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Topology of Lagrangian Submanifolds

Y. Eliashberg | '
noted by M. Akaho, Y. Itagaki and T. Nishinou

Y. Eliashberg gave a talk on topology of Lagrangian submanifolds at a
conference held at RIMS from 9 to 12 May 2000. Here we note only a part
of his talk. | ‘ _ , a

The content of Sections 1 and 2, except Theorem 1.4 can be found in
[1]. Theorem 1.4 is joint with L. Polterovich and is contained in [2]. Results
stated in Section 3 are extracted from a joint with M. Gromov paper [3].

1 Unknotting of Lagrangian surfaces in sym-
plectic 4-manifold "

Let (M?",w) be a symplectic manifold. An n-dimensional submanifold L is
called a Lagrangian submanifold if w|; = 0.

Example M = R = C",w, = dei A dy', where (21, ,2,) = (21 +
=1 ’

W1, ,&Tn + 1Y,) is the standard coordinate of C", is a symplectic mani-

fold. In this case, a linear n-dimensional plane L is Lagrangian if and only

if iL L L. If instead we have iLhL, then L is called totallyreal. General

totally real submanifolds are defined in an obvious manner.

We will treat n-= 2 case of the above example. The first result we will
mention is the following unknottedness theorem. ‘

Theorem 1.1. Let RY = {y; > 0} and assume that a 2-disk A is embedded
in R as (A,0A) C (RY,0RY) and 0A = {|z1] = 1,22 = 0}. Then, if we
have w|a > 0, then A is unknotted, i.e. we can isotope A relative to A to
a disk in ORY . X : o

The proof of this theorem relies on the method of filling with holomorphic
discs and we quot the necessary result here. We first define the pseudo-
convexity of an oriented hypersurface I of general symplectic manifold (M?", w
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Let J be an almost complex structure on M tamed by w. Then, for every
point z on X, the tangent space T, M has a J-invariant (2n - 2) dimensional

subspace TJ 3. U TJ Y is a (2n 2) dlmensmna.l subbundle T'M of TM.

zEM
Since I is oriented and each T/Y has a na.tural onentatlon as a complex

vector space, the quotient 1- dlmensmna_.l bundle T /T’E is also orientable,
i.e. trivial. In particular, there is a trivial sub-line bundle R of 'Y such that
TY = R® T’E. Choosing a non-vanishing section 7 of R fixes a 1-form o
on ¥ satisfying a|ps5 = 0 and a(n) > 0.

Definition 1.1. ¥ is called J — convez, or pseudoconvez if the quadratic
form t ~ da(t,Jt) on T’X is positive definite.

With this preparation, we can state the following result.

Theorem 1.2. Let Q be a domain in R* such that 0Q is pseudo convex
w.r.t. some almost complez structure J tamed by wy. Let F be a surface
with boundary embedded in O such that F has a unique complez point which
1s elliptic, and J s integrable near that point. Moreover, assume that there
1s a J-holomorphic disc A with OF = OA and which is transversal to 02
along OA. Then F U A can be filled wzth a famzly of embedded, disjoint
J-holomorphic discs {D,}.

Now we explain the outline of the proof of the unknottedness theorem. First,
we take a large sphere S in R* with the center on the y,-axis which intersects
with the 2;-plane along 0A, and let B be the interior domain of S. We can
take a disk F' in S whose boundary coincides with A and has a unique
complex point which is elliptic, and moreover it is isotopic to a disk on R}
relative to the boundary. On the otherhand, the disk A can be slightly de-
formed by a boundary fixing isotopy so that w|s > 0. Taking B large enough,
we can suppose that A is contained in B. Then, there is an almost complex
structure J tamed by wq for which A is J-holomorphic. Moreover J can be
chosen integrable near the elliptic point of F. This will allow us to apply the
filling with holomorphic disc technique to the triple (2 = B, F, A), and thus
will supply us with the isotopy mentioned in the theorem.

Using the same technique, we can prove the next theorem.

Theorem 1.3. Let Iy and II; denote the hyperplanes {y, = 0} and {y, =
1}, and let Ly be the Lagrangian cylinder {|z;] = 1,2, = 0,0 < y, < 1}.
Suppose L is another Lagrangian cylinder between Ily and II; having the
same boundary as Ly. Then, L is Lagrangian isotopic to Ly relative to the
boundary in R*\ (D, UD_U R,), where D, = {|z1| <lzm= 0} D_ =
{lal £ 1,25 =1}, and Ry = {i)o > 1,22 = 2; = 0}.



127

(Outline of the proof) We again replace the plane Il by a boundary 952 of a
large convex domain 2 such that 052 intersects with the z;-plane along the
unit circle C. As before, we can take a disk F' whose boundary coincides with
C and which has a unique complex point which is elliptic. On the otherhand,
we can modify the cylinder A by a boundary fixing isotopy, as well as gluing
a disk on the top of it, so that the resulting disk A will have the boundary C,
on which the symplectic form is positive. Then, as before, we can choose an
almost complex structure J integrable near the elliptic point of F', tamed by
wp, wWith respect to which A is holomorphic, and then apply the filling with
holomorphic disks technique to (F, A). This will supply the isotopy we want.

The next is the unknottedness result for Lagrangian knots in R*.

Theorem 1.4. There is no knotted Lagrangian plane in R*. That is, if ¢ :
R?Z — (R*, wp) is a Lagrangian embedding which coincides with the inclusion
i : R? — C? defined by (z,y) — (z,0,0,y) outside of a compact set, then
there is a compact supported Lagrangian isotopy between ¢ and ¢.

(outline of the proof) This theorem is a consequence of the following two
results. ~

Proposition 1. If a Lagrangian knot L in R* is contained in some simple
hypersurface Q, then L is Lagrangian isotopic to the flat plane.

Proposition 2. For every Lagrangian knot L in R?*, there is a simple hy-
persurface () containing it.

We first explain the word simple hypersurface. Let R be a oriented hy-
persurface in (R*, wp). Then, the symplectic form wy restricted to R defines
an oriented 1-dimensional distribution on R by Kerwy. R integrates 1nto a
1-dimensional foliation. We call this foliation characterzstzc

Definition 1.2. A hypersurface Q in R* is called simple if each leaf of its
characteristic foliation is diffeomorphic to R and outside a compact set of
Q, each leaf coincide with a part of one of parallel straight lines of a glven
direction.

The proof of proposition 1 is carried out by constructing a 2-dimensional
foliation {M,}:cr on @ such that each leaf is a Lagrangian diffeomorphic to
R2 M, = L and M, are embedded standard R?s for t < —1,¢ > 0. It can
be done using the characteristic foliation. As for the proof of proposition
2, we need the filling with holomorphic disks technique. Namely, one first
takes a 2-dimensional foliation whose leaves consist of trajectories of the
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characteristics foliation which intersect at —oo a line, parallel to a given
direction. The constructed foliation is not flat at +oc0, but can be flatten
via an appropriate Hamiltonian isotopy. We first fix some notations. Let
(u,v,z,y) be the coordinate for R*, @y be the hyperplane {v = 0}, Lj be
the standard Lagrangian plane {(,0,0,y)} and Xy = Ly N C. Let C =
{z—u)?+9* <1} and K = {(z — w)? + y* < 1/2} be two cylinders
contained in R®* = {(u, z,y)}. There is a convex domain V; defined by V; =
{—6¢(u,z,y) < v < 6¢(u,z,y)} where § > 0 and ¢(u, z,y) = 1—(z—y)*?—y%
It satisfies V5 D OC. Then, by a suitable dilatation, we can suppose that
our Lagrangian knot L coincides with Ly outside of K and is contained in
Vs. We now isotope C N {—1 < u < 1} to a set like the figure below.

We denote this map by ®. This can be done so that the images of the disks
{t} x D? are symplectic. We call the image of the discs by N. Then, there
is a symplectic embedding x from a neighbourhood of N to V such that
X(Zo) = VN L and x is the identity outside K. We can define an almost
complex structure J on R* tamed by wy such that the image of the disks
{t} x D? by the map x o & are J-holomorphic and flat near 8V and outside
of a compact set in R%. Then, since 8C is contained in a pseudo convex
boundary, examining the Maslov class of the generator of the first homology
group of 8C, we see that we can extend x o ® to the whole cylinder C in
a way that images of the discs {t} x D?, t € R are J-holomorphic and for
|t| larger than 1, the map on {t} x D? is the identity. If we call this map
F,then @ = (Qo—CN{-1<u<1})UF({-1< u<1}) is the required
simple hypersurface.



129

2 Invariants of S?-knots in R? via symplectic
geometry

Let f : S2 < R* be an embedding, and a := [f] the isotopy class of f. Let
us denote by D(a, b) the polydisc {(z1,22) € C? | |z1| < a, |22| < b}.

We say that the class a admits a (a,b)-realization for a > 1,b > 0
if o can be represented by an embedded sphere S = A U D C R* where
D = {|z1]| <1, z2 = b} and A is a 2-disk satisfying the. following properties:
(A,0A) C (C2 \ IntD(a,b),0D(a, b)) intersects dD(a,b) transversely along
the circle A = {|z1| = 1, 22 = b}, and w|a > 0. |

Lemma 2.1. For any isotopy class a of embeddings S? — R*, there exist
a>1,b> 0 such that a admits a (a,b)- realization.

The following theorem asserts that a symplectic 2-disc cannot be knotted
not only in the half-space but even in the complement of a sufficiently large
polydisc.

Theorem 2.2. If [f] admits a (3,2)-realization, then it is trivial.
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We sketch the proof of this theorem. Set the following notations:

Q = {2, < e|z[*/(1 — €)?} where 2, = 23 +iyp
T =900 N D(a,b)

Aca={la1] < ¢ |yo| < d}

Yea=AcaNX
G = D(a,b) \ (A1 N Q)
S={ye=0,|zn|<1-€¢}nk.

Deform A into the following form, and denote the resulting disc by A.

The disc A intersects & transversely along A = {z|=1—¢, 2, = €}
We can assume that w|; > 0 and A is holomorphic near A (with respect
to the standard complex structure on C2?). Let us choose an almost complex
structure J on R* such that:

e J is tamed by w.
¢ Jis standard on G, near ¥ and at infinity.
¢ A is J-holomorphic.
Then, the theorem can be deduced from the following;
Lemma 2.3. The pair (S,A) can be filled with J-holomorphic discs.

Let ¢ € S be the elliptic point of S, and {A;}; be a Bishop family of
J-holomorphic disks developing from ¢. To show the lemma, it is sufficient
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to prove that IntA, N T3, = §. We want to eliminate the following case. -

Ay

Notice that no disk can be tangent to a strictly pseudoconvex hypersurface
from a convex side. : o

Suppose that some disc A, is tangent to ¥ ; at a point p from the concave
side. Observe that for any t we have

/ w < / w=m(l—€)® by Stokes’ theorem.

As S

On the other hand, holomorphic curves have the following monbtonicity prop-
erty:

Lemma 2.4. Let C be a properly embedded holomorphic curve in the opeh
ball B of radius r in C". Suppose that C contains the center of B. Then
Area C > 7r2.

- We apply this lemma to C = A;, B = B1_(p). By assumption, B N A,
is contained in GG, and J is standard on G. Therefore

(1 — €)? < Area(A; N B) < / .
Ay

This contradicts the inequality / w< (i —e).
A
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3 Legendrian linking problem

Let V be a manifold and PT*(V) the projetivized cotangent bundle, i.e.,
the space of all tangent hyperplanes in (V). The manifold PT*(V) has a
contact structure 7 C T'(PT™*(V)) such that lift of each hypersurface W c V
to PT*(V), denote by Ly C PT*(V), is a Legendrian submanifold for 7.
Moreover, let W C V be a smooth submanifold of positive codimension. Put

Lo = { (w, Hy) € PT*(V) H,, is a hypersurface such that }

T.(W)C H, C T, (V)

Then Ly is also a Legendrian submanifold for . Let W; and W, be subman-
ifolds properly immersed into V' such that they intersect transversely. Here
”properly” means "being closed as a subset in V”. Then Ly, N Ly, = 0.
Let £,(t) and £;(t) be compact supported contact isotopies of Ly, and Ly,
such that £;(1) and £,(1) have disjoint projections to V. We denote by
#(L1(2) )X L2(t)) the minimal number of crossings between all (compact sup-

reg
ported) contact isotopies £,(t) and £5(t) which intersect transeversely and
move £,(0) and £2(0) to £;(1) and L£(1).

Theorem 3.1. Suppose W, N W, is compact, then we have

#(L£1(2) X L2(2)) > % rank H,(W1R W),

reg
where W1 R W, denote the set {('wl, wp) € Wy x W, | wy = ’I.U2} .

Let V=W xR, W; C W x R, and the projection W; — W has non-
zero degree. Here we assume W and W) connected orientable manifolds of
the same dimension. One can drop the orientability condition if works with
coefficient Z,. Moreover let Wy C W be a compact submanifold which lies

on the left of Wy, ie.,, W1 N {('wz,tz + t) e W x Rl('lIIg,tg) e Wo,t < 0} = 0.

Theorem 3.2. If the projection of L2(1) to V' lies on the right of the pro-
jection L£1(1), then we have

ﬁ.(‘_:i(t) X La(t)) > rank H*(Wy).

reg

The proofs of these theorems rely on the generating functions and the
stable Morse theory.’ '
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Postscript. In this lecture note we could note only a part of Eliashberg’s
talk. He mentioned many other topics on symplectic field theory (SFT), sym-
plectic cobordisms, compactness properties, generalized Viterbo’s theorem,
Lagrangian skeletons, Lagrangian tori in' R*'and so on.

References

1] Y Ehashberg, Topology of 2-knots in R* a.nd symplectlc geometry, The
Floer memorial volume, 335-353, 1995.

[2] Y. Eliashberg and L. Polterovich, Local Lagrangian 2-knots are trivial,
Ann. of math., 144 (1996), 61 76.

[3] Y. Eliashberg and M. Gromov Lagranglan intersection theory: Finite-
dimensional approach, Amer. Math. Soc. Transl. (2) 186 (1998), 27-116.



