification of $X_{g}^{n}-\triangle$ , where $\Delta$ denotes the union
of the diagonals in the cartesian product. (So $X_{g,n}^{\mathrm{r}\mathrm{t}}=X_{g}^{n}$ for $n\leq 2.$ )

Actually, $X_{g}$ should perhaps be the generic curve of genus $g\geq 2$ ;
it is not completely clear yet. In any case, we were naturally led to
including the term $X_{g,n}^{\mathrm{r}\mathrm{t}}$ in the filtration, as Iwill now try to explain.

The goal is to understand the tautological ring $R^{*}(\overline{M}_{g,n})$ (compare
[FP3,\S 0.3] $)$ . From the start it is clear that the presence of amultitude
of boundary strata makes this acomplicated task, at least from the
combinatorial point of view. Therefore it is desirable to find ‘natural
ways of forgetting some of the boundary strata.

$M_{g,n}^{\mathrm{c}\mathrm{t}}$ seems afirst good choice. It parameterizes the (pointed) curves
whose Jacobian is an abelian variety. Further, the class $\lambda_{g}$ vanishes
when restricted to the complement $\Delta_{\mathrm{i}\mathrm{r}\mathrm{r}}$ ;just as in [FP3] this gives rise
to an evaluation $\epsilon$ on $A^{*}(M_{g,n}^{\mathrm{c}\mathrm{t}})$ :

$\xi\vdash+\epsilon(\xi)=\int_{\overline{M}_{g,n}}\xi\cdot\lambda_{g}$ .

Formula (3) shows that the evaluation of monomials in the $\psi$ classes
against $\lambda_{g}$ is very well behaved. (This should be contrasted with the
more complicated Witten-Kontsevich theory for the evaluation of $\psi-$

monomials on $\overline{M}_{g,n}.$ ) The $\lambda_{g}$ evaluation of the $\psi$ monomials (for very
ing $g$ and $n$ ) determine the $\lambda_{g}$-evaluations of all intersection products in
the tautological rings $R^{*}(M_{g,n}^{\mathrm{c}\mathrm{t}})$ . One may hope that the rings $R^{*}(M_{g,n}^{\mathrm{c}\mathrm{t}})$

will be easier to understand than the rings $R^{*}(\overline{M}_{g,n})$ . It should be
pointed out that the $\lambda_{g}$-formula(3) was found by Getzler and Pand-
haripande $[\mathrm{G}\mathrm{e}\mathrm{P}]$ as avery special corollary of the Virasoro conjecture
of Eguchi, Hori and Xiong [EHX]
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Forgetting the boundary strata of $\overline{M}_{g,n}$ lying over boundary strata
of $\overline{M}_{g}$ leads to the next step in the filtration, $M_{g,n}^{\mathrm{r}1}$ . This is the relative
Fulton-MacPherson compactification of $M_{g,n}$ over $M_{g}$ . Just as in [F],
the class $\lambda_{g}\lambda_{g-1}$ vanishes when restricted to the complement. (The
class is proportional to $\mathrm{c}\mathrm{h}_{2g-1}(\mathrm{E})$ , which is the top Chern character
component in genus $g$ , so it vanishes on any boundary stratum param-
eterizing curves that have no component of geometric genus $g.$ ) Again,
this leads to an evaluation $\epsilon$ on $A^{*}(M_{g,n}^{\mathrm{r}\mathrm{t}})$ :

$\xi\vdash+\epsilon(\xi)=\int_{\overline{M}_{g,n}}\xi\cdot\lambda_{g}\lambda_{g-1}$ .

In this case, there is aconjectural formula [F] for the evaluation of
$\psi$-monomials against $\lambda_{g}\lambda_{g-1}$ :

(6)

$\int_{\overline{M}_{g,n}}\psi_{1}^{a_{1}}\cdots\psi_{n}^{a_{n}}\lambda_{g}\lambda_{g-1}=\frac{(2g-3+n)!(2g-1)!!}{(2g-1)!\prod_{i=1}^{n}(2a_{i}-1)!!}\int_{\overline{M}_{g,1}}\psi_{1}^{g-1}\lambda_{g}\lambda_{g-1}$

for positive integers $a_{1}$ , $\ldots$ , $a_{n}$ with sum $g-2+n$ . In $[\mathrm{G}\mathrm{e}\mathrm{P}]$ this for-
mula was shown to be yet another corollary of the Virasoro conjecture
of [EHX]. The formula determines the $\lambda_{g}\lambda_{g-1}$ evaluation of all inter-
section products in the tautological rings $R^{*}(M_{g,n}^{\mathrm{r}\mathrm{t}})$ .

Extending the speculations of [FP3], one may hope that $R^{*}(\overline{M}_{g,n})$ ,
$R^{*}(M_{g,n}^{\mathrm{c}\mathrm{t}}.)$ , and $R^{*}(M_{g,n}^{\mathrm{r}\mathrm{t}})$ are all Gorenstein algebras, with socle in codi-
mension $3g-3+n$ resp. $2g-3+n$ resp. $g-2+n$ . But the evidence
for such speculations remains scant.

Although $X_{g,n}^{\mathrm{r}\mathrm{t}}$ doesn’t arise as the result of forgetting even more
boundary strata, there are nevertheless two reasons to include it in
the filtration. The first is that after noticing the special role that the
classes $\lambda_{g}$ and $\lambda_{g}\lambda_{g-1}$ play, one is tempted to consider $\lambda_{g}\lambda_{g-1}\lambda_{g-2}$ as
well. This picks out apoint class $[X_{g}]$ in $M_{g}$ and the fiber $X_{g,n}^{\mathrm{r}\mathrm{t}}$ over it
in $M_{g,n}^{\mathrm{r}\mathrm{t}}$ . To obtain anatural map on the level of Chow groups it seems
best to take $X_{g}$ to be the generic curve of genus $g$ . The second reason
is that in the study of $R^{*}(M_{g,n}^{\mathrm{r}\mathrm{t}})$ as amodule over $R^{*}(M_{g})$ one needs to
understand the fiber first.

Thus we were led to considering the tautological ring $R^{*}(X_{g}^{n})$ of
the cartesian product $X_{g}^{n}$ (this should be easier than yet essentially
the same as $R^{*}(X_{g,n}^{\mathrm{r}\mathrm{t}}))$ . It is clear what $R^{*}(X_{g}^{n})$ should be: the $\mathbb{Q}-$

subalgebra of $A^{*}(X_{g}^{n})$ (&Qgenerated by the divisor classes $K_{i}$ (the
canonical class on the ith factor) and $D_{ij}$ (the class of the diagonal
$\{x_{i}=x_{j}\})$ . The question is what the relations between these classes
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Our result (yet to be written up) is that we have an explicit descrip-
tion of the image $RH^{*}(X_{g}^{n})$ of $R^{*}(X_{g}^{n})$ in cohomology and that this
image is aGorenstein algebra (with socle in algebraic degree $n$ ). On
the other hand, already for $n=2$ we don’t understand $R^{*}(X_{g}^{n})$ at the
moment. The crucial question is whether

$K_{1}K_{2}-(2g-2)K_{1}D_{12}$

is zero (torsion) in $A^{2}(X_{g}\cross X_{g})$ . This holds for $g\leq 3$ but we don’ $\mathrm{t}$

know the answer for general curves of genus $g\geq 4$ .
The evaluation of $\psi$-monomials against $\lambda_{g}\lambda_{g-1}\lambda_{g-2}$ is governed by

the string and dilaton equations and this determines the intersection
products in $R^{*}(X_{g,n}^{\mathrm{r}\mathrm{t}})$ .

Finally, formula (2) determines the evaluation on $\overline{M}_{g,1}$ of asingle
Aclass times apower of $\psi_{1}$ . Similarly, formula (5) determines the
$\lambda_{g}\lambda_{g-1}$ evaluation on $\overline{M}_{g,1}$ of such aproduct. Somewhat surprisingly,
aformula for the $\lambda_{g}$-evaluation of such aproduct is as yet missing.

3. An example

We present here in some detail the proof of the third result in \S 1:

$\int_{[\overline{M}_{\mathit{9}}(d)]^{\mathrm{v}\mathrm{i}\mathrm{r}}}c_{\mathrm{t}\mathrm{o}\mathrm{p}}(R^{1}\pi_{*}\mu^{*}N)=\frac{|(2g-1)B_{2g}|}{(2g)!}d^{2g-3}$

First we check dimensions. By the well-known formula for the virtual
dimension of $\overline{M}_{g,n}(X,\beta)$ :

$3g-3+n+(\dim X)(1-g)+\beta\cdot c_{1}(T_{X})$ ,
the virtual dimension of $\overline{M}_{g}(d)=\overline{M}_{g,0}(\mathrm{P}^{1}, d)$ equals $3g-3+1-g+2d=$
$2g-2+2d$. Since $H^{1}(\mathcal{O}(-d))$ has for $d\geq 1$ dimension $g-1+d$ on a
genus $g$ curve, $R^{1}\pi_{*}\mu^{*}N$ is abundle of rank $2g-2+2d$, which checks.

Our conventions for the C’-action on $\mathrm{P}^{1}$ are:
$V=\mathrm{C}\oplus \mathrm{C}$ , $\mathrm{P}^{1}=\mathrm{P}(V)$ , $\xi\cdot(v_{1}, v_{2})=(v_{1}, \xi v_{2})$ .

The fixed points on $\mathrm{P}(V)$ are $p_{1}=[1,0]$ and $p_{2}=[0,1]$ . An equivari-
ant lifting of the C’-action to aline bundle $L$ over $\mathrm{P}(V)$ is uniquely
determined by the weights $[l_{1}, l_{2}]$ on the fibers $L_{1}=L|_{p1}$ and $L_{2}=L|_{p2}$

at the fixed points. With this notation, the canonical lifting of the
C’-action to the tangent bundle $7p(v)$ has weights $[1,$ $-1]$ ; in general,
$l_{1}-l_{2}=c_{1}(L)$ . The possible linearizations on $\mathcal{O}_{\mathrm{P}}(-1)$ are $[\alpha,\alpha+1]$

with $\alpha\in \mathrm{Z}$ . Note that we can choose two different linearizations for
the two summands $\mathcal{O}_{\mathrm{P}}(-1)$ of $N$ .

As explained in [K2], the C’-fixed loci in $\overline{M}_{g}(d)$ are conveniently
indexed by graphs $\Gamma$ . The vertices of these graphs lie over $p_{1}$ or $p_{2}$ and
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correspond to the connected components of the inverse image of $p_{i}$ . The
vertices are labeled with the arithmetic genera of the corresponding
connected components, which sum over the graph to $g-h^{1}(\Gamma)$ . The
edges lie over $\mathrm{P}^{1}$ and are labeled with positive degrees that sum to $d$ .
Each edge $e$ corresponds to a $\mathrm{P}^{1}$ mapping to the target $\mathrm{P}^{1}$ with degree
$d_{e}$ , with two points of total ramification over $p_{1}$ and $p_{2}$ .

For such agraph, define aflag $f$ as an incident edge-vertex pair $(e, v)$ .
To every edge correspond two flags. Let $xf=C_{e(f)}\cap C_{v(f)}$ denote the
incidence point of aflag $f$ . One has the exact sequence $[\mathrm{G}\mathrm{r}\mathrm{P}]$ :

$0arrow \mathcal{O}_{C}arrow\oplus_{v}\mathcal{O}_{C_{\mathrm{p}}}\oplus\oplus_{e}\mathcal{O}_{C_{6}}arrow\oplus_{f}\mathcal{O}_{x_{f}}arrow 0$
.

This is the partial normalization sequence that arises from resolving
the nodes of $C$ corresponding to flags. The third map is

$((a_{v})_{v}, (a_{e})_{e})\vdash+(a_{v(f)}(xJ)-a_{e(f)}(xf))_{f}$ .

Twisting by $\mu^{*}\mathcal{O}(-1)$ and taking cohomology yields:

$0arrow\oplus_{v}\mathcal{O}_{p:(v)}(-1)arrow\oplus_{f}\mathcal{O}_{p_{i(v(f))}}(-1)arrow$

$H^{1}(C,\mu^{*}\mathcal{O}(-1))arrow\oplus_{v}H^{1}(C_{v}, \mu^{*}\mathcal{O}(-1))\oplus\oplus_{e}H^{1}(C_{e}, \mu^{*}\mathcal{O}(-1))arrow 0$

where $i(v)\in\{1,2\}$ is defined by $\mu(C_{v})=p_{i(v)}$ .
We apply the localization formula of Graber and Pandharipande

$[\mathrm{G}\mathrm{r}\mathrm{P}]$ to compute the integral. The integrand is the top Chern class
of the bundle with fibers $H^{1}(C,\mu^{*}(\mathcal{O}(-1))\oplus H^{1}(C,\mu^{*}(\mathcal{O}(-1)).$ iFrom
the cohomology sequence, avertex with valence $m$ contributes $m-1$
terms $\mathcal{O}_{pi(v)}$ (1) to $H^{1}(C, \mu^{*}(\mathcal{O}(-1))$ . These terms are pure weight.
If the linearization $[\alpha, \alpha+1]$ is chosen for $\mathcal{O}_{\mathrm{p}}(-1)$ , then $\mathcal{O}_{p1}(-1)$ has
weight $\alpha$ and $\mathcal{O}_{p_{2}}$ (1) has weight $\alpha+1$ .

Choose the linearization of $N$ given by $[0, 1]$ on one summand and
[-1, 0] on the other summand. Then any graph that has avertex of
valence at least 2doesn’t contribute to the integral: $H^{1}(C,\mu^{*}N)$ con-
tains terms $\mathcal{O}_{p1}$ (1) or $\mathcal{O}_{p2}( 1)$ of pure weight zero, so the integrand
vanishes.

Contributing graphs have therefore one edge, labeled with degree $d$ ,
and two vertices, labeled with genera $g_{1}$ and $g_{2}$ with sum $g$ . For such

$\mathrm{f}\mathrm{i}$ graph, the cohomology sequence yields an isomorphis$\mathrm{m}$

$H^{1}(C,\mu^{*}\mathcal{O}(-1))\cong(\mathrm{E}_{g_{1}}^{\vee}\otimes \mathcal{O}_{p1}(-1))\oplus(\mathrm{E}_{g_{2}}^{\vee}\otimes \mathcal{O}_{p2}(-1))\oplus H^{1}(\mathrm{P}^{1}, \mathcal{O}(-d))$.
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With linearization $[\alpha, \alpha+1]$ , the top Chern class of $H^{1}(C, \mu^{*}\mathcal{O}(-1))$

contributes

$c_{\alpha^{-1}}( \mathrm{E}_{g1}^{\vee})\alpha^{\mathit{9}1}\cdot c_{(\alpha+1)}-1(\mathrm{E}_{g2}^{\vee})(\alpha+1)^{g2}\cdot ab<0\dotplus_{b=-d}\prod_{a}..a(-\alpha)+b(-\alpha-1)d$

(compare $[\mathrm{G}\mathrm{r}\mathrm{P},\mathrm{p}.505]$ and $[\mathrm{K}2,\mathrm{p}.358]$ ). So with the chosen linearization
of $N$ , the contribution of $c_{\mathrm{t}\mathrm{o}\mathrm{p}}(R^{1}\pi_{*}\mu^{*}N)$ becomes

$($ -1 $)^{}$ $\lambda_{g_{1}}^{(1)}\cdot c(\mathrm{E}_{\mathit{9}2}^{\vee})\cdot\frac{d!}{d^{d}}\cdot(-1)^{g_{1}}c(\mathrm{E}_{g1})\cdot(-1)^{g2}\lambda_{\mathit{9}2}^{(2)}\cdot(-1)^{d-1}\frac{d!}{d^{d}}$ .

This has to be multiplied with $1/e(N^{\mathrm{v}\mathrm{i}\mathrm{r}})$ , the inverse Euler class of the
virtual normal bundle to the fixed point locus corresponding to the
graph. In case $g_{1}$ and $g_{2}$ are both positive, we can use the formula
from $[\mathrm{G}\mathrm{r}\mathrm{P},\mathrm{p}.505]$ :

$\frac{1}{e(N^{\mathrm{v}\mathrm{i}\mathrm{r}})}=\frac{1}{\frac{1}{d}-\psi^{(1)}}\cdot 1\cdot\frac{1}{-\frac{1}{d}-\psi^{(2)}}\cdot(-1)\cdot c(\mathrm{E}_{g_{1}}^{\vee})\cdot c(\mathrm{E}_{g2})(-1)^{g_{2}-1}\cdot\frac{(-1)^{d}d^{2d}}{(d!)^{2}\cdot 1}$ .

Multiplication gives

$\int_{\overline{M}_{g_{1\prime}1}}\frac{\lambda_{g1}}{\frac{1}{d}-\psi_{1}}\cdot\int_{\overline{M}_{g_{2\prime}1}}\frac{\lambda_{g2}}{\frac{1}{d}+\psi_{1}}$

since $c(\mathrm{E})c(\mathrm{E}^{\vee})=1$ . The contribution of the graph is then

(7) $\frac{1}{d}\cdot d^{2g_{1}-1}b_{g1}\cdot d^{2_{\mathit{9}2}-1}b_{g2}=d^{2g-3}b_{g1}b_{g2}$

(the extra $\frac{1}{d}$ comes from automorphisms of the map $[\mathrm{G}\mathrm{r}\mathrm{P},\mathrm{p}.501]$).
In case $g_{1}$ resp. $g_{2}$ is zero, replace $( \frac{1}{d}-\psi^{(1)})^{-1}$ by $\frac{1}{d}$ resp. $(- \frac{1}{d}-\psi^{(2)})^{-1}$

by $- \frac{1}{d}$ (see $[\mathrm{K}2,\mathrm{p}.356]$ ). The result is that formula (7) continues to hold
when $g_{1}$ or $g_{2}$ is zero.

Therefore

$\int_{[\overline{M}_{g}(d)]^{\mathrm{v}\mathrm{i}\mathrm{r}}}c_{\mathrm{t}\mathrm{o}\mathrm{p}}(R^{1}\pi_{*}\mu^{*}N)=\sum_{>g,,\dotplus g20g_{1}^{1}g_{2}\equiv g}d^{2g-3}b_{g1}b_{\mathit{9}2}=\frac{|(2g-1)B_{2g}|}{(2g)!}d^{2g-3}$
,

where the last equality follows from Bernoulli identities [FP1,\S 4.2].
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