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ON THE CAUCHY PROBLEM IN THE
MAXWELL-CHERN-SIMONS-HIGGS SYSTEM

DONGHO CHAE!, MYEONGJU CHAE'

ABSTRACT. In this paper we shall prove the global existence of so-
lutions of the classical Maxwell-Chern-Simons-Higgs equations in
(2 + 1)-dimensional Minkowski spacetime in the temporal gauge.
We also prove that the topological solution of the Maxwell-Chern-
Simons-Higgs system converges to that of Maxwell-Higgs system,
as k goes to zero. Thus we reproduce the classical result by Mon-
grief [6] on the global existence of the Maxwell-Klein-Gordon sys-
tem in (2 + 1)dimension.

1. INTRODUCTION AND MAIN RESULTS

We are concerned on the global existence problem for the Maxwell-
Chern-Simons-Higgs model in (2 + 1)-spacetime which was introduced
to consider a self-dual system having both Maxwell and Chern-Simons
terms [1]. The Lagrangian is

1 K 1
ZF‘“’F,W + ZCWPF‘"'A” — (Dp¢, D*¢) — EG#N o*N

~ S (el + KN — ?)? = EN7[g?,

L=—
(1.1)

where g,, = diag(1l,-1,-1), ¢ is a complex scalar field, N is a real
scalar field, A = (A, A1, A7) is a vector field, F,, = 0,A,—0,A,,D, =
0, — ieAj, e is the charge of the electron, and « is a coupling constant
for the Chern-Simons term.

The Euler-Lagrange equations via variation of the action taken with
respect to (A, ¢, N) are

HF + ge’“’”F,,,, + 2eIm(¢DPg) = 0,

D,D*¢ + Us(|¢|*, N) = 0, (1.2)
0,0*N + Uy =0.
Letting p = 0 in (1.2), we obtain the Gauss-Law constraint
0;Fj0 — kFi2 — 2eIm(¢Dod) = 0. (1.3)
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The static energy functional for the system is

1 1
b= /R 5Fo+ 5Fh + IDugl” + 10N+ U(I6°, N),  (1.9)

where U(|42,N) = (el + &N — ev?)? + N[, (6 = 1,2, =
0,1,2). We note that, if (A, ¢, N) is a solution that makes FE finite,
one of the following conditions should be required;

2
$—0 and N — E,—Z— ( non-topological ) (1.5)

|92 — v? and N — 0 ( topological ). (1.6)

The terms of non-topological solution refers to the solution satisfying
(1.5) and topological solution to the solution satisfying (1.6) . [1], [2]

In the static case, above system are reduced to the system of elliptic
equation. The static energy functional is

E= / (Dy % iD3)@f + | Dod T iedN|?

1
§]F12 + (6|¢I2 + kN — C)ldeﬂ'_‘ G/Flde.

The solution saturating a lower bound for the energy is called self-
dual solution, which studied extensively on both two conditions (1.5),
(1.6) by D. Chae et al. ([2], [4]), and on a periodic boundary condition,
by Tarantello [5]. They also studied the unifying feature of Maxwell-
Chern-Simons-Higgs mathematically, which was formally discribed in
[1].

For a time dependent solution to the Maxwell-Chern-Simons-Higgs,
there is no result as we know, however, in [6], Mongrief proved the
global existence for the classical Maxwell-Klein-Gordon equations using
the Lorents gauge in (2+1) spacetime. The Lagrangian of the Maxwell-
Klein-Gordon is

1 v
L =—F"F, — (Du,D"9).

He proved global existence by showing that a suitably defined higher

order energy, though not strictly conserved, does not blow up in a.

finite time. In this article, we consider the global existence of the
classical Maxwell-Chern-Simons-Higgs in the temporal gauge as well
as a convergent result as the static case [3].

Before presenting main theorems, we state equations corresponding to
the non-topological case in the temporal gauge. _
Considering the non-topological solution of (1.2), (1.3), we put N to
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N - 9,—’;3 in (1.2) to obtain the following system of semilinear wave

equations with constraint( O = d;; — A).

0A; = —k8p A2 + 2eIm(¢pD; @),

04, = k6 A, + 2eIm(¢D2d),
O¢ = —iedd; A; — 2ieA;0;¢ — 2 A2 ¢ — U
ON = -Uy,

9;Fjo — kFy2 — 2eIm(¢g) = 0.

Above equations can be rewritten as Hamiltonian formalism;
OvA; = Fj,
BoFoj = —€* O Fia — ke?* Fo, — 2eIm(¢h;)
OoFi2 = €V 0; Fo;
Ao = o

Ootpo = Djyp; — Uy
Oo; = Djio — ieFy;¢

30N = Qo
8090 = GJQJ - UN
aoﬂj = 6,90

supplemented by constrains,
Fjr = 0;Ar — Ok A;j
Dj¢ =9;
O;N =Q;
0;Fjo — kFia — 2eIm(¢)g) = 0.

(1.7)

(1.8)

(1.9)

(1.10)

For the topological solution we also have the equations corresponding
to (1.7), (1.9) by introducing a new variable ¢ such that ¢ + A = ¢ to
give a natural boundary conditions to (1.2). Let us remark on some
notations. If no confuses are arisen, u means a triple (4, ¢, N) or

(4,9, N),
lut, Mes = I|AE Mg + 16 lgs + INE, ) 5o,

1Bou(t, Mlms = 10AG, )l ge + 186(E, )l go + ION (2, ) e

l[uCts Nmex -t = |lu(t, )llae + Gou(t, )l ze-1.

Followings are our main theorems.
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Theorem 1.1. (Global smooth solutions) Consider Mazwell-Chern-
Simons-Higgs. Then any finite energy H*® initial data set (s > 2)
admits a unique, global solution in the temporal gauge.

A,¢,N € C([0,00); H*(R) N C'([0, 00); H*(R?))
in the non-topological case. Also in the same gauge, any finite energy
H? initial data set (s > 2) admits a unique, global solution

A,p,N € C([0, 00); H*(R?)) N C'([0, 00); H*~'(R?))
in the topological case. ‘

Theorem 1.2. (Mazwell-Higgs Limit) Consider the topological case of
Mazwell-Chern-Simons-Higgs. Let u,, be the global solution with cou-
pling constant k of H*(s > 2) initial data uo. Then ||u,(t) — u(t)||gs —
0 as K — 0. In the case of Kk = 0, if we set N initially zero then
N(t) =0 for all t.

Remark 1. In a succeeding section, we present the proof of the non-
topological case only in Theorem 1.1 since the finite energy solution of
the topological one can be found in the same way as non-topological
case.

2. OUTLINE OF THE PROOFS

i) local in time existence

Proposition 2.1. Given a data set (A, ¢,KQ € H(s > 2) att =
0, there exists T* depending only on ||(A, ¢, N)(0,-)||. and a unique
development (A, ¢, N) in the temporal gauge with

(4,6,N) € C((0,T*); H*(R*)) N C*(10, T*); H*™*(R?)).

~

This solution can be continued as long as ||(A,$, N)||g:(t) remains
bounded.

First we show that there exists T* such that (1.7) has a unique
solution in X,

Xr = {(u,8u) € C([0,T*); H* x H") : ||lu||x, < 00},
where ||u]|x, = sup ||u(¢,)||m2xm- The solution is obtained by stan-
0<t<T

dard contraction argument using energy estimates, and has continuous
dependence on the initial data. This solution can be continued as long
as ||un(t, )|l r2x g2 remains bounded. To complete the local existence of
Maxwell-Chern-Simons-Higgs, we also show that the constraint (1.8) is
preserved in time.

i1) global in time existence
The proofs follow Mongrief’s method mentioned earlier and use usual
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a priori estimates to show ||u(t,-)||m2xz dose not blow up in a finite
time.

Let u = (A4,¢,N) € C([0,T); H*(R?)) n C*([0,T); H*"'(R?)) be a so-
lution of Maxwell-Chern-Simons-Higgs obtained in the part 7). Define
E(t), Ey(t), F(t) as such

1 1
B() = [ 3Fh+5Fh+ DL +IONF+U(8F ), (2)

1 1
Ey(t) = /;{2 E(atFm'f + ‘2‘(31F12)2 + | Dl + (0:92,)3,

where ¢, = D,¢ , Q, =, N, (2.2)
Fi(t) = [|0:Al|2(t) + [10:¢l| L2 (2) + [|0: V]| 2 (). (2.3)
The global result will be established after following Lemmas.

Lemma 2.2. Letu = (4, ¢, N) € C([0,T); HX(R2))nNC([0, T); H'(R2))
be a solution of (1.7), (1.8). Then
(1) E(t) = E(0) for allt € [0,T)

~

(2) (A, ¢, N) are estimated in L? in terms of the initial data for all

te(0,T);
[lu, ez < [0, )|z + LE. (2.4)
Lemma 2.3. (1) E:(t) is differentiable for allt € [0,T) and satis-
fies
OoEy(t) = /2 —NeikalFo,'azFOk - 26[’"’&(1/)[%4- ¢D['l/),)
R
+ 2R€(D¢’l/)0 . ieF[j'lpj - DlU$ + ieFoz'lﬁo) (25)

+ 2R6(D1¢j . ierj’l/)O - Dl(F0j¢) + i6F01¢j) - 231UN81Q0.

(2) Ei(t), Fi(t) are estimated in terms of the initial data for all
tel0,T),

E(t) < C(E, E1(0))(1 +t)?, (2.6)
F(t) < C(E, E;(0), F(0))(1 + t)5. (2.7)

It is not clear the energy norm,||u(t, )|/ dose not blow up in the
temporal gauge, though the energy itself is preserved in Lemma 2.2.
In Lemma 2.3, E;(t), the higher order energy, is shown to be initially
bounded, from which Fy(t) = ||Ou(t,-)||z: can be easily estimated in
terms of the initial data. Combining (2.4), (2.7) we have ||u(t,-)|| g is
initially bounded.
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Proving two Lemmas we use the Hamiltonian formalism of this sys-
tem (1.9) after taking time derivatives in E(t), Ey(t), F(t). We depend
on the covariant Sobolev inequalities in [7] (see Appendix of it), esti-
mating each terms of 0y E1 (t) to show the right hand terms of (2.5) are
at most linear with right to E(t). Next we introduce Brezis-Gallouet
inequality.

Lemma 2.4. (8] s > 1,

lullze < Cllulls (1 + v/log(1 + [[ullzs)-

Finally we carried out a priori estimate ||u(t,-)||z2xm to get

t
lullas(8) + 10ullms (8) < llull=(0) + C / 1ol

1
+ (1 + ullze)® + llul g (1 + llullz2))llul o

1
+ [lullzoo ullEn lull e + (1 + HUIle)IIUII?qZ )
2.8

by energy estimates to (1.7), then we have

IIU(O,')HW+C(t)/0 log(1 + [lu(s, )| m2)llu(s, )l m2xmrds.  (2.9)

applying above Brezis-Gallouet inequality. The desired result, thus, is
given by the general Gronwall inequality.

For the case of an initial data v € H*(R?), it is easy to obtain a
local existence result as proposition 2.1. For a global result we state a
next lemma omitting its simple proof.

Lemma 2.5. Let (A,¢,N) € C([0,T); H*(R?))NC([0,T); H*"'(R?))
be a solution of (1.7), (1.8) for s > 2 then ||u||g-(t) is estimated in
terms of the initial data for allt € [0,T).

i11) Mazwell-Higgs limit
Let u* be a topological solution of Maxwell-Chern-Simons-Higgs ob-
tained in Theoreml.1 with coupling constant x of H? initial data u,.
It is easy to show ||(u* — u)(t,-)||m2xm is estimated to be

t
1(w* = w) (&, )lazxm < / k][O0 Axl|m + C(@)||u® —ullgz,  (2.10)
0

using sup ||u*(t,)||g2xm < C(t) for a smooth function in the proof
0<k<1

of Theorem 1.1. Then applying Gronwall inequality to (2.10), we have

[|(w® — w)(¢, )2 < £C(E) + [|(w" - w)(0, )| 2,
letting kK — 0, we obtain the desired result.
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