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1Introduction

We consider the nonlinear elliptic boundary value problem:

$-\triangle u+\lambda u=u^{p}$ , $u>0$ $(x\in\Omega)$ , $u|_{\partial\Omega}=0$ , $u(x)arrow 0(|x|arrow\infty)$ , (1)

where $\Omega$ is an unbounded domain in $\mathrm{R}^{n}$ with the boundary an of locally piecewise
$C^{1}$ class, $1<p<(n+2)/(n-2)(n\geq 3),$ $+\infty(n=2)$ , and Ais aparameter. We
assume $\lambda\geq 0$ throughout this paper, for simplicity, although one can allow Ato be
negative to some extent for domains in which Poincar\’e’ $\mathrm{s}$ inequality holds. In 1982,
Esteban and Lions [11] discovered acertain criterion of unbounded domains $\Omega$ in
which the BVP above has no solution. For example, there exist no solution for the
semi-infinite cylinderical domain $\Omega$ :

$\Omega=(0, +\infty)\cross\omega$ ,

where $\omega$
$\subset \mathrm{R}^{n-1}$ is abounded domain. Actually, they proved non-existence of

non-trivial energy finite solution to (2), if there exists aconstant vector $X\in \mathrm{R}^{n}$

such $\nu(x)\cdot X\geq 0$ and $\nu(x)\cdot X\not\equiv \mathrm{O}$ for $x\in\partial\Omega$ , where $\nu(x)$ is the outward unit
normal vector at $x\in\partial\Omega$ . On the other hand, in 1983, several peoples (e.g.,
Esteban [10], Amick and Toland [2], Stuart [19] $)$ proved the existence of asolution
on the infinite (straight) cylindrical domain $\Omega=(-\infty, +\infty)\cross\omega$ . After that, in
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1993 Lien, Tzeng and Wang [14] proved the existence of asolution on unbounded
domains with aperiodic structure and their locally deformed domains, precisely
adding bounded domains, by using concentration-compactness principles. They
also proved the existence of asolution on adomain

$\Omega=\{x\in \mathrm{R}^{n};|x|<R\}\cup\{x=(x_{1}, x’)\in \mathrm{R}\cross \mathrm{R}^{n-1} ; x_{1}\in(0, +\infty), |x’|<r\}$

for fixed $r>0$ and sufficiently large $R>r$ . Also, del Pino and Felmer [9] proved
similar results, but in slightly different situations, for more general nonlinearity
by using the mountain pass approach. We also note that Bahri and Lions [3] have
proved the existence of asolution on any exterior domain 0for $\lambda>0$ . The relation
between the shape of an unbounded domain $\Omega$ and the solvability of the BVP (1)
is still unclear.

In this paper, we propose aclass of unbounded domains, domains with semi-
infinite cylindrical ends (the precise definition is given in section 2), in which the
BVP will be solved. Actually we present two conjectures on the solvability of the
BVP (1) and give several results to support these conjectures.

This paper is organized as follows. In section 2, we consider the elliptic boundary
value problem with ageneral nonlinearity $f(u)$ , including $f(u)=u_{+}^{p}$ as aspecial
case. We introduce aclass of unbounded domains with semi-infinite cylindrical
ends and give two conjectures on the solvability on such domains. We state two

results (Theorem 1, Corollary 2) on the existence of aleast energy solution and
aresult (Theorem 4) on the existence of ahigher energy solution. We also give
some symmetry properties (Theorem 3) of aleast energy solutions on domains with
symmetries with respect to axises. In section 3, we give the proof of Theorem 1
and Theorem 3. In section 4, we give the outline of the proof of Theorem 4.

2Main Results

We consider the nonlinear elliptic boundary value problem with ageneral non-
linear term $f(u)$ :

$-\triangle u+\lambda u=f(u)$ , $u>0$ ( $x$ a $\Omega$ ), $u|_{\partial\Omega}=0$ , $u(x)arrow 0(|x|arrow\infty)$ , (2)

where $\Omega$ is an unbounded domain in $\mathrm{R}^{n}$ with the boundary $\partial\Omega$ of locally piecewise
$C^{1}$ class and $\lambda\geq 0$ is aparameter. Here, $f(t)$ is a $C^{1}$ function satisfying the
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following conditions:
(f-1) $f(t)=0$ for $t\leq 0$ and $f(t)=o(t)$ as $tarrow \mathrm{O}$ ;
(f-2) there exists $p>1$ such that $p<(n+2)/(n-2)$ for $n\geq 3$ and $p<+\infty$

for $n=2$ and
$\lim\underline{f(t)}=\mathrm{E}1$

$tarrow+\infty t^{p}$

(f-3) there exists $\mathit{0}\in(2,p+1]$ such that

$0<\theta F(t)\leq f(t)t$ for $t>0$ ;

(f-4) the function $t\mapsto f(t)/t$ is strictly increasing on $(0, +\infty)$ ,

where $F(t)= \int_{0}^{t}f(s)ds$ . To introduce the class of unbounded domains $\Omega$ to be
considered in this paper, we denote by $S(\omega)$ and $A(\omega)$ the infinite cylinder and
the semi-infinite cylinder, respectively, with abounded domain $\omega\subset \mathrm{R}^{n-1}$ as its
cross-section:

$\mathrm{S}(\mathrm{u})=\{(x=(x_{1}, x’)\in \mathrm{R}\cross \mathrm{R}^{n-1}; x_{1}\in(-\infty, +\infty), x’\in\omega\}$ ,

$A(\omega)=\{(x=(x_{1}, x’)\in \mathrm{R}\cross \mathrm{R}^{n-1} ; x_{1}\in(0, +\infty), x’\in\omega\}$.

Especially, we use the notation $S_{R}=S(B’(O, R))$ and $A_{R}=A(B’(O, R))$ for
$B’(O, R)=\{x’\in \mathrm{R}^{n-1} ; |x’|<R\}$ with $R>0$ .

Definition 1If there exist $m\in \mathrm{N}_{f}$ a bounded domain $\omega\subset \mathrm{R}^{n-1}$ and a compact
set $I\acute{\mathrm{c}}$ such

$\Omega\cap K^{c}=\bigcup_{j=1}^{m}A^{(j)}(\omega)$ ,

where each $A^{(j)}(\omega)$ is congruent with $A(\omega)$ , then we say that $\Omega$ is a domain with
$m$ semi-infinite cylinder $A(\Omega’)$ as its ends.

From $S_{R}$ we construct the $V-$ shaped cylindrical domain, we denote by $S_{R}^{(V)}$ , by
the following procedure: cuting the domain $S_{R}$ via ahyperplane, not parallel to
the cross-section, and attaching again its new cross-sections so that points on one
cross-section are transformed into the points of the other cross-section, which is
symmetric with respect to its center. We can continue this procedure to construct
afinitely times bent domain from $S_{R}$ . One can also consider the smoothly locally
bent cylindrical domain with aball of same radius $R$ as its cross section everywhere
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Let y $\ovalbox{\tt\small REJECT}$ $y(s)$ , sE (-oo,$+\mathrm{o}\mathrm{o})$ , be asmooth curve in $\mathrm{R}^{n}$ which is astraight line
outside acompact set and let $P(s)$ be aset of unit vectors which are perpendicular
to the tangent vector $y^{l}\mathrm{O}$ ) Then such domain n can be decsribed as follows:

$\Omega=\{x=y(s)+t\nu(s);s\in(-\infty, +\infty), \nu(s)\in.P(s), t\in[0, R)\}$ ,

We conjecture the following two statements for the solvability of (2) on adomain
$\Omega$ with $m$ semi-infinite cylinder $A(\omega)$ as its ends.

Conjecture 1If $\Omega$ is either a finitely times bent domain or a smoothly locally bent
domain constructed from $S_{R}$ by the procedure above, then there eists a least energy
solution (the precise definition is given later) to (2). Actually, we conjecture the
stronger statement $c(\Omega)<c(S_{R})$ for such domains (the definition of $c(\Omega)$ is gevin
later).

In the proof of Theorem 1, one can see that once we know $c(\Omega)<c(S_{R})$ we can
show the existence of aleast energy solution.

Conjecture 2Ifm $\geq 2$ and $\Omega$ is a domain with m semi-infinite cylinder $A(\omega)$ as
its ends, then there eists a solution to (2).

In general, we cannot expect the existence of least energy solution to (2) under the
situation of Conjecture 2. We remark that Poincare’s ineqality holds on unbounded
domains with such cylindrical ends (see, e.g., [17]). To state our first result, we
denote by $S_{R,L}^{(V)}$ the semi-infinite $V$ -shaped cylindrical domain which is constructed
by cuting, perpendicularly by ahyperplane, ainfinite part of one of the semi-infinite
part of $S_{R}^{(V)}$ remaining afinite part with length $L$ , measured from certain point on
the bent region. So, $S_{R,L}^{(V)}$ tends to $S_{R}^{(V)}$ as $Larrow\infty$ . Now, we state our first result.

Theorem 1Suppose $\lambda\geq 0$ and (f-l)-(f-4) for $f(t)$ . Let $m\geq 1$ , $R>0$ and $\Omega$ be
a domain with $m$ semi-infinite cylinder $A_{R}$ as its ends which satisfies the additional
condition:

$(^{*})$ $\Omega$ contains one of $S_{R}$ , $S_{R}^{(V)}$ and $S_{R,L}^{(V)}$ with sufficient$lly$ large $L>0$ .
Then, there eists a least energy solution to (2).

For the case that 0containes $S_{R}$ , Theorem 1has been proved essentially in [9],
[14]. The result for the case $\Omega=S_{R}^{(V)}$ seems new as far as we know and also play$\mathrm{s}$
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an important role in the proof of Theorem 1for the general case. As aspecial case,
we consider the problem:

$-\triangle u=u^{p}$ , $u>0$ ( $x$ a $\Omega$), $u|_{\partial\Omega}=0$ , $u(x)arrow 0(|x|arrow\infty)$ , (3)

where $\Omega$ is an unbounded domain in $\mathrm{R}^{n}(n\geq 2)$ and $1<p<(n+2)/(n-2)$ for
$n\geq 3$ and $1<p<+\infty$ for $n=2$ . As a corollary of Theorem 1, we obtain the
following result to (3).

Corollary 2Let $\Omega$ be a finitely bent domain constructed from $S_{R}$ , fix its shape and
consider $R$ as a parameter. Then, there exists a sufficiently small $R_{0}$ such that for
every $R\in(0, R_{0})$ there exists a least energy solution to (3).

Since one can show Corollary 2by combining the result in Theorem 1and the
scaling argument, we omit the details of the proof of Corollary 2.

Remark 1One can see in the proof of Theorem 1and Corollary 2that the state-
ments are true even in the case that the cross-section $B(O, R)$ is replaced by $a$

bounded domain $\omega\in \mathrm{R}^{n-1}$ which is convex and symmetric with respect to axises
$xj,j=2$ , $\cdots$ , $n$ . Because we just use the existence and symmetry properties of $a$

least energy solution on $S(\omega)$ .

Theorem 1and Corollary 2give partial answers to Conjecture 1. Complete answer
to Conjecture 1remains open even for finetely bent domains constructed from
$S_{R}$ . Moreover, existence of the least energy solution for asmoothly locally bent
domain constructed from $S_{R}$ is also an open problem, although we can obtain the
existence result for certain smooth domains close to $V$ -shaped domain, which are
constructed smoothing the corner of $V$ -shaped domains slightly.

Here, we briefly give the definition of a least energy solution to (2). The problem
(2) has avariational structure and asolution $u$ to (2) can be characterized as a
non-trivial critical point of the energy functional:

$J_{\Omega}(u)= \frac{1}{2}\int_{\Omega}(|\nabla u|^{2}+\lambda u^{2})dx-\int_{\Omega}F(u)dx$. (4)

Under the assumptions (f-l)-(f-3), it is well-known (see, e.g., [9], [15]) that $J_{\Omega}(u)$

has amountain pass structure and, when (f-4) is assumed, its mountain pass value
$c(\Omega)$ can be written by

$c( \Omega)=\inf_{+u\in\not\equiv 0}\sup_{\tau>0}J_{\Omega}(\tau u)H_{0}^{1}(\Omega),u$.
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It is also known that this characterization implies that

$c( \Omega)=\inf_{u\in M,u+\not\equiv 0}J(u)$ ,

where $M$ is asolution manifold (called the Nehari manifold), which includes any
solution to (2): namely,

$M= \{u\in H_{0}^{1}(\Omega);\int_{\Omega}u(-\triangle u+\lambda u)dx=\int_{\Omega}f(u)udx\}$ .

This means that if $J_{\Omega}(u)=c(\Omega)$ and $J_{\Omega}’(u)=0$ , then $u$ has the least energy among
any solutions to (2). So, we call $u$ be aleast energy solution to (2), if $J_{\Omega}(u)=c(\Omega)$

and $J_{\Omega}’(u)=0$ .
Next, we remark on symmetry property of solutions to (2) on symmetric domains.

When $\Omega=S_{R}$ , in [5] (see also [4]) they proved by the moving plane method that

any solutions $u$ to (2) has the symmetry:

$u(x_{1}, x’)=u(x_{1}, |x’|)$ , $u(x_{1},x’)=u(-x_{1}, x’)$

for any $x=(x_{1}, x’)\in S_{R}$ . Especially, when $n=2$ , uniqueness of solutions to (2)

is also known by Dancer [7], at least for the case $f(u)=u_{+}^{p}$ and A $=0$ . Now, we

consider (2) on the domain:

$\Omega=\{x=(x_{1}, x_{2})\in \mathrm{R}^{2};|x_{1}|\leq R/2, |x_{2}|\leq R/2\}$ .

This domain has asymmetry with respect to the $x_{1}$ -axis, $x_{2}$-axis, $\alpha$-axis, and
$\beta$-axis;

$\alpha=\{x;x_{1}=x_{2}\}$ , $\beta=\{x;x_{1}=-x_{2}\}$ .

For this domain, it is easy to see that any solution to (2) is symmetric with respect

to $x_{1}$ -axis and $x_{2}$-axis by using the moving plan method as in [4], [5]. For aleast

energy solution obtained by Theorem 1(see also [14] for the case $f(u)=u_{+}^{p}$ ), we
also show the symmetry with respect to $\alpha$-axis and $\beta$-axis.

Theorem 3Let $\Omega$ be a domain above. Then any least energy solution to (2) is

symmetric with respect to $x_{1}$ -axis, $x_{2}$ -axis, $\alpha$ -axis, and $\beta$ -axis.
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We do not know uniqueness of solutions to (2), even if we restrict to least energy
solutions

Next, we show some result to support Conjecture 2in certain domainw in which

we cannot expect the existence of aleast energy solution. There are several results
in this direction (see [13], [21], [22]). In this paper, we consider the domain $\Omega_{\sigma}$

witha parameter $\sigma>0$ satisfying the following conditions;

(D-1) $O\in\Omega_{\sigma}$ and $\Omega_{\sigma}$ is an unbounded domain which is symmetric with

respect to the hyperplane $T_{1}=\{x=(x_{1}, x’)\in \mathrm{R}\cross \mathrm{R}^{n-1}; x_{1}=0\}$ ,

(D-2) there exists $L>0$ such that

$( \Omega_{\sigma}\cap\{x=(x_{1}, x’);|x_{1}|\leq\frac{L}{2}\})\backslash S_{\sigma}=\emptyset$ ,

(D-3) there exists $d(>\sigma)>0$ such that

$\Omega_{\sigma}\subset\{(x_{1}, x’)\in \mathrm{R}\cross \mathrm{R}^{n-1} ; |x’|<\frac{d}{2}\}$ ,

(D-1) $\Omega_{\sigma}\cap\{x\in \mathrm{R}^{n}; |x|<k\}$ satisfies the uniform cone condition for any
sufficiently large $k>0$ .

Atypical example is the unbounded dumbbell-shaped domain which is included
in $S_{d/2}$ and consists of the union of two $A_{d/2}$ and the thin channell $\{(x_{1}, x’);|x_{1}|\leq$

$L/2$ , $|x’|<\sigma/2\}$ with $\sigma<d$ . For this domain, it is easy to see (e.g. [14], [22]) that

there is no least energy solution, namely attains its mountain pass value $c(\Omega_{\sigma})$ for

small $\sigma$ . Therefore, we must find ahigher energy solution.

Theorem 4Suppose $\Omega_{\sigma}$ satisfies the conditions (D-I)-(D-4). Then there exists

a sufficientlly small $\sigma_{0}>0$ such that for any $\sigma\in(0, \sigma_{0})$ there exists a solution
$u=u_{\sigma}$ to (3) which is symmetric with respect to the hyperplane $T_{1}$ , and satisfies
the following estimates;

$C_{1}\sigma^{-\frac{2}{p-1}}\leq||u_{\sigma}||_{L^{\infty}(\Omega_{\sigma})}\leq C_{2}\sigma^{-\frac{2}{p-1}}$ ,

$C_{3}\sigma^{\frac{n-2}{2}-\frac{2}{\mathrm{p}-1}}\leq||\nabla u_{\sigma}||_{L^{2}(\Omega_{\sigma})}\leq C_{4}\sigma^{\frac{n-2}{2}-\frac{2}{\mathrm{p}-1}}$ ,

where $C_{j},j=1$ , $\cdots$ , 4 are positive constants independent of $\sigma$ .

The same result has been proved by by Byeon [4] (see also [7] for the case $n=2$ )

for bounded dumbbell-shaped domains $\Omega_{\sigma}$ .
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3Proofs of Theorem 1, 3

In this section, first we show Thoerem 1for the case $\Omega=S_{R}^{(V)}$ , since this is
the essential part of Theorem 1. Throughout this section, we assume that $\Omega$ is a
domain with $m$ semi-infite cylinder as its ends for some $m\in \mathrm{N}$ .

First, we collect some useful known results for the proof of Theorem 1. Under
the assumptions (f-l)-(f-3), it is known that the energy functional $J_{\Omega}(u)$ defined
in section 2, has amountain pass structure and we can define its mountain value

$c( \Omega)=\inf(\sup J_{\Omega}(\gamma(t)))$ ,
$\gamma\in\Gamma t\in[0,1]$

where $\Gamma=\{\gamma\in C([0,1];H_{0}^{1}(\Omega));\gamma(0)=0, J_{\Omega}(\gamma(1))<0\}$ . Moreover under the
additional assumption (f-4), $c(\Omega)$ is characterized as by

$c( \Omega)=\inf_{0+\not\equiv=0}\sup_{ru\in>0}J_{\Omega}(\tau u)H^{1}(\Omega),u$ .

For large $k>0$ , we consider $\overline{\Omega_{k}}=\Omega\cap B(O, k)^{c}$ , where $B(O, k)^{c}=\{x\in \mathrm{R}^{n};|x|>$

$k\}$ . As before, we can define the energy functional $J_{\overline{\Omega_{k}}}(u)$ on $H_{0}^{1}(\overline{\Omega_{k}})$ , and define

$\overline{c_{k}}=c(\overline{\Omega_{k}})=\inf_{\gamma\in\tilde{\Gamma_{k}}t}\sup_{\in[0,1]}J_{\overline{\Omega_{k}}}(\gamma(t))$,

where
$\overline{\Gamma_{k}}=$ { $\gamma\in\Gamma;\gamma(t)\in H_{0}^{1}(\overline{\Omega_{k}})$ for any $t\in[0,1]$ }.

Since $H_{0}^{1}(\overline{\Omega_{l}})\subset H_{0}^{1}(\overline{\Omega_{k}})$ for $k<l$ , it is easy to see that $\overline{c_{k}}$ is increasing in $k$ so that
$\lim_{karrow\infty}\overline{c_{k}}$ exists. The following is ageneral criterion due to del Pino and Felmer
[9] to assure the existence of aleast energy solution to (2).

Proposition 1Assume $c( \Omega)<\lim_{karrow\infty}\overline{c_{k}}$ . Then there exists a least energy solu-
tion $u$ , that is Jq(u) $=c(\Omega)$ and $J_{\Omega}’(u)=0$ .

Actually, this proposition is true for any domain $\Omega$ for which $\Omega\cap B(O, k)$ satisfies
the uniform cone property for any large $k>0$ , although this condition is not
mentioned explicitely in [9]. This condition allow us to obtain the uniform constant
in Sobolev’s embedding theorem on $\Omega\cap B(O, k)$ for any large $k>0$ (see Adams
[1] $)$ . The following lemma is also well-known(see, e.g., [20])
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Lemma 1Suppose $v\in H_{0}^{1}(\Omega)$ satisfies $J_{\Omega}(v)=c(\Omega)$ and $J_{\Omega}(v)= \sup_{t>0}J_{\Omega}(tv)$ .
Then, $v$ must be a least energy solution to (2).

Proof of Theorem 1for the case $\Omega=S_{R}^{(V)}$ :
Let $\Omega=S_{R}^{(V)}$ . First, we note that the existence of aleast energy solution $u_{R}$ on

$S_{R}$ (see, e.g., [6], $[9],[15]$ ), that is

$c(S_{R})=J_{S_{R}}(u_{R})= \sup_{t>0}J_{S_{R}}(tu_{R})$ .

By the elliptic regularity theorem, we have $u_{R}\in C^{2}(\overline{S_{R}})$ . It is also known that $u_{R}$

satisfies
$u_{R}(x_{1}, x’)=u_{R}(-x_{1}, x’)=u_{R}(x_{1}, |x’|)$

for every $x=(x_{1}, x’)\in S_{R}$ . Now, we may assume that $S_{R}^{(V)}$ is constructed by
cutting ahyperplane which passes the origin and by patching again so that a
point $A$ of one part, we say $S_{1}$ , on the intersection between the plane and $S_{R}$ are
transformed into the symmetric point $A’$ on the other part, say $S_{2}$ , with respect to
the origin. We may think $S_{R}=V_{1}\cup V_{2}$ and $S_{R}^{(V)}=V_{1}’\cup V_{2}’$ , where $V_{1}’=V_{1}$ and $V_{2}’$

is congruent with $V_{2}$ and all points $x’\in V_{2}’$ are transformed to the point $x\in V_{2}$ just
by rotating, coresponding to the rotation of the face $S_{2}$ . Then, there is anatural
way to construct afunction $\overline{u}$ on $S_{R}^{(V)}$ from $u_{R}$ . Namely, define $\tilde{u}(x’)=u_{R}(x’)$ for
$x’\in V_{1}’$ and $\overline{u}(x’)=u_{R}(x)$ for $x’\in V_{2}’$ , where $x\in V_{2}$ is the point transformed
by $x’$ by the rotation above. Then, thanks to the symmetries of $u_{R}$ , we see $\tilde{u}$ is
continuously defined on the face $S_{1}(=S_{2})$ and hence $\tilde{u}\in H_{0}^{1}(S_{R}^{(V)})$ . Furthermore,
by its construction, we have $J_{S_{R}}(V)(t\overline{u})=J_{S_{R}}(tu_{R})$ for every $t>0$ and hence

$c(S_{R}^{(V)})$ $=$
$\inf_{v\in H_{0}^{1}(S_{R}^{(V)})}\sup_{t>0}J_{S_{R}^{(V)}}(tv)$

$\leq$
$\sup_{t>0}J_{S_{R}^{(V)}}(t\overline{u})$ (5)

$=$
$\sup_{t>0}\mathcal{J}_{S_{R}}(tu_{R})=J_{S_{R}}(u_{R})=c(S_{R})$ .

Claim 1: $c(S_{R}^{(V)})<c(S_{R})$ holds.
If not, the inequality in (5) should be equal and we have

$c(S_{R}^{(V)})= \sup_{t>0}J_{S_{R}^{(V\rangle}}(t\overline{u})=J_{S_{R}^{(V)}}(\overline{u})$.
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The last equality holds because $(J_{S_{R}}(V)(t\tilde{u})=)Js_{R}(tu_{R})$ takes its maximum at $t=1$ .
Thus, it follows from Lemma 1that $\tilde{u}$ should be aleast energy solution to (2)
on $S_{R}^{(V)}$ . By the elliptic regularity theorem we have $\tilde{u}\in C^{2}(S_{R}^{(V)})$ . However,
considering the point $P$ near the inner edge of $S_{R}^{(V)}$ , it is easy to that $\tilde{u}$ has ajump
in its first derivative on $P$ because of Hopf $\mathrm{s}$ lemma. This is acontradiction and
claim 1is proved.

Claim 2: $c(S_{R}) \leq\lim_{karrow\infty}c(S_{R}^{(V)})\cap B(O, k)^{c})$ holds.
Since $S_{R}^{(V)}\cap B(O, k)^{c}$ is adisjoint union of $D_{1}$ and $D_{2}$ , we may think $D_{1}\cup D_{2}\subset S_{R}$

and therefore $c(S_{R})\leq c(S_{R}^{(V)}\cap B(O, k)^{c})$ . This implies Claim 2. By Claim 1
and 2, we can conclude the existence of aleast energy solution on $S_{R}^{(V)}$ by using
Proposition 1.

The claim 1in the proof above is important, especially in the proof of Theorem 1
for the case $\Omega=S_{R,L}^{(V)}$ .
The proof of Theorem 1for the case $\Omega=S_{R,L}^{(V)}$ :

For $\Omega=S_{R,L}^{(V)}$ , we can prove

$\lim_{Larrow\infty}c(S_{R,L}^{(V)})\leq c(S_{R}^{(V)})$ . (6)

Once we obtain (6), combining the estimate of Claim 1above, we obtain for suffi-
cientlly large $L>0$

$c(S_{R,L}^{(V)})<c(S_{R})\leq karrow\infty \mathrm{i}\mathrm{m}c(S_{R,L}^{(V)})\cap B(O, k)^{c})$

in asimilar way as the proof above and conclude the existence of aleast energy
solution in this case. To show the estimate (6), we use aleast energy solution
tz $\in H_{0}^{1}(S_{R}^{(V)})$ to (2) for $\Omega=S_{R}^{(V)}$ . Using acut’off function $\chi_{L}(x)\in C^{\infty}(\mathrm{R}^{n})$

satisfying $0\leq\chi_{L}(x)\leq 1$ and $|\nabla\chi_{L}(x)|\leq M$ on $\mathrm{R}^{n}$ for some constant $M>0$ ,
$\chi_{L}(x)=0$ on $S_{R}^{(V)}\backslash S_{R,L}^{(V)}$ , and $\chi_{L}(x)=1$ on $S_{R,L-1}^{(V)}$ , define

$u_{L}(x)=u(x)\chi_{L}(x)\in H_{0}^{1}(S_{R,L}^{(V)})$ .

It is easy to see $u_{L}arrow u$ in $H_{0}^{1}(S_{R}^{(V)})$ as $Larrow\infty$ . On the other hand, there exists a
unique $t(u_{L})>0$ such that

$\sup_{t>0}J_{S_{R.L}^{(V)}}(tu_{L})=J_{S_{R,L}^{(V)}}(t(u_{L})u_{L})=J_{S_{R}^{(V)}}(t(u_{L})u_{L})$ ,
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since $u_{L}$ can be seen as $u_{L}\in H_{0}^{1}(S_{R}^{(V)})$ by the zer0-extension. It is known that
$u_{L}arrow u$ in $H_{0}^{1}(S_{R}^{(V)})$ implies $t(u_{L})arrow t(u)=1$ as $Larrow\infty$ (see, e.g., [14]). It follows
that

$\lim_{Larrow\infty}\sup_{t>0}J_{S_{R.L}^{(V)}}(tu_{L})=\lim_{Larrow\infty}J_{S_{R}^{(V)}}(t(u_{L})u_{L})=J_{S_{R}^{(V)}}(u)$ .

Combining $c(S_{R,L}^{(V)}) \leq\sup_{t>0}J_{S_{R,L}^{(V)}}(tu_{L})$ , we conclude the estimate (6).
The proof of Theorem 1for general cases:

We use the following lemma due to del PinO-Felmer [9].

Lemma 2Let $B$ be a domain in $\mathrm{R}^{n}$ and let $A$ is a proper subdomain of B. If
there exists a least energy solution to (2) on $\Omega=A$ , then we have $c(B)<c(A)$ .

Suppose $\Omega$ contains $S_{R}^{(V)}$ properly, then Lemma 2implies

$c(\Omega)<c(S_{R}^{(V)})$ . (7)

Since we assume that $\Omega$ is adomain with $m$ semi-infinite cylinder $A_{R}$ as ends, we
can show

$c(\overline{\Omega_{k}})\geq c(S_{R})$ (8)

for large $k$ . To show this, define $\Omega_{k,L}-=\overline{\Omega_{k}}\cap\{x\in \mathrm{R}^{n}; |x|<L\}$ for large $L>0$ .
Noting $c(\Omega_{k,L})-$ is decreasing as $Larrow\infty$ , we claim

$\lim_{Larrow\infty}c(\Omega_{k,L})=c(\overline{\Omega_{k}})-$ . (9)

For any fixed $L>0$ , it is easy to see

$c(S_{R})\leq c(\Omega_{k,L})-$ ,

because $\Omega_{k,L}-$ is adisjoint union of finite cylinder and can be seen as asubset of $S_{R}$ .
This implies $c(S_{R})\leq c(\overline{\Omega_{k}})$ . Combining the estimate (7), (8) and $c(S_{R}^{(V)})<c(S_{R})$

we arrive at the conclusion. Now it remains to show the estimate (9). It suffice to
show that if we assume $\lim_{Larrow\infty}c(\Omega_{k,L})->c(\overline{\Omega_{k}})$, then we have acontradiction. Let

$\delta=\lim_{Larrow\infty}c(\Omega_{k,L})-c(\overline{\Omega_{k}})->0$ .

By the characterization of $c(\overline{\Omega_{k}})$ , there exist asequence $\{u_{j}\}_{j=1}^{\infty}\subset H_{0}^{1}(\overline{\Omega_{k}})$ and
$t(u_{j})>0$ such that

$J_{\overline{\Omega_{k}}}(t(u_{j})u_{j})= \sup_{t>0}J_{\overline{\Omega_{k}}}(tu_{j})arrow c(\overline{\Omega_{k}})$ .
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Let $\eta_{L}\in C_{0}^{\infty}(\mathrm{R}^{n})$ be afunction satisfying $0\leq\eta_{L}(x)\leq 1$ and $|\nabla\eta_{L}(x)|\leq M$ on
$\mathrm{R}^{n}$ for some constant $M>0$ , $\eta_{L}(x)=1$ on $\{x\in \mathrm{R}^{n}; |x|\leq L-1\}$ , and $\eta_{L}(x)=0$

on $\{x\in \mathrm{R}^{n}; |x|\geq L\}$ . Then we have $u_{j,L}=\eta_{L}u_{j}arrow u_{j}$ in $H_{0}^{1}(\overline{\Omega_{k}})$ and hence
$t(u_{j,L})arrow t(u_{j})$ as $Larrow\infty$ . We have

$\sup_{t>0}J_{\overline{\Omega_{k}}}(tu_{j,L})=J_{\overline{\Omega_{k}}}(t(u_{j,L})u_{j,L})arrow J_{\overline{\Omega_{k}}}(t(u_{j})u_{j})$

as $Larrow\infty$ . This yields
$c(\overline{\Omega_{k,L}})$ $=$

$u \in H_{0}^{\mathrm{l}}()\mathrm{i}\mathrm{n}_{\frac{\mathrm{f}}{\Omega_{k,L}}}\sup_{t>0}J_{\overline{\Omega_{k,L}}}$

(tu)

$\leq$ $\sup_{t>0}J_{\overline{\Omega_{k,L}}}(tu_{j,L})\leq c(\overline{\Omega_{k}})+\frac{2\delta}{3}$

$<$ $\lim_{Larrow\infty}c(\Omega_{k,L})-$ .

This is acontradicition. $\square$

Proof of Theorem 3:
The symmetry with respect to $x_{1}$ axis and $x_{2}$-axis can be proved in asimilar way

as in [4] (see also [5]). It suffice to show the symmetry with repect to $\alpha$ axis The
symmetry with repect to $\beta$-axis can be proved in the same way. Let $u$ be aleast
energy solution. Then we know

$u(x_{1}, x_{2})=u(x_{1}, -x_{2})=u(-x_{1}, x_{2})$

for every $x=(x_{1}, x_{2})\in\Omega$ . We decompose $\Omega$ as adisjoint union of $\Omega_{1}$ , $\Omega_{2}$ and $L$ ,

where $L$ is the intersection of $\Omega$ and $\alpha$ axis and $\Omega_{1}$ and $\Omega_{2}$ are domains which are
symmetric with repect to $L$ each other. Now, we consider the mapping $T$ on $\Omega_{2}$

such that $T(x)=x$’for $x\in\Omega_{2}$ , where $x’\in\Omega_{2}$ is the reflection point of $x$ with
respect to $\beta$ -axis. We define $v$ on $\Omega$ as follows:

$v(x)=u(x)$ for $x\in\Omega_{1}\cup L$ , $v(x)=u(T(x))$ for $x\in\Omega_{2}$ .

Then we have $v\in H_{0}^{1}(\Omega)$ and $J_{\Omega}(v)=J_{\Omega}(u)=c(\Omega)$ . Moreover, since $J_{\Omega}(tv)=$

$J_{\Omega}(tu)$ holds for every $t>0$ , we have

$\sup_{t>0}J_{\Omega}(tv)=J_{\Omega}(v)$ .

Then, by Lemma 2 $v$ should be aleast energy solution to (2) on $\Omega$ and hence $v$

should be symmetric with respect to $x_{1}$ axis and $x_{2}$-axis as before. It follows that
$u$ is symmetric with respect to $\alpha$ -axis. $\square$
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4Proof of Theorem 4

In this section we give an outline of the proof of Theorem 4. Although we
basically follow the strategy of Byeon [4], in which the same problem was studied
on abounded domain, we should modify his argument to the problem on unbounded
domains.

As in [4], by using the scaling $v^{\sigma}(x)=\sigma^{2/(p-1)}u(\sigma x)$ for $x\in\Omega^{\sigma}=\Omega/\sigma$ , the
problem is reduced to find anon-trivial positive solution to

$-\triangle v=v^{p}$ , $v(x)>0$ $x\in\Omega^{\sigma}$ , $v|_{\partial\Omega^{\sigma}}=0$ , $v(x)arrow 0(|x|arrow\infty)$ ,

satisfing
$C_{1}’\leq||v||_{L^{\infty}(\Omega^{\sigma})}\leq C_{2}’$ , $C_{3}’\leq||\nabla v||_{L^{2}(\Omega^{\sigma})}\leq C_{4}’$

for some positive constants $C_{j}’,j=1$ , $\cdots$ , 4. Take $\delta>0$ so that $8\delta<L$ , i.e.
$4\delta/\sigma<L/2\sigma$ . Then, define

$H_{e}^{\sigma}=\{v\in H_{0}^{1}(\Omega^{\sigma});v(x_{1}, x’)=v(-x_{1}, x’)\}$

and

$H= \{v\in H_{e}^{\sigma};\int_{\Omega^{\sigma}}|v|^{p+1}dx=1, \int_{\Omega^{\sigma}}e^{\epsilon_{0}\sigma|x|}\chi_{\sigma}(x)|v(x)|^{p+1}dx\leq 1\}$ ,

where $\chi_{\sigma}(x)=0$ for $x \in\{x=(x_{1}, x’)\in\Omega^{\sigma};|x_{1}|\leq\frac{2\delta}{\sigma}\}$ and $\chi_{\sigma}(x)=\sigma^{-\frac{3(p+1)}{\mathrm{p}-1}}$

for $x \in\{x=(x_{1}, x’)\in\Omega^{\sigma}; |x_{1}|\geq\frac{2\delta}{\sigma}\}$ . Here $\epsilon_{0}>0$ is apositive number to be
determined later.
Proof of Theorem 4:
(Step 1) We first solve the following minimization problem:

$I^{\sigma}= \inf_{v\in H}\int_{\Omega^{\sigma}}|\nabla v|^{2}dx$ .

Lemma 3There exists a minimizer $v=v^{\sigma}(\geq 0)$ to attain $I^{\sigma}$ for every $\sigma>0$ .

Proof: The proof is done by taking aminimizing sequence and by the standard
argument. We note that the compactness can be recovered by the exponential
weight, even in an unbounded domain. We omit the details
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(Step 2) We claim that

$\lim\sup_{\sigmaarrow 0}I^{\sigma}\leq I=\inf\{\int_{S_{1/2}}|\nabla v|^{2}dx;\int_{S_{1/2}}|v|^{p+1}dx=1, v\in H_{0}^{1}(S_{1/2})\}$ .

The proof is the same as in [4], but we present it for reader’s convienience. It is
known that I is attained by $V$ which satisfies $V(x_{1}, x’)=V(-x_{1}, x’)$ and moreover
$V$ and the first derivatives of $V$ decays exponentially (see, e.g., [4]). Taking $\xi_{\sigma}\in$

$C_{0}^{\infty}(\mathrm{R}^{n})$ such that $0\leq\xi_{\sigma}\leq 1$ , $|\nabla\xi_{\sigma}|\leq M$ for some constant $M$ and $\xi_{\sigma}(x)=1$ on
$|x|\leq\delta/\sigma$ and $\xi_{\sigma}(x)=0$ on $|x|\geq(\delta/\sigma)+2$ . Then, it is easy to see that for small

$\sigma$ we have $\xi_{\sigma}V\in H_{e}^{\sigma}$ and

$\int_{\Omega^{\sigma}}e^{\epsilon_{0}\sigma|x|}\chi_{\sigma}(x)|\xi_{\sigma}(x)V(x)|^{p+1}dx=0$, $\lim_{\sigmaarrow 0}\int_{\Omega^{\sigma}}|\xi_{\sigma}(x)V(x)|^{p+1}dx=1$ .

Then it is easy to check that

$\lim_{\sigmaarrow 0}\int_{\Omega^{\sigma}}|\nabla(\xi_{\sigma}V|\%$ $|^{2}dx=I$ ,

and thus we have

$\lim\sup_{\sigmaarrow 0}I^{\sigma}\leq\lim_{\sigmaarrow 0}\int_{\Omega^{\sigma}}|\nabla(\xi_{\sigma}V)|^{2}dx=I$ .

(Step 3) We claim that there exists $\sigma_{0}>0$ such that for every $\epsilon>0$ there exists
aconstant $C>0$ such that

$\int_{\Omega^{\sigma}\cap\{-C<x_{1}<C\}}v_{\sigma}^{p+1}dx\geq 1-\epsilon$

for every $\sigma\in(0, \sigma_{0})$ . The proof of this part is almost the same as in [4] and is done
by aconcentration-compactness argument. Our modification of the minimization
problem $I^{\sigma}$ does not cause any trouble in the argument in [4]. So, we omit the
details.
(Step 4) We claim the following key estimate for the minimizer $v^{\sigma}$ .

Lemma 4There exist positive constants Di, $D_{2}$ and $\lambda_{1}$ , which are independent of
$\sigma$ and $\epsilon_{0}$ such that

$e^{D_{2}\sigma|x_{1}|}v^{\sigma}(x)\leq D_{1}e^{-\frac{\sqrt{\lambda_{1}}\delta}{4\sigma}}$ $x \in\{|x_{1}|\geq\frac{5\delta}{2\sigma}\}$ (10)

and
$\sqrt{\lambda_{1}}\delta$

$\{\frac{2\delta}{\sigma}\leq|x_{1}|\leq\frac{5\delta}{2\sigma}\}$.$v^{\sigma}(x)\leq 2e^{-}\overline{4\sigma}$ (11)
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Proof: We also take the same strategy as in [4], but we need to modify acompar-
ison argument by using abound state of the Laplacian on unbounded domains.

First, we claim that there exist constants $\ovalbox{\tt\small REJECT}(\ovalbox{\tt\small REJECT})$ and $!\ovalbox{\tt\small REJECT} \mathit{0}^{=}$ ) such that

$\triangle v^{\sigma}+\alpha(\sigma)(v^{\sigma})^{p}+\beta(\sigma)\exp(\epsilon_{0}\sigma|x|)\chi_{\sigma}(v^{\sigma})^{p}=0$. (12)

When $\int_{\Omega^{\sigma}}\exp(\epsilon_{0}\sigma|x|)\chi_{\sigma}(v^{\sigma})^{p+1}dx<1$, it can be concluded by Lagrange’s multi-
plier theorem as $\beta(\sigma)=0$ . When $\int_{\Omega^{\sigma}}\exp(\epsilon_{0}\sigma|x|)\chi_{\sigma}(v^{\sigma})^{p+1}dx=1$ , we note that $v^{\sigma}$

is aminimizer to the minimization problem of two constraints:

$\inf\{\int_{\Omega^{\sigma}}|\nabla v|^{2}dx;\int_{\Omega_{\sigma}}|v|^{p+1}dx=1, \int_{\Omega^{\sigma}}\exp(\epsilon_{0}\sigma|x|)\chi_{\sigma}|v|^{p+1}dx=1\}$ .

Thus Lagrange’s multiplier theorem yields the desired result. We claim that $\beta(\sigma)\leq$

$0$ . This part is the same as in [4], so we omit the proof. Then we have

$\int_{\Omega_{\sigma}}|\nabla v^{\sigma}|^{2}dx=\alpha(\sigma)+\beta(\sigma)$ ,

which implies $\alpha(\sigma)\geq 0$ . The uniform boundedness of $\alpha(\sigma)$ as $\sigmaarrow 0$ can be proved
also as in [4] by using the estimate in step 3. Now, we claim that

$||v^{\sigma}||_{L^{\infty}(\Omega^{\sigma})}\leq M(n\geq 3)$ , $||v^{\sigma}||_{L^{q}(\Omega^{\sigma}\cap\{|x_{1}|\leq 4\delta/\sigma\})}\leq M(n=2)$ (13)

for any $q>2$ , where $M>0$ is aconstant independent of $\sigma\in(0, \sigma_{0})$ . For the case
$n\geq 3$ , by Sobolev’s embedding theorem and the Proposition 3.5 in [4], which is
valid even for unbounded domains, we have

$||v^{\sigma}||_{L^{\infty}(\Omega^{\sigma})}\leq C||v^{\sigma}||_{L^{2n}/(n-2)}(\Omega^{\sigma})\leq CC’||\nabla v^{\sigma}||_{L^{2}(\Omega^{\sigma})}\leq CC’I^{1/2}$,

where $C$ and $C’$ are positive constants independent of $\sigma$ . Here, we used the result
in step 2in the last inequality. For the case $n=2$ , we take afunction $\eta\in C_{0}^{\infty}(\mathrm{R})$

such that $0\leq \mathrm{y}7$ $\leq 1$ , $|\nabla\eta(t)|\leq 1$ , $\eta(t)=1$ for $|t|\leq 4\delta/\sigma$ and $\eta(t)=0$ for
$|t|\geq(4\delta/\sigma)+2$ . Then we can see $\eta v^{\sigma}\in H_{0}^{1}(S_{1/2})$ , since $\Omega^{\sigma}\cap\{|x_{1}|\leq 8\delta/\sigma\}\subset S_{1/2}$

by the definition of $\delta$ . Hence, by Trudinger’s inequality, we have for every $q>2$
there exists aconstant $C_{q}$ such that

$||\eta v^{\sigma}||_{L^{q}(S_{1/2})}^{2}\leq C_{q}||\eta v^{\sigma}||_{H^{1}(S_{1/2})}^{2}$

$\leq$ $C+CC_{q}||v^{\sigma}||_{L^{2}(\Omega^{\sigma}\cap\{|x_{1}|\leq 4\delta/\sigma\})}+CC_{q}||v^{\sigma}||_{L^{2}(\Omega^{\sigma}\cap\{4S/\sigma\leq|x_{1}|\leq(4\delta/\sigma)+2\})}$.
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On the other hand, by Poincare’s inequality on $S_{1/2}$ , we have

$||\eta v^{\sigma}||_{L^{2}(S_{1/2})}$ $\leq$ $C||\nabla(\eta v^{\sigma})||_{L^{2}(S_{1/2})}\leq C+C||v^{\sigma}||_{L^{2}(\Omega^{\sigma}\cap\{4\delta/\sigma\leq|x_{1}|\leq 4\delta/\sigma+2\})}$

$\leq$ $C+C|\{\Omega^{\sigma}\cap\{4\delta/\sigma\leq|x_{1}|\leq 4\delta/\sigma+2\}|^{\theta}||v^{\sigma}||_{L^{p+1}(\Omega^{\sigma})}^{1-\theta}\leq C$ ,

where $0<\theta=\theta(p)<1$ . Combining these estimates, we obtain that for every
$q>2$ there exists aconstant $C$ which is independent of $\sigma\in(0, \sigma_{0})$ such that

$||\eta v^{\sigma}||_{L^{\mathrm{q}}(S_{1/2})}\leq C$

holds. This implies the desired result for the case $n=2$ . By the elliptic estimate in
Theorem 8.25 in [12] (the same estimate also holds if we have auniform estimate
in $L^{q}$ norm of the potential term with $q>n/2$ , see, e.g., [18] $)$ , we have

$|v^{\sigma}(x)| \leq C(\frac{1}{|B(x,1)|}\int_{B(x,1)}(v^{\sigma}(y))^{p+1}dy)^{\frac{1}{p+1}}$

for every $x\in\Omega^{\sigma}\cap\{|x_{1}|\leq 4\delta/\sigma\}$ , where $C$ is aconstant independent of $\sigma$ . Now
we note that, by the estimate in step 3, we may assume that for afixed $\epsilon>0$

$\int_{\Omega^{\sigma}\cap\{(\delta/\sigma)-1\leq|x_{1}|\leq(3\delta/\sigma)+1\}}(v^{\sigma})^{p+1}dx\leq\epsilon$

holds for every $\sigma\in(0, \sigma_{0})$ . Now, let $\rho(x)$ and $\lambda_{1}$ be the first eigenfunction and the
first eigenvalue $\mathrm{o}\mathrm{f}-\triangle$ on $n-1$ dimensional ball $B’=\{x’\in \mathrm{R}^{n-1} ; |x’|<1\}$ . We
may assume $\rho(O)=1$ and $\rho(x’)>0$ . Note also that $\rho(x’)>0$ if $x=(x_{1}, x’)\in\overline{R_{1,\sigma}}$ .
Then, by using the estimates above, we may also assume that

$\alpha(\sigma)(v^{\sigma}(x))^{p-1}<3\lambda_{1}/4$ for $\sigma\in(0, \sigma_{0})$

on the region
$R_{1,\sigma}\equiv\Omega^{\sigma}\cap\{\delta/\sigma\leq|x_{1}|\leq 3\delta/\sigma\}$ .

Consider the comparison function

$\Phi_{\sigma}(x)=(\exp(-\frac{\sqrt{\lambda_{1}}}{2}(x_{1}+\frac{3\delta}{\sigma}))+\exp(\frac{\sqrt{\lambda_{1}}}{2}(x_{1}+\frac{3\delta}{\sigma})))\rho(x’)$.

Then we obtain

$\triangle(\Phi_{\sigma}-v^{\sigma})+\alpha(\sigma)(v^{\sigma})^{p-1}(\Phi_{\sigma}-v^{\sigma})\leq 0$ $x\in R_{1,\sigma}$ , $\Phi_{\sigma}-v^{\sigma}\geq 0$ $x\in\partial R_{1,\sigma}$ .
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Now, we can see that the maximum principle can be applied for

$z_{\sigma}(x)= \frac{\Phi_{\sigma}(x)-v^{\sigma}(x)}{\rho(x’)}$

to conclude
$v_{\sigma}(x)\leq\Phi_{\sigma}(x)$ $x\in R_{1,\sigma}$ .

This yields
$v^{\sigma}(x)\leq 2e^{-\frac{\sqrt{\lambda_{1}}\delta}{4\sigma}}$

for $x \in\Omega^{\sigma}\cap\{\frac{2\delta}{\sigma}\leq|x_{1}|\leq\frac{5\delta}{2\sigma}\}$ . Next, we show the estimate on

$R_{2,\sigma}\equiv\Omega^{\sigma}\cap\{|x_{1}|\geq 5\delta/2\sigma\}$ .

Consider the domain $\Omega^{(R)}=\{x\in \mathrm{R}^{n};|x|<R\}\cup\{x=(x_{1}, x’)\in \mathrm{R}\cross \mathrm{R}^{n-1}$ ; $|x’|<$

$d/2\}$ for large $R>d/2$ . Clearly, $\Omega_{\sigma}\subset\Omega^{(R)}$ . Then it is known (see [8] for related
results) that there exists the first eigenfunction $\phi^{R}$ and the first eigenvalue $\gamma^{R}$ such
that

$-\triangle\phi^{R}=\gamma^{R}\phi^{R}$ , $\phi^{R}(x)\leq\phi^{R}(O)$ $x\in\Omega^{(R)}$ ,

$\phi^{R}(x)=0$ $x\in\partial\Omega^{(R)}$ , $\phi^{R}(x)\leq D_{1}\exp(-D_{2}|x_{1}|)$

for some positive constants $D_{1}$ and $D_{2}$ . Take $\epsilon$ so that $3\delta<\epsilon<R$ . By the Harnack
inequality (see, $\mathrm{e}.\mathrm{g}.$ , [12, Corollary 9.25]), we have

$\phi^{R}(x)\leq\phi^{R}(O)\leq\sup_{B(O,\epsilon)}\phi^{R}(x)\leq C\min_{B(O,\epsilon)}\phi^{R}(x)$
, $x\in\Omega^{(R)}$ .

We may take $\phi^{R}$ so that $\min_{B(O,\epsilon)}\phi^{R}(x)=1$ . Let $\Omega^{\sigma,(R)}=\Omega^{(R)}/\sigma$ and consider

$\Psi_{\sigma}(x)=2\exp(-\frac{\sqrt{\lambda_{1}}\delta}{4\sigma})\phi^{R}(\sigma x)$, $x\in\Omega^{\sigma,(R)}$ .

Noting that $\min_{B(O,\epsilon)}\phi^{R}(x)=1$ implies $\phi^{R}(x)\geq 1$ on $\partial R_{2,\sigma}\cap\Omega^{\sigma}$ , we have

$\Psi_{\sigma}(x)\geq v^{\sigma}(x)$ , $x\in\partial R_{2,\sigma}$ .

On the other hand, we have

$\int_{\Omega^{\sigma}\cap\{|x_{1}|\geq\frac{2\delta}{\sigma}\}}(v^{\sigma})^{p+1}dx\leq\int_{\Omega^{\sigma}\cap\{|x_{1}|\geq\frac{2\delta}{\sigma}\}}e^{\epsilon_{0}\sigma|x|}(v^{\sigma})^{p+1}dx\leq\sigma^{3(p+1)/(p-1)}$ .
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By applying Theorem 8.25 in [12] again for xE $\mathrm{f}\mathrm{f}_{2},$. and noting $B(x,$1) $\ovalbox{\tt\small REJECT}"*\mathrm{n}$ ’ $c$

0’ $\mathrm{f}^{\ovalbox{\tt\small REJECT}}1\{|\mathrm{r}_{1}|\ovalbox{\tt\small REJECT} 51$ we obtain

$v^{\sigma}(x)\leq C\sigma^{3/(p-1)}$ .

Here, in the case $n=2$ , we use the boundedness $\mathrm{o}\mathrm{f}||(v^{\sigma})^{p-1}||_{L^{(p+1)/(p-1)}}(\Omega^{\sigma})$ to control
the uniform boundedness of the constant appeared in the generalized version of
Theorem 8.25 of [12] (see [18]). Let $\tilde{\rho}$ and $\tilde{\lambda}_{1}$ be the first eigenfunction and the
first eigenvalue of the Laplacian on $\{x’\in \mathrm{R}^{n-1}; |x’|<d\}$ and let

$z^{\sigma}(x)= \frac{\Psi_{\sigma}(x)-v^{\sigma}(x)}{\tilde{\rho}(x’)}$ .

Then we can see that the maximum principle can be applid to $z^{\sigma}$ on $R_{2,\sigma}$ to obtain
$z^{\sigma}\geq 0$ in $R_{2,\sigma}$ . This yields the desired estimate on $R_{2,\sigma}$ . By the estimates (10),
(11), (13) and Proposition 3.5 in [4], now we have the uniform boundedness of $v^{\sigma}$

on $\Omega^{\sigma}$ even in the case $n=2$ .
(Step 5) First, note that there exists aconstant $D_{3}$ which is independent of $\sigma$ that
$|x|\leq D_{3}|x_{1}|$ on $\Omega^{\sigma}\cap\{|x_{1}|\geq 2\delta/\sigma\}$ . Take $\epsilon_{0}>0$ so that $\mathrm{D}3\mathrm{e}0<D_{2}(p+1)$ , where
$D_{2}$ is the constant appeared in the estimate of step 4. Then, dividing $\Omega^{\sigma}$ into two
parts and using estimates in step 4, we can easily see

$\int_{\Omega^{\sigma}}e^{\epsilon_{0}\sigma|x|}\chi_{\sigma}(x)(v^{\sigma}(x))^{p+1}dx\leq C\sigma^{-(n+_{p-1}^{3})}e^{-\frac{(p+1)\sqrt{1}\delta}{4\sigma}}\lrcorner_{L^{+\lrcorner 1}}arrow 0$

as $\sigmaarrow 0$ . Thus there exists aconstant $\sigma_{0}>0$ such that

$\int_{\Omega^{\sigma}}e^{\epsilon_{0}\sigma|x|}\chi_{\sigma}(x)(v^{\sigma}(x))^{p+1}dx<1$

holds for $\sigma\in(0, \sigma_{0})$ . Therefore, difining $u^{\sigma}(x)=(I^{\sigma})^{1/(p-1)}v^{\sigma}(x)$ , we obtain

$-\triangle u^{\sigma}=(u^{\sigma})^{p}$ .

Note that we can see from the the estimate in Step 4 $\lim\inf_{\sigmaarrow 0}I^{\sigma}\geq I$ . Then the
uniform lower bounds for $u^{\sigma}$ follow from estimates in Step 2, Step 3and Step 4. 0
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