ON THE CAUCHY PROBLEM IN THE MAXWELL-CHERN-SIMONS-HIGGS SYSTEM

DONGHO CHAE[†], MYEONGJU CHAE^{††}

ABSTRACT. In this paper we shall prove the global existence of solutions of the classical Maxwell-Chern-Simons-Higgs equations in (2+1)-dimensional Minkowski spacetime in the temporal gauge. We also prove that the topological solution of the Maxwell-Chern-Simons-Higgs system converges to that of Maxwell-Higgs system, as κ goes to zero. Thus we reproduce the classical result by Mongrief [6] on the global existence of the Maxwell-Klein-Gordon system in (2+1)dimension.

1. Introduction and Main Results

We are concerned on the global existence problem for the Maxwell-Chern-Simons-Higgs model in (2+1)-spacetime which was introduced to consider a self-dual system having both Maxwell and Chern-Simons terms [1]. The Lagrangian is

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{\kappa}{4}\epsilon^{\mu\nu\rho}F_{\mu\nu}A_{\rho} - \langle D_{\mu}\phi, D^{\mu}\phi \rangle - \frac{1}{2}\partial_{\mu}N\partial^{\mu}N - \frac{1}{2}(e|\phi|^{2} + \kappa N - ev^{2})^{2} - e^{2}N^{2}|\phi|^{2},$$
(1.1)

where $g_{\mu\nu} = \text{diag}(1, -1, -1)$, ϕ is a complex scalar field, N is a real scalar field, $A = (A_0, A_1, A_2)$ is a vector field, $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, $D_{\mu} = \partial_{\mu} - ieA_j$, e is the charge of the electron, and κ is a coupling constant for the Chern-Simons term.

The Euler-Lagrange equations via variation of the action taken with respect to (A, ϕ, N) are

$$\begin{split} \partial_{\lambda}F^{\lambda\rho} + \frac{\kappa}{2}\epsilon^{\mu\nu\rho}F_{\mu\nu} + 2eIm(\phi\overline{D^{\rho}\phi}) &= 0, \\ D_{\mu}D^{\mu}\phi + U_{\overline{\phi}}(|\phi|^{2}, N) &= 0, \\ \partial_{\mu}\partial^{\mu}N + U_{N} &= 0. \end{split} \tag{1.2}$$

Letting $\rho = 0$ in (1.2), we obtain the Gauss-Law constraint

$$\partial_j F_{j0} - \kappa F_{12} - 2eIm(\phi \overline{D_O \phi}) = 0. \tag{1.3}$$

[†] partially supported by the BK 21 Project.

DONGHO CHAE[†], MYEONGJU CHAE^{††}

The static energy functional for the system is

$$E = \int_{\mathbf{R}^2} \frac{1}{2} F_{0i}^2 + \frac{1}{2} F_{12}^2 + |D_{\mu}\phi|^2 + |\partial_{\mu}N|^2 + U(|\phi|^2, N), \tag{1.4}$$

where $U(|\phi|^2, N) = \frac{1}{2}(e|\phi|^2 + \kappa N - ev^2)^2 + e^2N^2|\phi|^2$, $(i = 1, 2, \mu = 0, 1, 2)$. We note that, if (A, ϕ, N) is a solution that makes E finite, one of the following conditions should be required;

$$\phi \to 0$$
 and $N \to \frac{ev^2}{\kappa}$ (non-topological) (1.5)

$$|\phi|^2 \to v^2$$
 and $N \to 0$ (topological). (1.6)

The terms of non-topological solution refers to the solution satisfying (1.5) and topological solution to the solution satisfying (1.6). [1], [2]

In the static case, above system are reduced to the system of elliptic equation. The static energy functional is

$$E = \int |(D_1 \pm iD_2)\phi|^2 + |D_0\phi \mp ie\phi N|^2$$
$$\frac{1}{2}|F_{12} \pm (e|\phi|^2 + \kappa N - e)|^2 do \pm e \int F_{12} do.$$

The solution saturating a lower bound for the energy is called self-dual solution, which studied extensively on both two conditions (1.5), (1.6) by D. Chae *et al.* ([2], [4]), and on a periodic boundary condition, by Tarantello [5]. They also studied the unifying feature of Maxwell-Chern-Simons-Higgs mathematically, which was formally discribed in [1].

For a time dependent solution to the Maxwell-Chern-Simons-Higgs, there is no result as we know, however, in [6], Mongrief proved the global existence for the classical Maxwell-Klein-Gordon equations using the Lorents gauge in (2+1) spacetime. The Lagrangian of the Maxwell-Klein-Gordon is

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \langle D_{\mu} \phi, D^{\mu} \phi \rangle.$$

He proved global existence by showing that a suitably defined higher order energy, though not strictly conserved, does not blow up in a finite time. In this article, we consider the global existence of the classical Maxwell-Chern-Simons-Higgs in the temporal gauge as well as a convergent result as the static case [3].

Before presenting main theorems, we state equations corresponding to the non-topological case in the temporal gauge.

Considering the non-topological solution of (1.2), (1.3), we put \widetilde{N} to

MAXWELL-CHERN-SIMONS-HIGGS SYSTEM

 $N - \frac{ev^2}{\kappa}$ in (1.2) to obtain the following system of semilinear wave equations with constraint ($\square = \partial_{tt} - \Delta$).

$$\Box A_{1} = -\kappa \partial_{0} A_{2} + 2eIm(\phi \overline{D_{1}\phi}), \qquad (1.7)$$

$$\Box A_{2} = \kappa \partial_{0} A_{1} + 2eIm(\phi \overline{D_{2}\phi}),$$

$$\Box \phi = -ie\phi \partial_{j} A_{j} - 2ieA_{j}\partial_{j}\phi - e^{2}A_{j}^{2}\phi - U_{\overline{\phi}}$$

$$\Box N = -U_{\overline{N}},$$

$$\partial_{j} F_{j0} - \kappa F_{12} - 2eIm(\phi \overline{\psi_{0}}) = 0. \qquad (1.8)$$

Above equations can be rewritten as Hamiltonian formalism;

$$\partial_{0}A_{j} = F_{0j}
\partial_{0}F_{0j} = -\epsilon^{jk}\partial_{k}F_{12} - \kappa\epsilon^{jk}F_{0k} - 2eIm(\phi\overline{\psi_{j}})
\partial_{0}F_{12} = \epsilon^{ij}\partial_{i}F_{0j}
\partial_{0}\phi = \psi_{0}
\partial_{0}\psi_{0} = D_{j}\psi_{j} - U_{\overline{\psi}}
\partial_{0}\psi_{j} = D_{j}\psi_{0} - ieF_{0j}\phi
\partial_{0}N = \Omega_{0}
\partial_{0}\Omega_{0} = \partial_{j}\Omega_{j} - U_{N}
\partial_{0}\Omega_{i} = \partial_{i}\Omega_{0}$$
(1.9)

supplemented by constrains,

$$F_{jk} = \partial_j A_k - \partial_k A_j$$

$$D_j \phi = \psi_j$$

$$\partial_j N = \Omega_j$$

$$\partial_j F_{j0} - \kappa F_{12} - 2eIm(\phi \overline{\psi_0}) = 0.$$
(1.10)

For the topological solution we also have the equations corresponding to (1.7), (1.9) by introducing a new variable φ such that $\varphi + \lambda = \phi$ to give a natural boundary conditions to (1.2). Let us remark on some notations. If no confuses are arisen, u means a triple (A, ϕ, \tilde{N}) or (A, φ, N) ,

$$\begin{split} \|u(t,\cdot)\|_{H^{\mathfrak{s}}} &= \|A(t,\cdot)\|_{H^{\mathfrak{s}}} + \|\phi(t,\cdot)\|_{H^{\mathfrak{s}}} + \|N(t,\cdot)\|_{H^{\mathfrak{s}}}, \\ \|\partial_{0}u(t,\cdot)\|_{H^{\mathfrak{s}}} &= \|\partial A(t,\cdot)\|_{H^{\mathfrak{s}}} + \|\partial\phi(t,\cdot)\|_{H^{\mathfrak{s}}} + \|\partial N(t,\cdot)\|_{H^{\mathfrak{s}}}, \\ \|u(t,\cdot)\|_{H^{\mathfrak{s}}\times H^{\mathfrak{s}-1}} &= \|u(t,\cdot)\|_{H^{\mathfrak{s}}} + \|\partial_{0}u(t,\cdot)\|_{H^{\mathfrak{s}-1}}. \end{split}$$

Followings are our main theorems.

DONGHO CHAE[†], MYEONGJU CHAE^{††}

Theorem 1.1. (Global smooth solutions) Consider Maxwell-Chern-Simons-Higgs. Then any finite energy H^s initial data set $(s \ge 2)$ admits a unique, global solution in the temporal gauge.

$$A, \phi, \widetilde{N} \in C([0, \infty); H^s(R^2)) \cap C^1([0, \infty); H^{s-1}(R^2))$$

in the non-topological case. Also in the same gauge, any finite energy H^s initial data set $(s \ge 2)$ admits a unique, global solution

$$A, \varphi, N \in C([0, \infty); H^s(\mathbb{R}^2)) \cap C^1([0, \infty); H^{s-1}(\mathbb{R}^2))$$

in the topological case.

Theorem 1.2. (Maxwell-Higgs Limit) Consider the topological case of Maxwell-Chern-Simons-Higgs. Let u_{κ} be the global solution with coupling constant κ of $H^s(s \geq 2)$ initial data u_0 . Then $\|u_{\kappa}(t) - u(t)\|_{H^s} \to 0$ as $\kappa \to 0$. In the case of $\kappa = 0$, if we set N initially zero then N(t) = 0 for all t.

Remark 1. In a succeeding section, we present the proof of the non-topological case only in Theorem 1.1 since the finite energy solution of the topological one can be found in the same way as non-topological case.

2. Outline of the proofs

i) local in time existence

Proposition 2.1. Given a data set $(A, \phi, \widetilde{N}) \in H^s(s \geq 2)$ at t = 0, there exists T^* depending only on $\|(A, \phi, \widetilde{N})(0, \cdot)\|_{H^s}$ and a unique development (A, ϕ, \widetilde{N}) in the temporal gauge with

$$(A,\phi,\widetilde{N})\in C([0,T^*);H^s(R^2))\cap C^1([0,T^*);H^{s-1}(R^2)).$$

This solution can be continued as long as $\|(A, \phi, \widetilde{N})\|_{H^s}(t)$ remains bounded.

First we show that there exists T^* such that (1.7) has a unique solution in X_T ,

$$X_T = \{(u, \partial_0 u) \in C([0, T^*); H^2 \times H^1) : ||u||_{X_T} < \infty\},$$

where $\|u\|_{X_T} = \sup_{0 \le t \le T} \|u(t,\cdot)\|_{H^2 \times H^1}$. The solution is obtained by stan-

dard contraction argument using energy estimates, and has continuous dependence on the initial data. This solution can be continued as long as $||u_n(t,\cdot)||_{H^2\times H^1}$ remains bounded. To complete the local existence of Maxwell-Chern-Simons-Higgs, we also show that the constraint (1.8) is preserved in time.

ii) global in time existence

The proofs follow Mongrief's method mentioned earlier and use usual

a priori estimates to show $||u(t,\cdot)||_{H^2\times H^1}$ dose not blow up in a finite time.

Let $u = (A, \phi, N) \in C([0, T); H^s(R^2)) \cap C^1([0, T); H^{s-1}(R^2))$ be a solution of Maxwell-Chern-Simons-Higgs obtained in the part i). Define $E(t), E_1(t), F(t)$ as such

$$E(t) = \int_{\mathbf{R}^2} \frac{1}{2} F_{0i}^2 + \frac{1}{2} F_{12}^2 + |D_{\mu}\phi|^2 + |\partial_{\mu}N|^2 + U(|\phi|^2, N), \qquad (2.1)$$

$$E_1(t) = \int_{{f R}^2} rac{1}{2} (\partial_l F_{0i})^2 + rac{1}{2} (\partial_l F_{12})^2 + |D_l \psi_\mu|^2 + (\partial_l \Omega_\mu)^2,$$

where
$$\psi_{\mu} = D_{\mu}\phi$$
, $\Omega_{\mu} = \partial_{\mu}N$, (2.2)

$$F_1(t) = \|\partial_i A\|_{L^2}(t) + \|\partial_i \phi\|_{L^2}(t) + \|\partial_i N\|_{L^2}(t). \tag{2.3}$$

The global result will be established after following Lemmas.

Lemma 2.2. Let $u = (A, \phi, \tilde{N}) \in C([0, T); H^2(\mathbb{R}^2)) \cap C^1([0, T); H^1(\mathbb{R}^2))$ be a solution of (1.7), (1.8). Then

- (1) E(t) = E(0) for all $t \in [0, T)$
- (2) (A, ϕ, \widetilde{N}) are estimated in L^2 in terms of the initial data for all $t \in [0, T)$;

$$||u(t,\cdot)||_{L^2} \le ||u(0,\cdot)||_{L^2} + tE.$$
 (2.4)

Lemma 2.3. (1) $E_1(t)$ is differentiable for all $t \in [0,T)$ and satisfies

$$\partial_{0}E_{1}(t) = \int_{\mathbb{R}^{2}} -\kappa \epsilon^{ik} \partial_{l}F_{0i}\partial_{l}F_{0k} - 2eIm(\psi_{l}\overline{\psi_{i}} + \phi\overline{D_{l}\psi_{i}})$$

$$+ 2Re(\overline{D_{l}\psi_{0}} \cdot ieF_{lj}\psi_{j} - D_{l}U_{\overline{\phi}} + ieF_{0l}\psi_{0})$$

$$+ 2Re(\overline{D_{l}\psi_{j}} \cdot ieF_{lj}\psi_{0} - D_{l}(F_{0j}\phi) + ieF_{0l}\psi_{j}) - 2\partial_{l}U_{N}\partial_{l}\Omega_{0}.$$

$$(2.5)$$

(2) $E_1(t)$, $F_1(t)$ are estimated in terms of the initial data for all $t \in [0,T)$,

$$E_1(t) \le C(E, E_1(0))(1+t)^2,$$
 (2.6)

$$F(t) \le C(E, E_1(0), F(0))(1+t)^{\frac{5}{2}}.$$
 (2.7)

It is not clear the energy norm, $||u(t,\cdot)||_{H^1}$ dose not blow up in the temporal gauge, though the energy itself is preserved in Lemma 2.2. In Lemma 2.3, $E_1(t)$, the higher order energy, is shown to be initially bounded, from which $F_1(t) = ||\partial u(t,\cdot)||_{H^1}$ can be easily estimated in terms of the initial data. Combining (2.4), (2.7) we have $||u(t,\cdot)||_{H^1}$ is initially bounded.

DONGHO CHAE[†], MYEONGJU CHAE^{††}

Proving two Lemmas we use the Hamiltonian formalism of this system (1.9) after taking time derivatives in E(t), $E_1(t)$, F(t). We depend on the covariant Sobolev inequalities in [7] (see Appendix of it), estimating each terms of $\partial_0 E_1(t)$ to show the right hand terms of (2.5) are at most linear with right to $E_1(t)$. Next we introduce Brezis-Gallouet inequality.

Lemma 2.4. [8] s > 1,

$$||u||_{L^{\infty}} \le C||u||_{H^1}(1+\sqrt{\log(1+||u||_{H^s}}).$$

Finally we carried out a priori estimate $||u(t,\cdot)||_{H^2\times H^1}$ to get

$$||u||_{H^{2}}(t) + ||\partial_{0}u||_{H^{1}}(t) \leq ||u||_{H^{2}}(0) + C \int_{0}^{t} ||\partial_{0}u||_{H^{1}}$$

$$+ ((1 + ||u||_{L^{\infty}})^{2} + ||u||_{H^{1}}^{\frac{1}{2}}(1 + ||u||_{L^{2}}))||u||_{H^{1}}$$

$$+ ||u||_{L^{\infty}}||u||_{H^{1}}^{2}||u||_{H^{2}}^{\frac{1}{2}} + (1 + ||u||_{L^{\infty}})||u||_{H^{1}}^{2}$$

$$(2.8)$$

by energy estimates to (1.7), then we have

$$||u(0,\cdot)||_{H^2} + C(t) \int_0^t \log(1+||u(s,\cdot)||_{H^2}) ||u(s,\cdot)||_{H^2 \times H^1} ds.$$
 (2.9)

applying above Brezis-Gallouet inequality. The desired result, thus, is given by the general Gronwall inequality.

For the case of an initial data $u \in H^s(\mathbf{R}^2)$, it is easy to obtain a local existence result as proposition 2.1. For a global result we state a next lemma omitting its simple proof.

Lemma 2.5. Let $(A, \phi, N) \in C([0, T); H^s(\mathbb{R}^2)) \cap C^1([0, T); H^{s-1}(\mathbb{R}^2))$ be a solution of (1.7), (1.8) for s > 2 then $||u||_{H^s}(t)$ is estimated in terms of the initial data for all $t \in [0, T)$.

iii) Maxwell-Higgs limit

Let u^{κ} be a topological solution of Maxwell-Chern-Simons-Higgs obtained in Theorem1.1 with coupling constant κ of H^2 initial data u_0 . It is easy to show $||(u^{\kappa} - u)(t, \cdot)||_{H^2 \times H^1}$ is estimated to be

$$\|(u^{\kappa} - u)(t, \cdot)\|_{H^{2} \times H^{1}} \le \int_{0}^{t} \kappa \|\partial_{0} A_{\kappa}\|_{H_{1}} + C(t) \|u^{\kappa} - u\|_{H^{2}}, \quad (2.10)$$

using $\sup_{0 \le \kappa \le 1} \|u^{\kappa}(t,\cdot)\|_{H^2 \times H^1} \le C(t)$ for a smooth function in the proof

of Theorem 1.1. Then applying Gronwall inequality to (2.10), we have

$$||(u^{\kappa}-u)(t,\cdot)||_{H^2} \leq \kappa C(t) + ||(u^{\kappa}-u)(0,\cdot)||_{H^2},$$

letting $\kappa \to 0$, we obtain the desired result.

MAXWELL-CHERN-SIMONS-HIGGS SYSTEM

REFERENCES

- [1] Lee, C., Lee, K., Min, H., Self-dual Maxwell Chern-Simons solitons, Phys. Lett. B 252 (1990), no.1, 99-83.
- [2] Chae, D., Kim, N., Topological multivortex solutions of the self-dual Maxwell-Chern-Simons-Higgs system, J. Differential Equations 134 (1997), no.1, 154– 182.
- [3] Chae, D., Chae, M., The global existence of the Maxwell-Chern-Simons-Higgs system, preprint.
- [4] Chae, D., Imanuvilov, O. The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys., 215 (2000), no.1, 119-142.
- [5] Tarantello, G., Ricciardi, T., Vortices in the Maxwell-Chern-Simons Theory, Comm. Pure Appl. Math. 53 (2000), no.7, 811-851.
- [6] Moncrief, V., Global existence of Maxwell-Klein-Gordon fields in (2 + 1)-dimensional spacetime, J. Math. Phys., 21 (1980), no.9, 811-851.
- [7] Ginibre, J., Velo, G., The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge, Comm. Math. Phys., 82 (1981), no.1, 1-28.
- [8] Brézis, H., Gallouet, T., Nonlinear Schrödinger evolution equations, Nonlinear Anal. 4 (1980), no.4, 677-681.

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA

E-mail address: dhchae@math.snu.ac.kr

DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA

E-mail address: mjchae@math.snu.ac.kr