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ON THE STEADY FLOW OF COMPRESSIBLE VISCOUS FLUID
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1 Introduction

This note is based on a joint work with Prof. Y. Shibata, Waseda University [7].
The motion of a compressible viscous isotropic Newtonian fluid is formulated by the following
initial value problem of the Navier-Stokes equation for viscous compressible fluid:

pt + V- (pv) = G(z),
v+ (v-V)v = %Av + H—E—EV(V- v) — &i(p—)l + F(z), (1.1)
(p,v)(0,z) = (po, vo)(x),

where t > 0, z = (z1,%2,73) € R?; p = p(t,z) (> 0) and v = (v1(t, z),v2(t, x),v3(t,z)) denote
the density and velocity respectively, which are unknown; P(-) (P’ > 0) denotes the pressure;
w and p' are the viscosity coefficients which satisfy the condition: g > 0 and g’ + 2u/3 > 0;
F(z) = (Fi(z), F2(z), F3(z)) is a given external force and G(z) is a given mass source. The
stationary problem corresponding to the initial value problem (1.1) is

{ V- () = G(a),

(v-V)v = %Av + %",v(v.v) Y (1;(/’)) +Flo), (1.2)

where z = (z1,T3,23) € R®; p = p(z) (> 0) and v = (v1(z), va(x), v3(z)) are unknown functions;
F(z), G(z) and the other symbols are the same as in (1.1). In this note, we consider the case
where the external force F is given by following form

F=V-F|, + F>. (1.3)

Before stating our results, we introduce some function spaces. Let L, denote the usual L,;
space, .’ the set of all tempered distributions both on R®. We put

H* = {0 € Lijoc | llulls <00} = {ue s | £ +|g)2a)| < o0},
H* = {u€ Lijoc | Vu € H¥'}, lull = llullz,, Nullk = 35 IV¥ullL,
and furthermore for short we use the notation: ‘
HEt = {(0,v) I o€ HF, ve H'}, Rt — {(o,v) IUEI:I", UGI:Ie}
ARt = {(o,v,w) |c € H,ve H*, we H! },
(o, )llk,e = llolle + llvlle, (o, v, w)lljk,e = lloll; + vl + lwlle.
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Definition 1

E={oecH"||ollm<e}, JE={ueh*||pll<e},
where

g
lolzx = lollze + | 25| + Shet N1+ 12970l + 11+ fal) 2ol

v k -
loll e = ollzo + | ]| + Sy 00+ lal) 120 + g (1 + 12D+ Vvl

Moreover we put
Ikt = {(o,v) I cel* ve Jf},
Fht = {(0,v) € ¢ | V-v=V-Vi+ Vo for some Vi, V3
such that ||(1+ |2))*Villzw+ (1 + |2)) " VallL, < €},
(o, V)l sre = llolipe+ lloll ge.

The first theorem is about the existence of stationary solution for (1.2) and its weighted-Lo,
L, estimates.

Theorem 1 Let p be any positive constant. Then, there exist small constants cg > 0 and € > 0
depending on p such that if F and G satisfy the estimate:

v=o I(1+ 2]} 'V Pl + |1 + |2 FllLo+ 11 + |22 Fill oo+ | Fallz,
HI( +12DGIl + Xy, (1 + |2])* V4G
+ Xm0 I+ 12))*2V Gl Lot |1 + |2]) 2G L, < coe,
then (1.2) admits a solution of the form: (p,v) = (p + 0,v) where (o,v) € F2°. Furthermore

the solution is unique in the following sense:

There ezists an €1 with 0 < €) < € such that if (p+ o1,v1) and (p + 02,v3) satisfy
(1.2) with the same F and G, and ||(o1,v1)|| g3.4, |[(01,v1)|| s34 < €1, then (0,v;) =

(02,'02)'

Next we consider the stability of the stationary solution of (1.2) with respect to initial
disturbance. Let (o v*) be a solution of (1.2). The stability of (p* v*) means the solvability
of the non-stationary problem (1.1). Let us introduce the class of functions which solutions of
(1.1) belong to.

Definition 2

| €(0,T; #*Y) = {(0,v) | ot,z) € C°(0,T; H*) n C(0,T; H*Y),
 w(t,3) €CY0,T; HY n CY(0,T; H?) ).
Then, we have the followiﬁg theorem. '

Theorem 2 There ezist C > 0 and & > 0 such that if ||(pp — p*vo — v*)||33 < & then (1.1)
admits a unigue solution: (p,v) = (p™+0,v*+w) globally in time, where (o,w) € €(0,00; H#33),
Vo, wy € Ly(0,00; H?), Vw € Ly(0,00; H3) Moreover the (o, w) satisfies the estimate:

t
I(o, w)(®)I13 5 + /; 1(Va, Vw, w)(s)l13 32 ds < Cli(po — p% w0 — v*)II3 5 (1.4)

for any t > 0.
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Remark 1 When Theorem 1.2 holds, we shall say that the stationary solution (p* v*) of (1.2)
is stable in the H3-framework with respect to small initial disturbance.

Matsumura and Nishida [4] first proved the stability of constant state (p,0) in H3-framework
with respect to initial disturbance, namely they proved Theorem 1.2 in the case where (p* v*) =
(p, 0). When the external force is given by the potential: F = V®, F, = G = 0 in (1.2) and
(1.3) where 9 is a scalar function, the stationary solution (p* v*)(z) of (1.2) in a neighborhood
of (p,0) in #%2 has the form:

p*(z) pr
/ 51@ dn + (z) =0, v*(z)=0.
p

In this case, Matsumura and Nishida [5] proved the stability of (p*(z),0) in the H3-framework
with respect to initial disturbance in an exterior domain.

The purpose of this note is to consider the case where the external force is given by the
general formula (1.3) and also mass source G appears. In this case, the stationary solution
(p*v*)(z) are both non-trivial in general. We are interested only in strong solutions. Then,
when F is small enough in a certain norm and G = 0, Novotny and Padula [6] proved a unique
existence theorem of solutions to (1.2) in an exterior domain. In their proof, they decomposed
the equations into the Stokes equation, transport equation and Laplace equation. Since we
consider the problem in R3, that is, the boundary condition is not imposed, we can solve (1.2)
without any such decomposition technique. In fact, in §2, we establish the corresponding linear
theory to (1.2) in the Lo-framework by the usual Banach closed range theorem, after obtaining
some weighted-L, estimates for solutions. '

The stability of the stationary solutions (p* v*)(z) of (1.2) in H3-framework has not been
studied yet. As we stated in Remark 1, Theorem 2 tells us the stability of stationary solutions
(p*v*)(z) in H3-framework. The main step of our proof of Theorem 2 is to obtain a priori
estimate for solutions of (1.1) as usual. In §3, we shall obtain a priori estimates by choosing
several multipliers and using the integration by parts. Compared with the case where v* = 0,
we have to give more consideration to choice of multipliers.

Recently, Kawashita [3] and Danchin [1,2] consider the optimal class of initial data regarding
the regularity. We think that our result will be improved in this direction.

2 Sketch of proof of Theorem 1

Now, we shall give a rough idea of proof of Theorem 1. Take any constant p > 0. Substituting
p = p+ o into (1.2) and putting v = P'(p), (1.2) is reduced to the equation:

= 'V)GZ_G ’
pt+o pto

V-v+(

—pAv — (u+ pYV(V-v) +yVo = —(p+ o) (v-V)v (2.1)

— [P'(p+0) — P'(p)] Vo + (5 + o) F.
We consider the following linearized equation: |
V-v+ (a-V)o =g, ‘ | | - (22)
{ — plv — (4 + §)V(V-v) + Vo = , | (2.3)
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where (7,7)(z) € FL° is given and a, f, g is defined by

G
ﬁ+&, f——-—(’U V)U+f*, g—m—&’
fo=-6(®-V)o— [P'(p+6)— P'(p)|Vé + (p+6)F.

R

a =

By a successive approximation method based on the L, estimate, weighted-L2 estimate and L,
estimate, we construct the stationary solution to (2.1).

L, estimate: First, we estimate Lo norm of the solution by using the energy method. Multi-
plying (2.2) and (2.3) by o and v respectively, and using integration by parts, we have

(f,0) = plVol? + (1 + )V +7(Vo,v),
(9,0) = —(v,Vo) + (a-Vo,0).
Canceling the term of (Vo,v) in the above two relations, we obtain
Vo)l < yl(e-Va,0)| + |(£,v)] + ¥I(g,9)|-
Differentiating (2.2)—(2.3), and employing the same argument, we have
plV?l? < 7(V(a-Vo), Va)| + |(V£, Vo)| +7I(Vg, Vo).
Adding the above two inequalities, we have
1
plVoll} < 3 [7(V¥(a-Y0), v¥0) + (V7 1, V") + (0, V") | (24)

v=0

Since
IVall? < Cypw {IIV0l1® + [ £1°}

as follows from (2.3), it follows from (2.4) that
1
I(Va, Vo)li§, < C Y I(V*(a-Vo), V7o)

p  v=0 (2.5)
+C[IFI2 + V"1, Vo) + (v, V*0)|} | = I + Iy,

v=0

where the constant C > 0 depends only on u, 4’ and «. Here, integration by parts and the
do aa)

Hardy inequality imply that
L <C[| |x|a VU’ || |+Z{l(6x, Bx,)l + %I((V )3:1:, Oz; }]

< C{lI(1 + |2))allLo+ [IVallLe }IVal? < Ce|| Va2, (2.6)

< 31V, V), +C{IL + [al) (£, 9)IP + I Val12}.
Combining (2.5) and (2.6), we have
(Y0, Vo)l < {1 + lal) (£, )l + IVall}.
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Differentiating (2.2)-(2.3) and by repeated use of the same argumet, we can show that

1(Vo, Vo)llas < C{IL +I2)(£, )l + I(V S, V9)ll2,3}- (2.7)

Weighted-Lo estimate: The second step is to have the weighted- Ly estimate. We apply 82 (1 <
|a| < 4) to (2.2) and (2.3); multiply the resultant equation by (1+|z|)83%0 and (14|z|)2 920
respectively. Then using the same techniques as above, we obtain

4 4
YN+ [z]) (970, v )| < C[Ilﬁll3s+ Vol + >N+ le)”(V”‘lf*,V'fg)ll], (2.8)

v=1 v=1
where C > 0 is a constant depending only on 4, s’ and 7.

Loo estimate: At last, in order to get Lo, estimate, we employ the Helmholtz decomposition:
v=w+Vp (V-w = 0). Putting this formula into (2.2)—(2.3), we have the following system of
three equations: v

Ap+ (G'V)O' =9,
—pAw + Ve = f,
® =vyo — (2u + u')Ap.

Using the Fourier transform, we have the representations for ®, w; (j = 1,2,3) and p:

3 3
OFE
(I):Z—z: *fk, wj(x)zkEIEjk*fk(x), P:Eo*{—(a-V)o+g},
k=1 -

where Ey and Ej; denote the fundamental solution of the Laplace equation and Stokes equation
respectively. Therefore, integration by parts and the Sobolev inequality imply that

1 4
11+ 12)2V20| Lot D N(L+ [2)) V0], < C [ez (1 + |=])* V¥l
v=0 1 v=1 (2.9)
+ 1+ 12D Flloot 11+ ) fillnat N2l + D I+ Iwi)””V"glle],

v=0
where f1, f are defined by the appropriate decomposition of f into the form: f = V- fi + fa.
Combining (2.7)—(2.9) and returning to definition of f, g, we get

(o, v)ll o5 < C{€* + K},

if we take € > 0 small enough, where K is the same as in Theorem 1 and C' > 0 is a constant
depending only on u, 4’ and . This is the way to close our process of estimation.

3 Sketch of proof of Theorem 2

Finally, we shall give a sketch of proof of Theorem 2. The proof consists of the following two
steps: One is local existence and the other is a priori estimate. Concerning the local existence,
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we can apply the Matsumura-Nishida [4] method directly. So, we will discuss how to get the
a priori estimate. Let p be a positive constant and we denote the corresponding stationary
solution obtained in Theorem 1 by (p* v*). We put

p(tsz) = p*(z) + o(t,2), v(t,z)=v"(z) +w(t,z)

into (1.1), then we have the system of equation for (o, w):

a®) + V- {(o" + o(®)w(t)} = —V- (v"o (1)), (3.1)
wi(t) = — [WBu(t) + (s + #) V(7 w(t)) ] + AOVo() = 1(2), (3:2)
(0, ‘LU)(O, .’E) = (pO - P*, Vg — ’U‘)(.’D), (33)

where
£() = = (" V)w(t) - (w(t)- V) (" + w(t))
- L{P o+ o) - P(o)} et - 2B
p* p*(p*+o(t))
+ (5 + W) VLV (" + w(t)} - P(o"+ o) Vo',

P'(p*+a(t))
p*+o(t)

Let (0, w)(t) € €(0,t1; 2°?) be a solution to (3.1)-(3.2) satisfying [|(d, w)(t)||33 < e. We also
suppose that ||(p*— po,v*)|| 545 <.

[uA(v* + w(t))

A(t) =

Estimates for Vw(t) and its derivatives up to V*w(t): Applying 02 (0 < |al < 3) to (3.1)
and (3.2); multiplying resultant equation by 8%0(t) and (p + o(t)) A(t)~182w(t) respectively,
we have

II<9"’0(t)II2 ((o*+ o (8)B5w(t), VEZa(t)) = (-3"(v*a(t)) + In(t), Vigo(t)),
B(t)

2 dt
(BOgwi(e), 3(®) - (=
+ (<p*+a(t))va:a<t), 2u(t)) = (821(2) + Ja(t), BO)Z (),

where Io(t) and J(t) are defined by

L) = X (5) @26+ o(6)) w0

B<a

(V- w(e)}, Bgu()

()= 3 (j;) (o) a2 {mtrute) + (s + u')V(v-«g(t))} + (82 A0) voRu(t).

Canceling the term of ((p + a(t))0Cuw(t), V&20(t)) by the above two formiilas and writing the
first term of second formula as follows:
1d '
(Be)22u0), 220() = 3 (B o2u(t) - L(B 3 2u(0),

and using mtegrahlon by parts for the second term of second formula, we have
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5 21020 (01 + (B2 w(®), 02w(t)) } + BolVOTw(e)|?

< |(83(v*a(t), VAga(t))| + | (85 £ (2), B(t)dgw(?))]
[](a(t) va2o(t)| + | (Jalt), B t)aawt)l] | 1(£)82w(t), O%w(?))| (3.4)

+ [o] (V22 vazutey )|+ + 0] (72 )) (t),a:w(t))[]
=K+ Ky + K3+ K4 + K,

where By = min,, /a<s<2po s?/P'(s). Now, we estimate the right hand side of (3.4) using the
Sobolev inequality and the Gagliard-Nirenberg inequality. In order to estimate K4, we use (3.1),
and then we have

Ky = |(B()os(t) 85w(t), 85w(t))]
= [(V-{(p* + o(t))w(t) + v*o(t)}, B(t) 82w(t)- OZw(?))|
< C|(w(t) +v*a(t), V{0Zw(t)- 02w(t)} + {VB(t)} 02w(t)- 0%w(t))] (3.5)
< C{(lw®)llLs+ llv* | Lello ()l Le ) IV IZ w() 105 w(t)| Lo
+ [|(w,0) ()| 26 1(V ", Vo) 105w (t)l|7 } < CelVaTw(B)|I?,
where B(t) is defined by

) Plp+o(t))
B(t) = WP - Plpr+a(t)

The other terms are estimated as follows:

(0" + (1)) |-

cll+ |w|)v*||Lm||5'|—f|—)i|||Va(t)|| < Cel|[Vo@)?  if a=0,
CelVo)lE,_, if 1<]al <3,
- Ce||(Vo, Vw)(@)||? if a=0, (3.6)
Clet NI(Va(t), VOl 1o+ CAIVE@IF i 1< o] <3
K3 < Ce|| (Vo (t), Vw(t)) 1>
Ks < CI(Ve, Vo (0) s I Vg w(®ll 5wl < CeliVaguw ()|
Combining (3. 4)—(3 6), we obtain the following estimate:
oI + (BOw(®), w(h)] + aol Vw @I < CelVo®I?,

;;it[llv’“a(t)ll2 + (B(t)VEw(t), VEw(t))] + x| VFHw(t)|? (3.7

< Cle + (Vo w) @)1 o1 + CA V()2

for 1 <k <3 and any A with 0 < A < Ag, if we take €, Ag > 0 small enough. Here C>0isa
constant depending only on x and p'.
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Estimates for wy(t) and its derivatives up to V?wy(t): Applying 8% (0 < || < 2) to (3.2),
multiplying the resultant equation by 3%w;(t) and using (3.1), we have
d .
a(w(t),VU(t)) + Billwe(t)1? < Cel|Va(t)|? + C|Vu ()l 55
d .

%(Vk_lw(t),vka(t)) + Bl VE 1w, ()12 < Cll(Vo, Vw, VE2w) ()17 o 4 0

for 2 < k < 3. Here, C > 0 is a constant depending only on x and y'.

Estimates for Vo(t) and its derivatives up to V3o(t): Similarly, applying 92 (0 < |a| < 2) to
(3.2) and multiplying the resultant equation by V320 (t), we have

IVo@)I? < [(Vw,w) ()30, IVEe@I? < Cll(Vo, Vo, V¥ ) ) _g 0 (3.9)
for 2 < k < 3, where C > 0 is a constant depending only on u and p'.
Combining (3.7)-(3.9), we obtain

3 3
gt-{ > [ v6, Vuls + 3 AV "'0,9%0) } + Vo, Vo, w5 < O,
v=1

v=0

where
(0*+ o(2))?
P'(p*+a(t))

Integration of this formula on [0, ¢] implies that our a priori estimate.

[o,w]B(t) = lo@®)]|* + (B)w(t), w(t)), B(t)=
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