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Y. Eliashberg gave a talk on topology of Lagrangian submanifolds at a
conference held at RIMS from 9to 12 May 2000. Here we note only a part
of his talk.

The content of Sections 1 and 2, except Theorem 1.4 can be found in
[1]. Theorem 1.4 is joint with L. Polterovich and is contained in [2]. Results
stated in Section 3 are extracted from a joint with M. Gromov paper [3].

1 Unknotting of Lagrangian surfaces in sym-
plectic 4-manif0ld

Let $(M^{2n}, \omega)$ be asymplectic manifold. An $\mathrm{n}$-dimensional submanifold $L$ is
called aLagrangian submanifold if $\omega|_{L}=0$ .

Example $M=\mathbb{R}^{2n}=\mathbb{C}^{n}$ , $\omega_{0}=\dot{.}\sum_{=1}^{n}dx^{i}\wedge dy^{i}$ , where $(z_{1}, \cdots, z_{n})=(x_{1}+$

$\mathrm{i}\mathrm{y}\mathrm{i}$ , $\cdots$ , $x_{n}+iy_{n})$ is the standard coordinate of $\mathbb{C}^{n}$ , is asymplectic mani-
fold. In this case, alinear $\mathrm{n}$-dimensional plane $L$ is Lagrangian if and only
if $iL[perp] L$ . If instead we have $iL\overline{\mathrm{r}\mathrm{h}}L$ , then $L$ is called totallyreal. General
totally real submanifolds are defined in an obvious manner.

We will treat $n=2$ case of the above example. The first result we will
mention is the following unknottedness theorem:

Theorem 1.1. Let $\mathbb{R}_{+}^{4}=\{y_{2}\geq 0\}$ and assume that a 2-disk $\Delta$ is embedded
in $\mathbb{R}_{+}^{4}$ as $(\Delta, \partial\Delta)\subset(\mathbb{R}_{+}^{4}, \partial \mathbb{R}_{+}^{4})$ and $\partial\Delta=\{|z_{1}|=1, z_{2}=0\}$ . Then, if we
have $\omega|_{\Delta}\geq 0$ , then Ais unknotted, $i.e$ . we can isotope $\Delta$ relative to $\partial\Delta$ to
a disk in $\partial \mathbb{R}_{+}^{4}$ .
The proof of this theorem relies on the method of filling with holomorphic
discs and we quot the necessary result here. We first define the pseud0-
convexity of an oriented hypersurface $\Sigma$ of general symplectic manifold $(M^{2n},\omega$
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Let $J$ be an almost complex structure on $M$ tamed by $\omega$ . Then, for every
point $x$ on $\Sigma$ , the tangent space $T_{x}M$ has a $J$-invariant(2n-2) dimensional
subspace $T_{x}^{J}\Sigma$ . $\cup T_{x}^{J}\Sigma$ is a(2n- 2) dimensional subbundle $T^{J}M$ of $TM$ .

$x\in M$

Since $\Sigma$ is oriented and each $T_{x}^{J}\Sigma$ has anatural orientation as acomplex
vector space, the quotient 1-dimensional bundle $T\Sigma/T^{J}\Sigma$ is also orientable,
i.e. trivial. In particular, there is atrivial sub-line bundle $\underline{\mathbb{R}}$ of $T\Sigma$ such that
$T\Sigma=\underline{\mathbb{R}}\oplus T^{J}\Sigma$ . Choosing anon-vanishing section $\eta$ of $\underline{\mathbb{R}}$ fixes a1-form $\alpha$

on $\Sigma$ satisfying $\alpha|_{T^{J}\Sigma}=0$ and $\alpha(\eta)>0$ .
Definition 1.1. $\Sigma$ is called $J$ -convex, or pseudoconvex if the quadratic
form $t\mapsto d\alpha(t, Jt)$ on $T^{J}\Sigma$ is positive definite.

With this preparation, we can state the following result.

Theorem 1.2. Let 0be a domain in $\mathbb{R}^{4}$ such that an is pseudo convex
w.r.L some almost complex structure $J$ tamed by $\omega_{0}$ . Let $F$ be a surface
with boundar$ry$ embedded in an such that $F$ has a unique complex point which
is elliptic, and $J$ is integrable near that point. Moreover, assume that there
is a $J$ -holomorphic disc Awith $\partial F=\partial\Delta$ and which is transversal to $\partial\Omega$

along ab. Then $F\cup\Delta$ can be filled with $a$. family of embedded, disjoint
$J$ -holomorphic discs $\{D_{t}\}$ .
Now we explain the outline of the proof of the unknottedness theorem. First,
we take alarge sphere $S$ in $\mathbb{R}^{4}$ with the center on the $y_{2}$-Bxis which intersects
with the $z_{1}$-plane along ab, and let $B$ be the interior domain of $S$ . We can
take adisk $F$ in $S$ whose boundary coincides with ab and has aunique
complex point which is elliptic, and moreover it is isotopic to adisk on $\partial \mathbb{R}_{+}^{4}$

relative to the boundary. On the otherhand, the disk Acan be slightly de-
formed by aboundary fixing isotopy so that $\omega|_{\Delta}>0$ . Taking $B$ large enough,
we can suppose that $\Delta$ is contained in $B$ . Then, there is an almost complex
structure $J$ tamed by $\omega_{0}$ for which Ais $J$-holomorphic. Moreover $J$ can be
chosen integrable near the elliptic point of $F$ . This will allow us to apply the
filling with holomorphic disc technique to the triple $(\Omega=B, F, \Delta)$ , and thus
will supply us with the isotopy mentioned in the theorem.

Using the same technique, we can prove the next theorem.

Theorem 1.3. Let $\Pi_{0}$ and $\Pi_{1}$ denote the hyperplanes $\{y_{2}=0\}$ and $\{y_{2}=$

$1\}$ , and let $L_{0}$ be the Lagrangian cylinder $\{|z_{1}|=1, x_{2}=0,0\leq y_{2}\leq 1\}$ .
Suppose $L$ is another Lagrangian cylinder between $\Pi_{0}$ and $\Pi_{1}$ having the
same boundary as L$. Then, $L$ is Lagrangian isotopic to $L_{0}$ relative to the
boundary in $\mathbb{R}^{4}\backslash (D_{+}\cup D_{-}\cup R_{+})$ , where $D_{+}=\{|z_{1}|\leq 1, z_{2}=0\}$ , $D_{-}=$

$\{|z_{1}|\leq 1, z_{2}=1\}$ , and $R_{+}=\{y_{2}\geq 1,x_{2}=z_{1}=0\}$ .
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(Outline of the proof) We again replace the plane $\Pi_{0}$ by aboundary $\partial\Omega$ of a
large convex domain $\Omega$ such that $\partial\Omega$ intersects with the $z_{1}$-plane along the
unit circle $C$ . As before, we can take adisk $F$ whose boundary coincides with
$C$ and which has aunique complex point which is elliptic. On the otherhand,
we can modify the cylinder $\Delta$ by aboundary fixing isotopy, as well as gluing
adisk on the top of it, so that the resulting disk $\Delta$ will $1_{1^{\mathrm{w}}}\mathrm{a}\mathrm{v}\mathrm{e}$ the boundary $C$ ,
on which the symplectic form is positive. Then, as before, we can choose an
almost complex structure $J$ integrable near the elliptic point of $F$ , tamed by
$\omega_{0}$ , with respect to which $\Delta$ is holomorphic, and then apply the filling with
holomorphic disks technique to $(F, \Delta)$ . This will supply the isotopy we want.

The next is the unknottedness result for Lagrangian knots in $\mathbb{R}^{4}$ .

Theorem 1.4. There is no knotted Lagrangian plane in $\mathbb{R}^{4}$ . That is, if $\phi$ :
$\mathbb{R}^{2}arrow(\mathbb{R}^{4}, \omega_{0})$ is a Lagrangian embedding which coincides with the inclusion
$i$ : $\mathbb{R}^{2}arrow \mathbb{C}^{2}$ defined by $(x, y)\mapsto*(x, 0,0,y)$ outside of a compact set, then
there is a compact supported Lagrangian isotopy between $\phi$ and $i$ .

(outline of the proof) This theorem is aconsequence of the following two
results.

Proposition 1. If a Lagrangian knot $L$ in $\mathbb{R}^{4}$ is contained in some simple
hypersurface $Q$ , then $L$ is Lagrangian isotopic to the flat plane.

Proposition 2. For every Lagrangian knot $L$ in $\mathbb{R}^{4}$ , there is a simple hy-
persurface $Q$ containing it

We first explain the word simple hypersurface. Let $R$ be aoriented hy-
persurface in $(\mathbb{R}^{4}, \omega_{0})$ . Then, the symplectic form $\omega_{0}$ restricted to $R$ defines
an oriented 1-dimensional distribution on $R$ by $Ker\omega_{0}$ . $R$ integrates into a
1-dimensional foliation. We call this foliation characteristic.

Definition 1.2. Ahypersurface $Q$ in $\mathbb{R}^{4}$ is called simple if each leaf of its
characteristic foliation is diffeomorphic to $\mathbb{R}$ and outside acompact set of
$Q$ , each leaf coincide with apart of one of parallel straight lines of agiven
direction.

The proof of proposition 1is carried out by constructing a2-dimensi0nai
foliation $\{M_{t}\}_{t\in \mathrm{R}}$ on $Q$ such that each leaf is aLagrangian diffeomorphic to
$\mathbb{R}^{2}$ , $M_{0}=L$ and $M_{t}$ are embedded standard $\mathbb{R}^{2}\mathrm{s}$ for $t<-1,t>0$ . It can
be done using the characteristic foliation. As for the proof of proposition
2, we need the filling with holomorphic disks technique. Namely, one first
takes a2-dimensional foliation whose leaves consist of trajectories of the
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characteristics foliation which intersect at $-\infty$ aline, parallel to agiven
direction. The constructed foliation is not flat at $+\infty$ , but can be flatten
via an appropriate Hamiltonian isotopy. We first fix some notations. Let
$(u, v, x, y)$ be the coordinate for $\mathbb{R}^{4}$ , $Q_{0}$ be the hyperplane $\{v=0\}$ , $L_{0}$ be
the standard Lagrangian plane $\{(u, 0,0,y)\}$ and $\Sigma_{0}=L_{0}\cap C$ . Let $C=$
$\{(x-u)^{2}+y^{2}\leq 1\}$ and $K=\{(x-u)^{2}+y^{2}\leq 1/2\}$ be two cylinders
contained in $\mathbb{R}^{3}=\{(u, x, y)\}$ . There is aconvex domain $V_{\delta}$ defined by $V_{\delta}=$

$\{-\delta\phi(u, x, y)<v<\delta\phi(u, x, y)\}$ where $\delta>0$ and $\phi(u, x, y)=1-(x-y)^{2}-y^{2}$ .
It satisfies $\partial V_{\delta}\supset\partial C$ . Then, by asuitable dilatation, we can suppose that
our Lagrangian knot $L$ coincides with $L_{0}$ outside of $K$ and is contained in
$V_{\delta}$ . We now isotope $C\cap\{-1\leq u\leq 1\}$ to aset like the figure below.

We denote this map by $\Phi$ . This can be done so that the images of the disks
$\{t\}\cross D^{2}$ are symplectic. We call the image of the discs by $N$ . Then, there
is asymplectic embedding $\chi$ from aneighbourhood of $N$ to $V$ such that
$\chi(\Sigma_{0})=V\cap L$ and $\chi$ is the identity outside $K$ . We can define an almost
complex structure $J$ on $\mathbb{R}^{4}$ tamed by $\omega_{0}$ such that the image of the disks
$\{t\}$ $\cross D^{2}$ by the map $\chi 0\Phi$ are $J$-holomorphic and flat near $\partial$. $V$ and outside
of a compact set in $\mathbb{R}^{4}$ . Then, since $\partial C$ is contained in apseudo convex
boundary, examining the Maslov class of the generator of the first homology
group of $\partial C$ , we see that we can extend $\chi 0\Phi$ to the whole cylinder $C$ in
away that images of the discs $\{t\}\cross D^{2}$ , $t\in \mathbb{R}$ are $J$-holomorphic and for
$|t|$ larger than 1, the map on $\{t\}\cross D^{2}$ is the identity. If we call this map
$F$ , then $Q=(Q_{0}-C\cap\{-1\leq u\leq 1\})\cup F(\{-1\leq u\leq 1\})$ is the required
simple hypersurface
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2 Invariants of $S^{2}$-knots in $\mathrm{R}^{4}$ via symplectic
geometry

Let $f$ : $S^{2}\mathrm{e}arrow \mathbb{R}^{4}$ be an embedding, and $\alpha:=[f]$ the isotopy class of $f$ . Let
us denote by $D(a, b)$ the polydisc $\{(z_{1}, z_{2})\in \mathbb{C}^{2}||z_{1}|\leq a, |z_{2}|\leq b\}$ .

We say that the class $\alpha$ admits a $(a, b)$ -realization for $a>1$ , $b>0$
if ct can be represented by an embedded sphere $S=\Delta\cup D\subset \mathbb{R}^{4}$ where
$D=\{|z_{1}|\leq 1, z_{2}=b\}$ and $\Delta$ is a2-disk satisfying the following properties:
$(\Delta, \partial\Delta)\subset(\mathbb{C}^{2}\backslash \mathrm{I}\mathrm{n}\mathrm{t}7)(a, b)$ , $\partial D(a, b))$ intersects $\partial D(a, b)$ transversely along
the circle $\partial\Delta=\{|z_{1}|=1, z_{2}=b\}$ , and $\omega|_{\Delta}>0$ .

$a$

Lemma 2.1. For any isotopy class $\alpha$ of embeddings $S^{2}\mathrm{c}arrow \mathbb{R}^{4}$ , there exist
a $>1$ , b $>0$ such that $\alpha$ admits a(a,$b)-$ realization.

The following theorem asserts that asymplectic 2-disc cannot be knotted
not only in the half-space but even in the complement of asufficiently large
polydisc.

Theorem 2.2. If $[f]$ admits $a(3,2)$ -realization, then it is trivia $l$.
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We sketch the proof of this theorem. Set the following notations:

$\Omega=\{x_{2}\leq\epsilon|z_{1}|^{2}/(1-\epsilon)^{2}\}$ where $z_{2}=x_{2}+iy_{2}$

$\Sigma=\partial\Omega$ $\cap D(a,b)$

$A_{c,d}=\{|z_{1}|\leq c, |y_{2}|\leq d\}$

$\Sigma_{c,d}=A_{c,d}\cap\Sigma$

$G=D(a, b)\backslash (A_{1,\epsilon}\cap\Omega)$

$S=\{y_{2}=0, |z_{1}|\leq 1-\epsilon\}\cap \mathrm{C}$ .

Deform $\Delta$ into the following form, and denote the resulting disc by $\tilde{\Delta}$ .

I

The disc Aintersects Itransversely along $\partial\tilde{\Delta}=\{z_{1}|=1-\epsilon, z_{2}=\epsilon\}$ .
We can assume that $\omega|_{\overline{\Delta}}>0$ and Ais holomorphic near ab (with respect
to the standard complex structure on $\mathbb{C}^{2}$ ). Let us choose an almost complex
structure $J$ on $\mathbb{R}^{4}$ such that:

$\bullet$ $J$ is tamed by $\omega$ .
$\bullet$ $J$ is standard on $G$ , near $\Sigma$ and at infinity.

$\bullet$

$\Delta-$ is J-holomorphic.

Then, the theorem can be deduced from the following:

Lemma 2.3. The pair $(S,\tilde{\Delta})$ can be filled with $J$ -holomorphic discs.

Let $q\in S$ be the elliptic point of $S$ , and $\{\Delta_{t}\}_{t}$ be aBishop family of
$J$-holomorphic disks developing from $q$ . To show the lemma, it is sufficien$\mathrm{t}$
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to prove that $\mathrm{I}\mathrm{n}\mathrm{t}\Delta_{t}\cap\Sigma_{\mathrm{I},\epsilon}=\emptyset$ . We want eliminate the following case.

$\Sigma_{2,1}$

Notice that no disk can be tangent to astrictly pseudoconvex hypersurface
from aconvex side.

Suppose that some disc $\Delta_{t}$ is tangent to $\Sigma_{2,1}$ at apoint $p$ from the concave
side. Observe that for any $t$ we have

$\int_{\Delta_{t}}\omega$ $< \int_{S}\omega=\pi(1-\epsilon)^{2}$ by Stokes’ theorem.

On the other hand, holomorphic curves have the following monotonicity prop-
erty:

Lemma 2.4. Let $C$ be a properly embedded holomorphic curve in the open
ball $B$ of radius $r$ in $\mathbb{C}^{n}$ . Suppose that $C$ contains the center of B. Then
Area $C\geq\pi r^{2}$ .

We apply this lemma to $C=\Delta_{t}$ , $B=B_{1-\epsilon}(p)$ . By assumption, $B\cap\Delta_{t}$

is contained in $G$ , and $J$ is standard on $G$ . Therefore

$\pi(1-\epsilon)^{2}\leq \mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(\Delta_{t}\cap B)\leq\int_{\Delta_{t}}\omega$ .

This contradicts the inequality $\int_{\Delta_{t}}\omega$ $<\pi(\dot{1}-\epsilon)^{2}$ .
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3Legendrian linking problem
Let $V$ be amanifold and $PT^{*}(V)$ the projetivized cotangent bundle, i.e.,
the space of all tangent hyperplanes in $T(V)$ . The manifold $PT^{*}(V)$ has a
contact structure $\eta\subset T(PT^{*}(V))$ such that lift of each hypersurface $W\subset V$

to $PT^{*}(V)$ , denote by $\mathcal{L}_{W}\subset PT^{*}(V)$ , is aLegendrian submanifold for 77.
Moreover, let $W\subset V$ be asmooth submanifold of positive codimension. Put

$\mathcal{L}_{W}:=\{(w, H_{w})\in PT^{*}(V)|T_{w}(W)\subset H_{w}\subset T_{w}(V)H_{w}\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$

that
$\}$ .

Then $\mathcal{L}_{W}$ is also aLegendrian submanifold for 77. Let $W_{1}$ and $W_{2}$ be subman-
ifolds properly immersed into $V$ such that they intersect transversely. Here
“properly” means “being closed as asubset in $V$” Then $\mathcal{L}_{W_{1}}\cap \mathcal{L}_{W_{2}}=\emptyset$ .
Let $\mathcal{L}_{1}(t)$ and $\mathcal{L}_{2}(t)$ be compact supported contact isotopies of $\mathcal{L}_{W_{1}}$ and $\mathcal{L}_{W_{2}}$

such that $\mathcal{L}_{1}(1)$ and $\mathcal{L}_{2}(1)$ have disjoint projections to $V$ . We denote by
$\#(\mathcal{L}_{1}(t)* \mathcal{L}_{2}(t))$ the minimal number of crossings between all (compact sup-

reg
ported) contact isotopies $\mathcal{L}_{1}(t)$ and $\mathcal{L}_{2}(t)$ which intersect transeversely and
move $\mathcal{L}_{1}(0)$ and $\mathcal{L}_{2}(0)$ to $\mathcal{L}_{1}(1)$ and $\mathcal{L}_{2}(1)$ .

Theorem 3.1. Suppose $W_{1}\cap W_{2}$ is compact, then we have

$\#(\mathcal{L}_{1}(t)\mathrm{X}\mathcal{L}_{2}(t))reg\geq\frac{1}{2}$ rank $H_{*}(W_{1}\mathrm{R} W_{2})$ ,

where $W_{1}\mathrm{R}$ $W_{2}$ denote the set $\{(w_{1}, w_{2})\in W_{1}\cross W_{2}|w_{1}=w_{2}\}$ .

Let $V=W\cross \mathbb{R}$ , $W_{1}\subset W\cross \mathbb{R}$, and the projection $W_{1}arrow W$ has non-
zero degree. Here we assume $W$ and $W_{1}$ connected orientable manifolds of
the same dimension. One can drop the orientability condition if works with
coefficient $\mathbb{Z}_{2}$ . Moreover let $W_{2}\subset W$ be acompact submanifold which lies
on the left of $W_{1}$ , i.e., $W_{1}\cap\{(w_{2}, t_{2}+t) \in W\cross \mathbb{R}|(w_{2},t_{2})\in W_{2},t\leq 0\}=\emptyset$ .

Theorem 3.2. If the projection of $\mathcal{L}_{2}(1)$ to $V$ lies on the right of the prO-
jection $\mathcal{L}_{1}(1)$ , then we have

$\#(\mathcal{L}_{1}(t)\mathrm{g}\mathcal{L}_{2}(t))reg\geq$ rank $H^{*}(W_{2})$ .

The proofs of these theorems rely on the generating functions and the
stable Morse theory
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Postscript. In this lecture note we could note only apart of Eliashberg’s
talk. He mentioned many other topics on symplectic field theory (SFT), sym-
plectic cobordisms, compactness properties, generalized Viterbo’s theorem,
Lagrangian skeletons, Lagrangian tori in $\mathrm{R}^{4}$ and so on.
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