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1 Introduction

This paper consists of a work with Toshiya Kawai [K-Y, sect. 5] and some remarks on my
paper [Y1]. In [K-Y, sect. 5], we tried to understand the meaning of string partition function
on elliptically and K3 fibered Calabi-Yau 3-folds in terms of D0-D2 branes. We conjectured
that string partition function is constructed by lifting procedure from a jacobi form of weight
0

\plo,m(Ta Z)

Dy(7,2,v) =
ol ) X10,1(T, V)

(1.1)

where W10, ,(7,2) is a jacobi form of weight 10 and index m and x10:(7, V) is the cusp jacobi
form of weight 10 and index 1 [K], [K-Y, sect. 4]. Wi, (7,2) depends on the choice of
Calabi-Yau 3-fold. In [K-Y, sect. 5], we understand independent term 1/x10,(7,v) as a
contribution of D0-D2 branes on a fixed K3 surface. We interpret D0-D2 branes as pairs
(L,s) of dimension 1 sheaves L and sections s € H°(L). Then 1/x10.(7,v) is regarded
as Euler characteristics of moduli spaces of these pairs (more precisely, moduli spaces of
coherent systems) on a fixed K3 fiber (Theorem 3.24).

As far as I know, moduli spaces of stable pairs, or coherent systems are used as a tool for
investigating moduli spaces of vector bundles. For example, they are used to show Verlinde
formula by Thaddeus [T], to compute Donaldson invariant by O’Grady [O], Le-Potier [Le],
He [He],... and to compute Hodge numbers of moduli spaces by Géttsche-Huybrechts [G-H].
¢ From this point of view, our result is interesting. That is, our result make us to expect that
moduli spaces of coherent systems have good structure.

For our computation of Euler characteristics, we need to control dim H°(L). Hence we
need to analyse Brill-Noether locus (BN locus) of moduli spaces of sheaves. In general this
is a difficult problem, but in our case BN locus behaves very well. Hence we can compute
Euler characteristics of moduli spaces of coherent systems. For more details, see our paper

[K-Y].

*The second part of this paper was done during my stay at Max-Planck Institut fiir Mathematik in
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In the second part, we consider the contraction of BN locus and the ample cone of moduli
spaces. We also give some examples of birational maps.

Finally we remark that Markman [Mr] also studied (—2)-reflections and Brill-Noether
locus of moduli spaces as an example of his generalized elementary transformation of sym-
plectic manifold.

2 Preliminaries

Hodge polynomials: For a smooth complex projective variety V, we define the Hodge
polynomial by

dim(V)
Xi(V) = Y (=1pPHmms(Vyerde, (2.1)

P,9=0

where hP9(V) = dim HI(V,Q},). We also introduce

x:(V) == xea(V), (2:2)

which is essentially the Hirzebruch x, genus of V. Note that the Euler characteristic of V' is
given by x(V) = xa(V).

Mukai lattice: Let X be a K3 surface. The Mukai lattice of X is the total integer coho-
mology group

H*(X,Z) = H'(X,Z) ® H*(X,Z) ® H*(X, Z), (2.3)

endowed with the symmetric bilinear form
(v,v') = / (aANcy—r Aa'o—1" ANap), (2.4)
X

for any v = (r,¢1,a) € H*X,Z) and v' = (r',¢},d’) € H*(X,Z). Here the notation
v = (r,c;,a) means v = 7 @ ¢; @ ap with r € H(X,Z), ¢; € H¥X,Z), a € Z and p €
H*(X,Z) is the fundamental cohomology class of X so that [, ¢ = 1. We have H*(X,Z) =
Es(—1)®2 @ H®* where Eg is the positive definite even unimodular lattice of rank 8.

The Grothendieck group K(X) is defined to be the quotient of the free abelian group
generated by all the coherent sheaves (up to isomorphisms) on X by the subgroup generated
by the elements F' — E — G for each short exact sequence

0OE—-F—->G-0 (2.5)

of coherent sheaves on X. In what follows, we shall use the same notation F for both a
coherent sheaf on X and its image in K(X).

Let v : K(X) = @&;H*(X, Q) be the module homomorphism defined by Mukai vectors,
namely E — v(E) := ch(E)4/td(X). Explicitly we have

o(E) = (rk(E), ei(E), tk(E) o + %CI(EV - c2(E)) . (2.6)
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Thus actually we have v(K(X)) C H*(X,Z) since H*(X,Z) is even. The image v(K (X))
is Z & NS(X) @ Zp. This definition is such that

X(E,F):= Y (-1)'dimExt!(E, F) = —(v(E), o(F)), C(2)

=0

by the Hirzebruch-Riemann-Roch formula.
Isometry of Mukai lattice: The Mukai lattice has several distinguished isometries.

(i) Let N be a line bundle on X. Since (z ch(N),ych(N)) = (z,y), the homomorphism

ATN: H*(X,Z) —» H*(X,Z)
T — zch(N)

is an isometry.
(i) O(H?*(X,Z)) acts on H*(X,Z).
(iii) Let v; € H*(X,Z) be a Mukai vector of (v]) = —2. Then the (—2)-reflection

Ry, : H'(X,Z) — H*(X,Z)
z =+ (v, Z)v

is an isometry.
(iv)
D: H*X,Z) — H*(X,Z)

z=(r,c;,a) — zV=(r,—cp,a)
is an isometry.

It is known that O(H*(X,Z))/ £ 1 is generated by these transformations and O(H*(X,Z))
acts transitively on the set of primitive Mukai vectors v of the same (v?). Hence it is
important to study (—2)-reflections.

Muduli spaces of stable sheaves: Let My(v) be the moduli space of stable sheaves E
of v(E) = v. If v is primitive, then for a suitable polarization, My(v) becomes a smooth
projective manifold.

We need the following theorem [Y3, Thm. 5.1].

Theorem 2.8. Let v be a primitive Mukai vector such that tkv > 0, or tkv = 0 and ¢;(v)
is ample. Then My (v) is deformation equivalent to X240 1f X 5 P s an elliptic K3
and f is a fiber, then the same result holds for My(0, f,a). In particular, x,;(Mg(v)) =
o s(X ),
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3 Coherent systems
Let C} be an effective divisor of (C2)/2 = h — 1.
Definition 3.1. We set v = (r,C},a). Let
Syst™(v) := {(E,U)|E € My(v),U C H*(X,E),dimU = n} (3.2)
be the moduli space of coherent systems and p, : Syst™(v) — My(v) the natural projection.
In order to consider fibers of p,, we introduce a stratification.
Definition 3.3. For i > max{0, (v,v1)}, we set

My (v)i := {E € Mg(v)|dim H*(X,E) = —(v,v;) + i},

Syst™(0)s 1= p5 (M (0)). 4
We consider the following two conditions on Cj:
(¥1) There is an ample line bundle H such that
(Ch,H) = min{(L, H)|L € Pic(X),(L,H) > 0}. (3.5)

(x2) Every member of |C}| is irreducible and reduced.

Obviously, condition (*1) implies condition (x2).
Assume that n <r. We set w = (r —n,Ch,a —n) and m = n — (r +a). Then we have a
morphism

gy : Syst™(v) = My(w)

(3.6)
(f:U®Ox = E) — coker f
and we get the following diagram:
Syst™(v);
po N\ (3.7)
My (v); My (w)itn,

where p, is an étale locally trivial Gr(—(v,v,) +,n)-bundle and g, is an étale locally trivial
Gr(¢ + n,n)-bundle.

Lemma 3.8. [K-Y] Under the condition (%1), Syst™(v) is a smooth scheme of dimension
(v?) + 2 — n(n + (v1,v)), where v; = (1,0,1).

Outline of the proof. Let A = (E,U) be a point of Syst"(v). Then the Zariski tangent
space of Syst”(v) at A is given by Ext'(U ® Ox — E, E)/ Hom(U,U), and the obstruction
of infinitesimal liftings belong to the kernel of the composition of homomorphisms

7: Ext*(U ® Ox = E,E) = Ext’(E, E) 5 H*(X,Ox), (3.9)
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where Ext*(U®QOx — E, *) is the hypercohomology associated to the complex UQOx — E.
By using the universal extension

0 — Ox ® Ext'(E,0x)Y — G — E — 0, (3.10)

we can show that Ext?(U ® Ox — E, E) = C, which implies that Syst”(v) is smooth at
A. O
By using Lemma 3.8, we see that

Corollary 3.11. [Y1, Cor. 5.8] Assume that i > max{0, (v,v;)}. Under the condition (x1),
(i) BN locus Mg (v); has a stratification My (v); = Uj»iMg(v);,
(ii) My (v); has the expected dimension (v*) + 2 —i(i — (vy,v)).
(itt) Mpy(v); is singular along Ujs;Mg(v);,
(iv) gy : Syst'(v + ivy) = My(v); is a desingularization of My (v);.
Remark 3.12. We can define scheme structure on My (v); by using fitting ideal [ACGH].

Then we see that My (v); is Cohen-Macaulay, reduced and normal (see [ACGH]).
Remark 3.13. We have another desingularization:

Syst(v + iv;) PR — Systi= 1) (1)

hY e (3.14)
Mp(v);

The following proposition which plays important roles is due to Markman [Mr, Thm.
39].

Proposition 3.15. [K-Y] Assume that C} satisfies condition (x1). Forn > r, we have an
isomorphism

d : Syst™(r,Ch,a) = Syst™(n — r,Cy,n — a). (3.16)
If n =1 and r =0, then the same assertion holds under the condition (x2).

Outline of the proof. For a coherent system f : U ® Ox — E, by our assumptions, we see
that

(1) f is surjective in codimension 1 (and hence dimcoker f = 0) and ker f is a (slope)
stable sheaf, or

(i1) f is injective and coker f is a (slope) stable sheaf

according as (i) n > r or (ii) n = r. For the second case, f is also generically surjective.
Hence we get an exact sequence

0— Homox(E, Ox) — HomoX(U &® Ox,(')x) —
Exty (U®Ox = E,0x) = Exty (E,0x) = 0 (3.17)
We set D(E) := Eaxtp, (U ® Ox — E,Ox). Then UY @ Ox — D(E) is an element of

Syst™(n — r,Ch,n — a). Hence we get a map ¢ : Syst"(r, Cj,a) — Syst™(n —r,Ch,n —a). It
is not difficult to see that 4 is an isomorphism. O
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Corollary 3.18. [K-Y] By the above isomorphism, we get the following diagram:

Syst™(v); & Syst™(w)r4a-nti
Pv / \( Pw . (319)
My (v); My (W), pa—nyi

where v = (r,Ch,a) and w = (n — r,Cp,n — a).
Proof. Let U® Ox — E be an element of Syst™(v). Since Exty (UQ Ox — E,0x) =0
for i # 1, we get
Ext*'(U ® Ox - E,Ox) = H'(X,Exty, (U ® Ox —+ E, Ox)). (3-20)
Since Saztbx(U ® Ox — E,Ox) is a stable sheaf of positive degree, Serre duality and (3.20)
imply that
EXt3(U ®Ox — E,Ox) = H2(X, gwtbx(U ® Ox — E, Ox)) = 0. (3.21)

By using the canonical exact sequence

0 =Ext'(U® Ox,0x) - Ext}(U ® Ox = E,Ox) —
' Ext*(E,Ox) = Ext’(U ® Ox,0x) = 0, (3.22)
we see that
dim H'(X, Sxt(lgx(U ® Ox — E,Ox)) = dimExt*(U ® Ox = E,Ox)
= dimExt*(E,Ox) — n (3.23)
=dimH(X,E)-n=r+a+i—n.
Ol
By using the diagram (3.7), Corollary 3.18 and Theorem 2.8, we can show our main
assertion of the talk at RIMS.

Theorem 3.24. [K-Y] Assume that C}, satisfies (x1) for all h > 0. Then, for 0 < |q| <
lyl <1,

D> Xui(Syst'(0,Ch,d + 1 — h))(2]) hghtytH1-h
h=0 d=0 ) (325)
2()o0(9/9)oo (1Y) ™) oo By @)oo (11900 (9)18(t )00
where
(O = T - €47 (3.26)
n=0
In particular, by settingt =1 = 1, we obtain
o] (e o] 1
Syst}(0,Ch,d + 1 — h))g*Lydti=h = . 3.27
> x(Syst'(0,Cy gy ) (3:27)

h=0 d=0

Moreover, if Cy, is ample and satisfies (x2), then x, ;(Syst'(0,Ch,d + 1 — h)) is meaningful
and can be obtained from (3.25) as if C), satisfied (x1).
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As we explained in Introduction, (3.27) gives the meaning of 1/x10,1(7,v) which appears
in the string partition function of elliptically and K3 fibered Calabi-Yau 3-fold. For the last
claim, we use the following lemma and deformation argument.

Lemma 3.28. Under the condition (x2), Syst'(0,Ch, a) is smooth of dimension 2h +a — 1.

Proof. By Proposition 3.15, Syst'(0,C},a) is isomorphic to Syst'(1,Cj,1 — a). Hence we
shall prove that Syst'(1,Ch,1 — a) is smooth. Let f : Ox — Iz(C) be an element of
Syst'(1,Ch,1—a). Then condition (x2) implies that f is injective and L := coker f is a torsion
free sheaf on C. In order to prove the smoothness of Syst'(1,Ch,1—a) at f: Ox — Iz(C),
it is sufficient to prove that Hom(Iz(C),L) = C. Since I7(C)c/(torsion) = L and L is

simple, we get our claim. O

4 Contraction of Brill-Noether loci

4.1 Line bundles on‘ Mpy(v)

Theorem 4.1. [Y2, Thm. 0.1] Let v be a primitive Mukasi vector of tkv > 0 or ¢,(v) is
ample. Let Bpg,(v) be Beauville’s bilinear form on H*(My(v),Z). Then

0, : (vla< , o)) (H2(MH(U)7Z)’BMH(U))

is an isometry which preserves Hodge structures for (v?) > 2, where 0, : v+ — H*(Myg(v),Z)
is the canonical homomorphism defined by

0.(z) == [PMH(U)* Chg)\/td_x:z ] ,

and € 1s a quasi-universal family of similitude p on My(v) x X, that is, Eypyxx = E%* for
all E € My(v) ([Mu3]).

By this theorem, we can identify Pic(Mpy(v)) with (Z&NS(X)®Zo)Nvt = v(K(X))Nvt.
If x € v’ belongs to Z ® NS(X) & Zp, then we can construct 8,(z) as a determinant line
bundle:

There are at least two method to construct determinant line bundles. One method is to
use a standard family on a quot-scheme. The other is to use local universal family. Here
we explain the second method. Let {U;} be an analytic open covering of My(v) such that
there is a universal family £’ on each U; x X. We may assume that (gi)IU.-nU,- > (&7 i -
Since &, is a family of simple sheaves, Hom,,, v, (EDwinv;> (EDwinv,) = Ouv,av,- So the
isomorphism ¢; ; : (g:;)IU.ﬂU,' = (& ),U AU, 18 determmed up to the choice of t € OU U, For
a € K(X), we consider line bundles det py,(€! ® a¥) on U;. We consider an autornorphlsm
t: & — &, t €0y, Then it acts on det py, (€ ® a¥) multiplication by ¢(*(*)*). Therefore
if (v(a), ) = 0, then we can patch up {detpy.(£ ® aV)}; to get a line bundle £,(a) on
Mpy(v). Then we can show that ¢,(£,(a)) = 8,(v(a)).

Definition 4.2. My (v)*'*¢ is the open subscheme of My(v) consisting of p-stable vector
bundles and Ni(v) the Uhlenbeck compactification of My (v)*'o°.

We quote the following fundamental result of J. Li.
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Theorem 4.3. [Li] The linear system |0,(n(0,rL,(c1,L)))|, n > 0 is base point free. If
r > 1, then the image is NL(v), if r = 1, then the image is the symmetric product of X.

If » = 0, then we have the following.

Lemma 4.4. We set v := (0,L,a). Let j : My(v) — P" be the map sending E € My(v)
to Supp(F) € |L|, that is, j is the Jacobian fibration, where n = dim My(v)/2. Then

0.(e) = 7" (Op(1)).

Proof. Let q : Q(v) = Mpg(v) be a standard covering of My(v), where Q(v) is an open
subscheme of a quot scheme. It is sufficient to prove that ¢*8,(0) = ¢*7*(Opn(1)). Let Q be
the universal quotient sheaf on Q(v) x X. Let

0->VioV—2Q0-0 (4.5)

be a locally free resolution of Q. Let D be an effective divisor on Q(v) x X defined by
det Vi — detVy. By the construction of D, Dyz3xx = Supp(Qz) € |L|. Hence we get a
morphism Q(v) = P(H°(X, L)V) which factors through Q(v) 3 Mgy(v) & P(H(X,L)V).
Hence ¢*0,(e) = 475" (Op~(1)). O

4.2 Birational correspondence
Let v;,v € H*(X,Z) be Mukai vectors such that

n = (7'1, L,, al)’
v=(r,L,a), (4.6)
(v?) = -2,

where r;,7 > 0 and a;,a € Z.
We assume that there is an ample divisor H such that

(x3)
ri(L,H) — r(Ly, H) = min{(D, H)|D € Pic(X), (D, H) > 0}.

Throughout this section, we choose this ample divisor as a polarization of X.

Remark 4.7. L.H.S. is called twisted degree of v with respect to v,. If v; = v(Oyx), then
twisted degree is nothing but the usual degree of v.

Ezample 4.8. Ox satisfies that (v(Ox)?) = —2.
Let E, be an element of My (v,). Then E, is locally free and satisfies that

HOHI(El, E]) = C,
Ext'(E,, Ey) = 0,
EXt2(E1,E1) = C
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Definition 4.10. (1) Let
Syst™(v1,v) := {(E,U)|E € Myx(v),U C Hom(E, E),dimU = n} (4.11)

be the moduli space of (twisted) coherent systems and p, : Syst™(vy,v) = Mg(v) the
natural projection. :

(2) For i > max{0, (v,v;)}, we set

My(v); :== {E € My(v)|dimHom(E,, E) = —(v,v,) + ¢},

Syst™(vy,v); := p; (Mg (v):). (4.12)

Then we can easily generalize Lemma 3.8, Corollary 3.11, Proposition 3.15, and Corollary
3.18 to our situation. For example, Proposition 3.15 is generalized as follows: For nr; > r,
we have an isomorphism

4 : Syst™(vy,v) —= Syst™(v),nv) —vY) (4.13)
by sending U ® Ey — E to UY ® EY — Exty, (U ® Ey — E,Ox).
Assume that n := —(vy,v) > 0. We consider a correspondence defined by Syst™(v;,v):
Syst™(vy, v)
o e T (4.14)
My (v) My (w)
where
) 7= po,
(i)
>
T | (4.15)
——Do R, (v), r <nr,

(iii)
coker(U @ Ey — E), r > nry

4.16
gxté)x(U®E1 %E,Ox)ZPWO(S((E’U)), r < nry. ( )

"Tw((EaU)) = {

Then we proved the following result in [Y1].
Theorem 4.17. [Y1, Thm. 2.5] We assume that r > nr,. Then,
(1) My(v)o and Myg(w), are open dense subschemes of My(v) and My(w) respectively.

(2) TolSystm(viv)e ANE Tyw|Systn(vy,0) @T€ tS0morphisms. In particular My (v) and My(w) are
birationally equivalent.
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(3) We assume that Mg(v); # 0. We set u; := v +1v;. Then there are morphisms

w, : My(v); = Mg(u;)o,

4.18
Wy - MH(w)i+'n — MH(ui)07 ( )
and the restriction of the diagram (4.14) to Syst™(vi,v); is displayed as follows:
Syst™ (v1, v);
o N 7w
MH('U),' MH(w)n+,- (4.19)
@ \y < ®u
Mp(ui)o
where
(3-1) w,(E), E € My(v); is defined by the universal extension
0 — E,  Ext'(E, E,)Y - w,(E) - E — 0. (4.20)

ww(F), F € My(w)itn is also defined by the universal extension.
(3-2) w, is an étale locally trivial Gr(2i + n,1)-bundle.
(3-8) w, is an étale locally trivial Gr(2: + n,n + i)-bundle, which is the dual of w,.

(3-4) Syst™(vy,v); is the incidence correspondence of these two bundles.
By similar method as in [Y1], we can show the following result due to Markman [Mr].
Theorem 4.21. We assume that n := —(v;,v) > 0 and r <nr,. We set w= —Do R,,(v).
(1) Mg(v)o and Mg(w)o are open dense subschemes of My(v) and My(w) respectively.

(2) Ty systn(v1,0)o ONd Ty|Systn(vy,0)0 aT€ iS0moTphisms. In particular My(v) and My (w) are
birationally equivalent.

(3) We assume that My(v); # 0. We set u; := v +iv,. Then there are morphisms

@, : Myg(v); = Mg(u;)o,

4.22
@y : Mg(w); = My (u;)o, (4.22)
and the restriction of the diagram (4.14) to Syst™(vy,v); is displayed as follows:
SyStn(vla ’U),-
o \{ o
MH(’U),' MH(w),- (4.23)
@y N\ v ww
MH(Ui)o

where
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(3-1) w, is the same as in Theorem 4.17 and w,(F), F € Mpyg(w); is defined by
@u(F) = Extly, (Hom(EY, F) ® EY — F,Ox). (4.24)

(3-2) @, is an étale locally trivial Gr(2i 4 n,7)-bundle.

(3-8) w, is an étale locally trivial Gr(2i + n,n + i)-bundle, which is the dual of w,.

(3-4) Syst™(vi,v); is the incidence correspondence of these two bundles.

: 5 . ..
Remark 4.25. @, : Mg(w); = Syst™**(v),w); & Syst™*(vy,u;)o i Mpg(u;)o.
We shall show that the exceptional locus (BN locus) of the birational transformation can
be contracted: i

Syst™(v1,v)
o N\ 7w
MH(’U) DA — MH(w) (426)
e vd
Ui>oMp(ui)o

Ezample 4.27. We assume that X is a K3 surface of Pic(X) = ZH and (H?) = 2r > 0. We
set v = (r, H,0) and w = (0, H, —r). Then w = Ry(04)(v) and R,0x) induces an elementary
transformation My (v)--- = Mpu(w). :
We set

B, :={E € My(v)|h°(X,E) =r + 1},

B, := {F € Myx(w)|h®(X, F) = 1}. :
Then there is an exceptional vector bundle G of v(G) = (r + 1, H,1) such that B, =
P(H°(X,G)V) and B, 2 P(H°(X,G)). The exceptional set of the elementary transformation
Mg (v)--- = My(w) are r + 1-dimensional projective spaces B, and B,,. Let j : My(w) —
Pr+! be Jacobian fibration sending F € My (w) to the support C € |H|. Then B, is the
0-section of this fibration. By Lemma 4.4, j*Opr+1(1) = 0,,(¢). We note that

Ro,((-1,0,0)) = (0,0, 1)
Ro,((0,H,2)) = (-2, H,0).

Hence 6,((1,0,0)) is nef on Mg(v) \ B,. We shall prove that
0,(z)B, = —(v(Ox), z)ci(Opr+1(1))- (4.28)
Proof of (4.28). Let F be a family of sheaves on B, x X which is defined by the exact

sequence
00— 0p,(-1)ROx -0, G - F = 0.
Then we see that
Lu(a)u;u = dethu;(]:(X) av)
= det pp,i(—O0p,(—1)) ® ")
= @Bv(_1)®(v(0x),a>
— Oﬂ»r+1(1)®(_("(o")’°‘>).
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Hence 0,(z) is nef on B, if and only if (v(Ox),z) < 0. Therefore 8,(a(0, H,2) + b(1,0,0)),
2a < b< 0 is a nef divisor on My (v). Under the same conditions, we get that ((a(0, H,2) +
5(1,0,0))?) > 0 and the equality holds if « = 0. By 6,((—1,0,0)+2(0, H,2)), we can contract
the exceptional set B,.

Syst™(v1, v)

Ty / \ Tw
My (v) e — My (w) (4.29)

N
My (v)o U{G}

We can also compute the ample cone.

A(My(v)) = {z(0, H,2) + y(-1,0,0)]2z > y > 0}

A(My(w)) = {2(0,0,1) + y(—2, H,0)|z/2 > y > 0}. (4.30)

In particular, My (v) is not isomorphic to My (w).

Proof of (4.30). By Theorem 4.1, tk Pic(My(v)) = 2. In particular Pic(Mg(v)) ® Q is
generated by (0, H,2) and (-1,0,0). We note that ((v + ¢)?) = 0. Hence if r > 1, then
Mpy(v) \ Mg(v)*' is not empty. By Theorem 4.3, 8,((0, H,2)) is not ample. If r = 1, then
My (v) = Hilbk, and hence 6,((0, H,2)) is not ample either. Therefore we get that

A(My(v)) = {(0,H,2) + y(-1,0,0)|2z > y > 0}.

Hence there is no morphism My(v) — P *1. In the same way, we get the description of
A(Mg (w)).

Construction of the contraction map: For a Mukai vector v, we set

Ay i=—(0,v)H + (H,v)p, |
By = — (0, R, (v))R,,(H)+(H,R,, (v)) R, (0)-

Then Py = Rul()\va (v)) = R,,1 o] D(/\—DoR,,l (,,)). Since 8, o (va o] D) = 0_D°va (v), We get

(4.31)

0u(ttv) = OR,, ()( ARy, (v)) = 0-DoRy, (v)(A-DoRy, (v))-

By Theorem 4.3, 0,(),) is nef and big and it gives a contraction My(v) = Ny(v). Also
0.(Aw) gives a contraction My (w) = Ny(w), or My(w) = P™, (2m = dim My (w)). We see
that (A, + py,v1) = 0. So we can expect that 8,(), + p,) and 0,,(\y, + py) give contractions

q1 :My(v) > M' = UisoMy(u;)o

4.32
q2 :MH(w) - M = UiZOMH(ui)O ( )

such that g;' 0 g : My(v) -+ — My (w) is generalized elementary transformation.
We claim that

(*) the restriction of 8,(), + p,) to Mg(v); is the pull-back of an ample line bundle on
MH(’U,,')O.
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Proof of (*): We note thz:LtVRv1 or —D o R,, induces an isomorphism Mg (u;)o = Mg(w;)o,
where w; = R, (u;) or wi = —D o R, (u;) according as rk R, (u;) > 0 or tk R,, (u;) < 0.
By Theorem 4.3, 0,,()y;) is nef on Mg(u;). Also 6,,(\y,) is nef on My (w;), and hence
Ou; (p;) = Ou,(Aw;) is nef on Mp(u;)o. It is known from the construction of My(u;) that
(Z ® ZH & Zp) N u} contains ample divisors. It is easy to see that (a,b,c) € ui satisfies
a < 0 if it is ample and My(v;) # Mg(w;)*"°. By a simple calculation, we see that
rk py, = tkvy(tkvly — kv L, H) < 0. Hence A, + €p,,, 0 < € < 1 is ample on My (u;).
The same is true for Ay, + €py;, 0 < € K 1. Therefore 8,,(Ay; + p14;) is ample on Mg(w;)o.
Since Ay + py = Ay; + fa;, our claim follows from the following:

Lemma 4.33. 0,(A, + o) My (v); comes from Oy, (Ay; + pu;)-

Proof. Let {4’} be an analytic open covering of My (u;)o such that there is a universal
family £ on U7 x X. We set VI := Hom, ;(E;,&]). V7 is a locally free sheaf. Let
g : Gr(V?,1) — U’ be the Grassmann bundle of i-dimensional subspaces. Let W7 be the
universal subbundle of V7. Then we have an exact sequence

0> W RE, - g'€l — & -0, (4.34)

where &,7 is a family of stable sheaves which belongs to Mg (v);. £, gives an open immersion
Gr(V,71) = Mu(v);. Then

£v(a)|Gr(Vj,i) = det pGr(Vj,i)!(guj ® aV)
= det pg,(vs,i (€L, ® @) ® det porvi ip(W R E; @ a¥)Y (4.35)
= det pGr(Vj,i)!(gi', Ra’)® det(Wj)Qa(ul )

If x = X\, + p,, then we get a canonical identification

Lo(a)Grvig) = g det puin(El. @ aV). (4.36)

Therefore we get
Ly (@) My () = @y, Lu; (). (4.37)
O

Remark 4.38. Although we used local universal family to prove the lemma, we can prove
the lemma by using quasi-universal family or the canonical family on a quot-scheme.

By (*), 8,(Av+po) is nef and big. Since Kz, (v) is trivial, base point free theorem implies that
0,(Ay+p,) is base point free. By this map, all fibers of Grassmann bundle My (v); — Mpy(u;)o
are contracted.

Proposition 4.39. If My(v), # 0, then Ry (), + p,,) is a boundary of the ample cone. In
particular, if Pic(X) = ZH, Mg(v): # 0 and My(v) # My(v)*'°°, then the nef cone is
spanned by X, + p, and A,.

Some examples of birational maps:
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Ezxample 4.40. We shall give an example of Mg(v) whose elementary transformation is iso-
morphic to My(v). Assume that Pic(X) = ZH and (H?) = 10. We set v = (1, H,4). Then
Mp(v) = Hilb%. We set v; := (3,2H,7). Then (v}) = —2. Hence there is an exceptional
bundle E, of v(E;) = v;. We set B, := {F € My(v)|h°(X,EY @ E) = 1}. Then B, is
isomorphic to P? and R,, induces an elementary transformation My (v)--- = My(4,3H,11)
along B,.

On the other hand, —Rp, induces an isomorphism Mpy(v) = Mpy(4, H,1) and since
My(4,H,1) = My(4,3H,11), we get elmp, (My(v)) = My(v).

The following proposition shows that the divisorial contraction Mg (2, ¢;,a) = Ng(2,¢;,a)
is different from the Hilbert-Chow morphism.

Lemma 4.41. We assume that tkv = 2 and D := My(v) \ Mg(v)*'° is not empty. Then
Omy(w)(D) is defined by 0,((2,¢1,2 + (¢})/2 — (v(Ox),v))). In particular, D is primitive.
Since the exceptional divisor of Hilbert-Chow morphism is divisible by 2, the two divisorial
contractions are different.

Proof. Let F be a universal family of stable sheaves on X parametrized by an open subscheme
Q of a suitable quot scheme. Let 0 — V; = V5 = F — 0 be a locally free resolution of F.
Then we get an exact sequence :

0 F a5 V)Y = VY = Ext!(F,0gxx) — 0.

We note that F is reflexive and F¥V = F ® det F¥. We denote the pull-back of D to
Q@ by D’. Since the multiplicity of pg.(€xt!(F,Ogxx)) at the generic point of D' is 1,
det po.(Ext' (F,Ogxx)) = Oq(D'). By using relative duality, we see that

p(Ext'(F, Ogxx)) = pe(Vy') = pai(Vo") + pou(F)
= po(Vo, Ogxx) — Poi(F, Ogxx) — por(Vo') + por(FY)
= —pa!(F,Ogxx) + por(F")
= po!(F) + poi(F")
= poi(F) + pai(F(—c1)) + (v,v(Ox))a

where a = ¢;(F) — ¢;. Hence Og(D’) = det pgi(F ® (Ox + Ox (1) + (v, v(Ox))Cp)"). Since
v(Ox + Ox(c;) + (v,0x)Cp) = (2,¢1,2 + (2)/2 — (v,v(Ox))), we get our lemma. O

The following exapme shows that the reflection changes holomorphic structures in general.

Ezample 4.42. Assume that Pic(X) = ZH. R,(0) induces a birational map
My(r,H,—a) < --- > My(a,H,—r), r >a > 0.

Since My(r,H,—a + 1), My(a,H,~r + 1) # 0, D, := My(r,H,—a) \ My(r, H, —a)*'*
(resp. D, := My(a, H,—r)\ My(a, H,—r)*!°°) is a non-empty subset of codimension r — 1
(resp. a — 1). Hence if (r,a) # (2,1), then in the same way as in Example 4.27, we see
that My(r,H,—a) ¥ My(a,H,—r). If (r,a) = (2,1), then by Lemma 4.41, we see that
MH(Q) H7 _1) % MH(17 Ha _2)

We give an example of moduli spaces such that My(v) & Mg (vY).
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Ezample 4.43. We assume that Pic(X) = ZH and (H?) = 4. R,0y) induces a birational
map

MH(17H70) — MH(O7Ha—1)7
which is an elementary transform along P2-bundle over X. In the same way as in Example
4.27, we see that My(1,H,0) 2 My(0,H,—1). By the action of To(x), we have isomor-
phisms My (0,H,—1) = My(0,H,1) = My(0,H,3). By R,0y), we get an isomorphism
M (0, H,—3) = My(3, H,0).

On the other hand, we set vy := (2,—H,1). Then by using reflection R,0y), we see
that (MH(UO),H) = (X, H), where H := 0,,((0, H,—2)). Since there is a universal sheaf
on Mg (ve) x X, we can consider Fourier-Mukai transform. Then we get an isomorphism
Myg(1,H,0) = My(3,—H,0) ([Y3, Thm. 3.11]). Hence My (3, H,0) 2% My(3,—H,0). More-
over we see that the birational map D : My(3,H,0)--- - Mg(3,—H,0) is an elementary
transformation along the set of non-locally free sheaves.

Finally we give a remark on Riemann-Roch number x(Mpy(v),8,(z)), z € v(K(X)).
Proposition 4.44. |

((=?) +4)((2?) +6) ... ((z%) +2n +2)

2nn! ’

X(Mp(v),0,(2)) =

where n = (v¥) /2 + 1.

Outline of the proof. By Fujiki’s result [F], x(ML(v), 8.(z)) is written as a polynomial of
(z?). If rkv = 1, then by a direct computation for « = (0, L, (L, v)) where L is ample, the
claim easily follows. For general cases, we use the proof of Theorem 4.1. O

This formula enable us to compute the dimension of linear systems. For example, assume
that rkv > 0. Then 6,(),) is nef and big. By using Kawamata-Viehweg vanishing theorem,
we get

(X)) + 4)((X)?) +6) - .- ((A)*) +2n + 2)

27n!
(FPI(H?) + &) (P (HY) 4 6)... (PB(HD) + om +2) 4

onpl ’

dim H®(Mg(v),0,(I1\,)) =

where n = (v?)/2 + 1 and r = rkv.
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