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Existence of positive solutions for some
nonlinear elliptic equations on
unbounded domains with cylindrical ends
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1 Introduction
We consider the nonlinear elliptic boundary value problem:
—Autdu=uP, u>0 (z€Q), ulsga=0, ulz)—>0(z]—o00), (1)

where () is an unbounded domain in R™ with the boundary 9 of locally piecewise
Clclass, 1 <p< (n+2)/(n—2)(n > 3),+oo(n = 2), and ) is a parameter. We
assume A > 0 throughout this paper, for simplicity, although one can allow A to be
negative to some extent for domains in which Poincaré’s inequality holds. In 1982,
Esteban and Lions [11] discovered a certain criterion of unbounded domains € in
which the BVP above has no solution. For example, there exist no solution for the
semi-infinite cylinderical domain §2:

Q=(0,4+00) X w,

where w C R™! is a bounded domain. Actually, they proved non-existence of
non-trivial energy finite solution to (2), if there exists a constant vector X € R
such v(z)- X > 0 and v(z) - X £ 0 for z € 09, where v(z) is the outward unit
normal vector at x € 9Q. On the other hand, in 1983, several peoples ( e.g.,
Esteban [10], Amick and Toland [2], Stuart [19]) proved the existence of a solution
on the infinite (straight) cylindrical domain Q = (—o00,400) x w. After that, in



1993 Lien, Tzeng and Wang [14] proved the existence of a solution on unbounded
domains with a periodic structure and their locally deformed domains, precisely
adding bounded domains, by using concentration-compactness principles. They
also proved the existence of a solution on a domain

Q= {zeR"|z|<R}U{z=(21,7") e Rx R*};z; € (0,+00), |2'| <}

for fixed r > 0 and sufficiently large R > r. Also, del Pino and Felmer [9] proved
similar results, but in slightly different situations, for more general nonlinearity
by using the mountain pass approach. We also note that Bahri and Lions [3] have
proved the existence of a solution on any exterior domain {2 for A > 0. The relation
between the shape of an unbounded domain Q and the solvability of the BVP (1)
is still unclear.

In this paper, we propose a class of unbounded domains, domains with semi-
infinite cylindrical ends (the precise definition is given in section 2), in which the
BVP will be solved. Actually we present two conjectures on the solvability of the
BVP (1) and give several results to support these conjectures.

This paper is organized as follows. In section 2, we consider the elliptic boundary
value problem with a general nonlinearity f(u), including f(u) = u% as a special
case. We introduce a class of unbounded domains with semi-infinite cylindrical
ends and give two conjectures on the solvability on such domains. We state two
results (Theorem 1, Corollary 2) on the existence of a least energy solution and
a result (Theorem 4) on the existence of a higher energy solution. We also give
some symmetry properties (Theorem 3) of a least energy solutions on domains with
symmetries with respect to axises. In section 3, we give the proof of Theorem 1
and Theorem 3. In section 4, we give the outline of the proof of Theorem 4.

2 Main Results

We consider the nonlinear elliptic boundary value problem with a general non-
linear term f(u):

—Au+du=f(u), u>0 (z€RQ), ulgn=0, wu(z)—>0(|z]— o0), (2)

where Q is an unbounded domain in R"™ with the boundary 9% of locally piecewise
C! class and A > 0 is a parameter. Here, f(t) is a C! function satisfying the



following conditions:
(f-1) f(t)=0fort <0 and f(t)=o(t) ast — 0;
(f-2)  there exists p > 1 such that p < (n +2)/(n — 2) for n > 3 and p < +o0
for n = 2 and
li &)— = 0;

im ;
t—+oco P
(f-3)  there exists 6 € (2,p + 1] such that

0<OF(t) < f(t)t for t>0;

(f-4)  the function t — f(t)/t is strictly increasing on (0, +00),
where F(t) = f; f(s)ds. To introduce the class of unbounded domains €2 to be
considered in this paper, we denote by S(w) and A(w) the infinite cylinder and
the semi-infinite cylinder, respectively, with a bounded domain w C R"! as its

cross-section:
S(w) = {(z = (z1,2") e R x R* !z € (—00,+),z’ € w},

Aw) = {(z =(z,7) e R x R* ;11 € (0,+00),2" € w}.

Especially, we use the notation Sp = S(B'(O,R)) and A = A(B'(O, R)). for
B'(O,R) = {2’ e R*;|7'| < R} with R > 0. |

Definition 1 If there exist m € N, a bounded domain w C R and a compact
set K such
QN K =Ur, A9 (w),

where each AV)(w) is congruent with A(w), then we say that Q is a domain with
m semi-infinite cylinder A(QY) as its ends.

From Sk we construct the V— shaped cylindrical domain, we denote by S%V), by
the following procedure: cuting the domain Sg via a hyperplane, not parallel to
the cross-section, and attaching again its new cross-sections so that points on one
cross-section are transformed into the points of the other cross-section, which is
symmetric with respect to its center. We can continue this procedure to construct
a finitely times bent domain from Sg. One can also consider the smoothly locally
bent cylindrical domain with a ball of same radius R as its cross section evervahe‘vre:



Let y = y(s),s € (—o0,+00), be a smooth curve in R" which is a straight line
outside a compact set and let P(s) be a set of unit vectors which are perpendicular
to the tangent vector y/(s). Then such domain  can be decsribed as follows:

Q= {z=y(s)+tv(s);s € (—oo,+00), v(s) € ‘P(s), te[0,R)},

We conjecture the following two statements for the solvability of (2) on a domain
2 with m semi-infinite cylinder A(w) as its ends.

Conjecture 1 If(Q is either a finitely times bent domain or a smoothly locally bent
domain constructed from Sg by the procedure above, then there exists a least energy
solution (the precise definition is given later ) to (2). Actually, we conjecture the
stronger statement c¢(Q) < ¢(Sg) for such domains (the definition of c() is gevin
later).

In the proof of Theorem 1, one can see that once we know ¢(2) < ¢(Sg) we can
show the existence of a least energy solution.

Conjecture 2 If m > 2 and Q2 is a domain with m semi-infinite cylinder A(w) as
its ends, then there erists a solution to (2).

In general, we cannot expect the existence of least energy solution to (2) under the
situation of Conjecture 2. We remark that Poincaré’s ineqality holds on unbounded
domains with such cylindrical ends (see, e.g., [17]). To state our first result, we
denote by Sg,/,z the semi-infinite V —shaped cylindrical domain which is constructed
by cuting, perpendicularly by a hyperplane, a infinite part of one of the semi-infinite
part of Sg/) remaining a finite part with length L, measured from certain point on
the bent region. So, ngg tends to S'g/) as L — oo. Now, we state our first result.

Theorem 1 Suppose A > 0 and (f-1)-(f-4) for f(t). Letm > 1, R > 0 and Q be
a domain with m semi-infinite cylinder Ag as its ends which satisfies the additional
condition:

(*)  Q contains one of Sr, S% and sg”,} with sufficientlly large L > 0.
Then, there exists a least energy solution to (2).

For the case that Q containes Sg, Theorem 1 has been proved essentially in [9),
[14]. The result for the case 2 = Sg/) seems new as far as we know and also plays



an important role in the proof of Theorem 1 for the general case. As a special case,
we consider the problem:

—Au=v", u>0 (z€Q), ulpgn=0, u(z)—0/(z|— 00), (3)

where  is an unbounded domain in R"(n > 2) and 1 < p < (n +2)/(n — 2) for
n 23 and 1 <p< +4oo for n = 2. As a corollary of Theorem 1, we obtain the
following result to (3).

Corollary 2 Let be a finitely bent domain constructed from Sg, fix its shape and
consider R as a parameter. Then, there ezists a sufficiently small Ry such that for
every R € (0, Ry) there exists a least energy solution to (3).

Since one can show Corollary 2 by combining the result in Theorem 1 and the
scaling argument, we omit the details of the proof of Corollary 2.

Remark 1 One can see in the proof of Theorem 1 and Corollary 2 that the state-
ments are true even in the case that the cross-section B(O,R) is replaced by a
bounded domain w € R™! which is convez and syrﬁmetric with respect to azises
Tj,J = 2,---,n. Because we just use the existence -and symmetry properties of a
least energy solution on S(w).

Theorem 1 and Corollary 2 give partial answers to Conjecture 1. Complete answer
to Conjecture 1 remains open even for finetely bent domains constructed from
Sk. Moreover, existence of the least energy solution for a smoothly locally bent
domain constructed from Sg is also an open problem, although we can obtain the
existence result for certain smooth domains close to V —shaped domain, which are
constructed smoothing the corner of V' —shaped domains slightly.

Here, we briefly give the definition of a least energy solution to (2). The problem
(2) has a variational structure and a solution u to (2) can be characterized as a
non-trivial critical point of the energy functional:

1
Ja(w) = 5 /Q (Ve + Mu?) dz — /9 F(u)dz. (4)
Under the assumptions (f-1)-(f-3), it is well-known (see, e.g., [9], [15]) that Jo(u)
has a mountain pass structure and, when (f-4) is assumed, its mountain pass value
c(f) can be written by

() = inf sup Jo(7u).
@) WEHI () s £0 750 o)



It is also known that this characterization implies that

o) = uehlir,tt;.,%o J(w),
where M is a solution manifold (called the Nehari manifold), which includes any
solution to (2): namely,

M={ue H&(Q);/ﬂu(—Au+ Au)dzr = —/Qf(u)udx}

This means that if Jo(u) = ¢(2) and Ju(u) = 0, then v has the least energy among
any solutions to (2). So, we call u be a least energy solution to (2), if Ja(u) = ¢(2)
and Jo(u) = 0.

Next, we remark on symmetry property of solutions to (2) on symmetric domains.
When Q = Sk, in [5] ( see also [4]) they proved by the moving plane method that
any solutions u to (2) has the symmetry:

u(zy, ') = u(zy, |2']), u(zy,7’) = u(—x1,2")

for any z = (z;,2') € Sg. Especially, when n = 2, uniqueness of solutions to (2)
is also known by Dancer [7], at least for the case f(u) = v} and A = 0. Now, we
consider (2) on the domain:

Q={z=(z1,22) € R2 |z;| < R/2,|z2| < R/2}.

This domain has a symmetry with respect to the z;-axis, ro-axis, a-axis, and
(3-axis;
o= {z;7) =12}, B={z;11=—22}.

For this domain, it is easy to see that any solution to (2) is symmetric with respect
to z;-axis and z,-axis by using the moving plan method as in [4], [5]. For a least
energy solution obtained by Theorem 1 (see also [14] for the case f(u) = uf), we
also show the symmetry with respect to o-axis and §-axis.

Theorem 3 Let 2 be a domain above. Then any least energy solution to (2) is
symmetric with respect to z,-azis, £o-azis, a-azis, and [3-azis.



We do not know uniqueness of solutions to (2), even if we restrict to least energy
solutions.

Next, we show some result to support Conjecture 2 in certain domainw in which
we cannot expect the existence of a least energy solution. There are several results
in this direction (see [13], [21], [22]). In this paper, we consider the domain (2,
witha parameter o > 0 satisfying the following conditions;

(D-1) O € £, and €, is an unbounded domain which is symmetric with
respect to the hyperplane Ty = {z = (z1,2') € R x R*!;z; = 0},

(D-2) there exists L > 0 such that

L
(2N e = @n,)ilml < 1) \ 5 =0,
(D-3) there exists d(> o) > 0 such that
Q, C {(21,7) € R x R || < g},

(D-4) Q, N {z € R™|z| < k} satisfies the uniform cone condition for any
sufficiently large k£ > 0.

A typical example is the unbounded dumbbell-shaped domain which is included
in Sy/2 and consists of the union of two A4/2 and the thin channell {(z1,2');|z1] <
L/2,|%'| < 0/2} with ¢ < d. For this domain, it is easy to see ( e.g. [14], [22]) that
there is no least energy solution, namely attains its mountain pass value c(Q,) for
small 0. Therefore, we must find a higher energy solution.

Theorem 4 Suppose (), satisfies the conditions (D-1)-(D-4). Then there exists
a sufficientlly small cg > 0 such that for any o € (0,09) there ezists a solution
u = u, to (3) which is symmetric with respect to the hyperplane Ty, and satisfies
the following estimates; :

2 _2
C107 71 < ||tg||ro(n,) < Coo 7T,

n—2__2_ n=2__2

Czo 2 71 < ||Vug| 2,y < Cao 7 77,

where C;,j = 1,---,4 are positive constants independent of 0.

The same result has been proved by by Byeon [4] (see also [7] for the case n = 2)
for bounded dumbbell-shaped domains §2,.



3 Proofs of Theorem 1, 3

In this section, first we show Thoerem 1 for the case @ = S’g/), since this is

the essential part of Theorem 1. Throughout this section, we assume that € is a
domain with m semi-infite cylinder as its ends for some m € N.

First, we collect some useful known results for the proof of Theorem 1. Under
the assumptions (f-1)-(f-3), it is known that the energy functional Jo(u) defined
in section 2, has a mountain pass structure and we can define its mountain value

¢(?) = inf( sup Ja(7(1))),
7€T te0,1)
where I' = {y € C([0,1]; H3()); 7(0) =0, Ja(¥(1)) < 0}. Moreover, under the
additional assumption (f-4), ¢(f?) is characterized as by
() = inf sup Ja(7u).
( ) u€H}(R),u4: £=0 1'>Ig Q( )

For large k > 0, we consider ) = QN B(O, k)¢, where B(O, k)¢ = {z € R"|z| >
k}. As before, we can define the energy functional Jg:(u) on H}(%), and define

& = o) = inf sup Ja(7(2)),
€T tE[o,l]

where
Tw = {7 € T;4(t) € Hy() for any t € [0,1]}.

Since H}(Y) C H&(ﬁ;) for k < 1, it is easy to see that ci is increasing in k so that
limg_, o, ¢k exists. The following is a general criterion due to del Pino and Felmer
[9] to assure the existence of a least energy solution to (2).

Proposition 1 Assume ¢(?) < limg_,o, Cx. Then there ezists a least energy solu-
tion u, that is Jo(u) = ¢() and Jy(u) = 0.

Actually, this proposition is true for any domain Q for which Q N B(O, k) satisfies
the uniform cone property for any large £ > 0, although this condition is not
mentioned explicitely in [9]. This condition allow us to obtain the uniform constant
in Sobolev’s embedding theorem on Q N B(O, k) for any large k¥ > 0 (see Adams
[1]). The following lemma is also well-known(see, e.g., [20]).



Lemma 1 Suppose v € H}(Q) satisfies Jo(v) = ¢(Q) and Ja(v) = sup,q Ja(tv).
Then, v must be a least energy solution to (2).

Proof of Theorem 1 for the case () = Sg/):
Let Q1 = S%V). First, we note that the existence of a least energy solution ug on
Sk (see, e.g., [6], [9],[15]), that is

o(Sr) = Jsg(un) = sup Jsy(tur).

By the elliptic regularity theorem, we have u é € C%(Sg). It is also known that up
satisfies '

'U‘R("I:lax,) = uR('—xla x,) = uR(xl’ lel)

for every ¢ = (z;,2') € Sg. Now, we may assume that ng) is constructed by
cutting a hyperplane which passes the origin and by patching again so that a
point A of one part, we say 51, on the intersection between the plane and Sy are
transformed into the symmetric point A’ on the other part, say S,, with respect to
the origin. We may think Sp = V; UV, and S§” = V/ UVJ, where V{ = V; and V}
is congruent with V; and all points 2’ € V; are transformed to the point z € V5 just
by rotating, coresponding to the rotation of the face Ss. Then, there is a natural
way to construct a function % on SEZV) from ug. Namely, define @(z') = ug(z’) for
' € V! and @(2') = ug(z) for 2’ € V3, where z € V3 is the point transformed
by z’ by the rotation above. Then, thanks to the symmetries of ug, we see @ is
continuously defined on the face S;(= S;) and hence @ € H&(ngv)). Furthermore,
by its construction, we have J S%V)(tﬂ) = Jg,(tug) for every t > 0 and hence

sV = inf T (t
“5e) vengI(lsgV))stgg sg’)( ?)
< sup JS(V) (tw) (5)
t>0 "R

= sup Jsp(tug) = Jsp(ug) = c(Sg).

Claim 1: ¢(S$”) < ¢(Sg) holds.
If not, the inequality in (5) should be equal and we have

C(S%V)) = st1>1%) Jsglv)(tﬂ) = JS%V)(’&’)'



The last equality holds because (J4v) (%) =)Js,(tur) takes its maximum at ¢ = 1.
R
Thus, it follows from Lemma 1 that @ should be a least energy solution to (2)

on S’%V). By the elliptic regularity theorem we have % € C2(S§iv)). However,

considering the point P near the inner edge of ng), it is easy to that @ has a jump
in its first derivative on P because of Hopf’s lemma. This is a contradiction and
claim 1 is proved.

Claim 2: ¢(Sg) < limi_eo c(S% ) N B(O, k)°) holds.

Since S'/(RV)OB(O, k)¢ is a disjoint union of D; and D, we may think D;UD, C Sy
and therefore ¢(Sg) < c(SEzV) N B(O,k)°). This implies Claim 2. By Claim 1
and 2, we can conclude the existence of a least energy solution on Sg’) by using
Proposition 1.

The claim 1 in the proof above is important, especially in the proof of Theorem 1
for the case 2 = Sg,/L).

The proof of Theorem 1 for the case {2 = Sg"L):

For 1 = Sg},, Wwe can prove

Jim o(SR2) < e(SR”). (6)

Once we obtain (6), combining the estimate of Claim 1 above, we obtain for suffi-
cientlly large L > 0

o(S§1) < e(Sr) < lim o(S2) N B(O, k)°)

in a similar way as the proof above and conclude the existence of a least energy
solution in this case. To show the estimate (6), we use a least energy solution
u € H(}(Sg/)) to (2) for Q = ngv). Using a cut-off function x.(z) € C*(R")
satisfying 0 < xr(z) < 1 and |Vxr(z)| £ M on R™ for some constant M > 0,
xz(z) =0on SY)\ Sg,’g, and x.(z)=1on ng,z_l, define

ur(z) = u(z)xc(z) € Hi(SHL)-

It is easy to see uy — u in H&(S%V)) as L — oo. On the other hand, there exists a
unique t(ug) > 0 such that

Stl>1£) Jsm(tuL) = JS%‘,’Z(t(uL)uL) = Js‘(qw(t(uL)uL),

10



since u can be seen as uy € HY(SY’) by the zero-extension. It is known that
up — uin H(}(Sg)) implies t(ug) — t(u) =1 as L — oo (see, e.g., [14]). It follows
that

25,538 Ty (un) = Jirg, T (Hur)uc) = oo w)

Combining ¢(S% 1) < Sup,s Jgv) (tur), we conclude the estimate (6).
’ R,L
The proof of Theorem 1 for general cases:
We use the following lemma due to del Pino-Felmer [9).

Lemma 2 Let B be a domain in R" and let A is a proper subdomain of B. If
there exists a least energy solution to (2) on Q = A, then we have ¢(B) < ¢(A).

Suppose {2 contains Sg/) properly, then Lemma 2 implies
v
() < Sy ). (7)

Since we assume that €2 is a domain with m semi-infinite cylinder Ag as ends, we
can show

(%) > ¢(Sk) | (8)

for large k. To show this, define Q. ; = O N {z € R";|z| < L} for large L > 0.
Noting ¢(Q4 1) is decreasing as L — 0o, we claim

Jim e(Qz) = e(). 9)
For any fixed L > 0, it is easy to see
C(SR) S C(QI;TL)a

because kav ¢ 1s a disjoint union of finite cylinder and can be seen as a subset of Sg.
This implies ¢(Sg) < ¢(Q%). Combining the estimate (7), (8) and ¢(S$ ) < ¢(Sg)
we arrive at the conclusion. Now it remains to show the estimate (9). It suffice to
show that if we assume limy_, c(ﬁ; L) > c(ka), then we have a contradiction. Let

6= Llim (QuL) — () > 0.

By the characterization of ¢({), there exist a sequence {u;}2, C H&(ﬁ;) and
t(u;) > 0 such that

T (t(wj)u;) = sup Jg(tu;) — o).

11



Let n, € CP(R™) be a function satisfying 0 < nz(z) < 1 and |V(z)| < M on
R" for some constant M > 0, n (z) =1 on {z € R*;|z| < L — 1}, and n.(z) =0
on {z € R*|z| > L}. Then we have u;; = nru; — u; in H}(%) and hence
t(u; 1) — t(u;) as L — co. We have

sup Jo (tu;,1) = Jar (t(uj,L)ujL) — Jogr(t(u;)u;)

as L — co. This yields

() = inf _ sup Jg— (tu)
weH} (T p) 150k
< supJ— (tu;g) < () + 2

< I}}_{{}o o(.1)-
This is a contradicition. O
Proof of Theorem 3:

The symmetry with respect to z; axis and z,-axis can be proved in a similar way
as in [4] (see also [5]). It suffice to show the symmetry with repect to a-axis. The
symmetry with repect to (-axis can be proved in the same way. Let u be a least
energy solution. Then we know

u(z1, T2) = u(zy, —z3) = u(—11, T2)

for every z = (1,z2) € Q. We decompose 2 as a disjoint union of Q;,(Q and L,
where L is the intersection of Q and a—axis and ; and €2 are domains which are
symmetric with repect to L each other. Now, we consider the mapping T on 2,
such that T(z) = 2z’ for z € Qy, where 2’ € Q is the reflection point of z with
respect to J—axis. We define v on 2 as follows:

v(z) =u(z) for z € (UL, v(z)=u(T(z)) for z € Q.
Then we have v € H}(Q) and Jo(v) = Ja(u) = ¢(2). Moreover, since Jo(tv) =
Ja(tu) holds for every t > 0, we have
sup Jo(tv) = Ja(v).
£>0

Then, by Lemma 2 v should be a least energy solution to (2) on 2 and hence v
should be symmetric with respect to z;-axis and zs-axis as before. It follows that
u is symmetric with respect to a—axis. O

12



4 Proof of Theorem 4

In this section we give an outline of the proof of Theorem 4. Although we
basically follow the strategy of Byeon [4], in which the same problem was studied
on a bounded domain, we should modify his argument to the problem on unbounded
domains.

As in [4], by using the scaling v7(z) = o¥®Vy(oz) for z € Q° = Q/o, the
problem is reduced to find a non-trivial positive solution to

—Av=1", v(z)>0 €%, wvlse =0, v(z)— 0 (|z]— 00),
satisfing
Cr < lvllzoaey € Cop C3 < || Vllpeey < Cy
for some positive constants Cl,j = 1,---,4. Take § > 0 so that 86 < L, i.e.
46/0 < L/20. Then, define
H] = {v € Hy();v(z1,2') = v(—z1,2')}
and

H={ve s [ pPtde=1, [ ey (@)u@)P dz <1},
Qe (954

where x,(z) = 0 for 2 € {z = (21,2') € Q% 71| < %} and x,(z) = o™
for z € {z = (21,2') € Q% |z1] > 2}, Here ¢y > 0 is a positive number to be
determined later.

Proof of Theorem 4:

(Step 1) We first solve the following minimization problem:

I°=inf [ |Vv|®dz.
veEH JQo

Lemma 3 There exists a minimizer v = v°(> 0) to attain I° for every o > 0.
Proof: The proof is done by taking a minimizing sequence and by the standard

argument. We note that the compactness can be recovered by the exponential
weight, even in an unbounded domain. We omit the details.

13



(Step 2) We claim that

limsupI° < I = inf{/ IV’U|2dCL‘;/ [v|Ptdz = 1,v € Hy(S12)}-
c—0 S1/2 S1/2

The proof is the same as in [4], but we present it for reader’s convienience. It is

known that I is attained by V which satisfies V(z,2') = V(—z1,2') and moreover

V and the first derivatives of V decays exponentially (see, e.g., [4]). Taking &, €

Cs°(R™) such that 0 < &, < 1,|VE,| < M for some constant M and &(z) = 1 on

|z| < /0 and &,(z) =0 on |z| > (6§/0) + 2. Then, it is easy to see that for small

o we have {,V € H and
/Q eeoalleﬂ(x)lfa(x)v(x)lﬁl dz =0, ,l,ir%/a lf':r(-'l:)v(m)'p+1 dr = 1.
Then it is easy to check that
. 2 _
lig [ V(& V)Pdz =1,
and thus we have

limsup I” < lim /Q IV(&,V)[2dz = I.

o—0
(Step 3) We claim that there exists op > 0 such that for every € > 0 there exists
a constant C' > 0 such that

/ vPtldr >1—¢
Qen{-C<z:<C}

for every o € (0, d¢). The proof of this part is almost the same as in [4] and is done
by a concentration-compactness argument. Our modification of the minimization
problem I does not cause any trouble in the argument in [4]. So, we omit the

details.
(Step 4) We claim the following key estimate for the minimizer v°.

Lemma 4 There erist positive constants Dy, D, and Ay, which are independent of
o and €y such that

1 )
eProlalye () < Dle‘lg z € {|z1]| 2 2—0 (10)

and
A8

26 56
v(z) <277% {—<|n| <50} (11)

14



Proof: We also take the same strategy as in [4], but we need to modify a compar-
ison argument by using a bound state of the Laplacian on unbounded domains.
First, we claim that there exist constants a(o) and (o) such that

AV + a(o)(v?)P + B(o) exp(eoz|) xo(v7)P = 0. (12)

When [q. exp(€oo|z|)x,(v7 )P dz < 1, it can be concluded by Lagrange’s multi-
plier theorem as §(o) = 0. When [, exp(€oo|z|)xs(v7)P*! dz = 1, we note that v°
i1s a minimizer to the minimization problem of two constraints:

inf{ /Q Vo|? dz; /Q o]t dz = 1, / exp(eoolz|)xo 0[Pt dz = 1}.
- Y Qe

Thus Lagrange’s multiplier theorem Yields the desired result. We claim that (o) <
0. This part is the same as in [4], so we omit the proof. Then we have

| 1V dz = (o) + B(o),

which implies a(c) > 0. The uniform boundedness of a(c) as ¢ — 0 can be proved
also as in [4] by using the estimate in step 3. Now, we claim that

v l|lzo(eey < M(n > 3), |97 e@ongjesi<as/oy) S M (n =2) (13)

for any g > 2, where M > 0 is a constant independent of o € (0,0¢). For the case
n > 3, by Sobolev’s embedding theorem and the Proposition 3.5 in [4], which is
valid even for unbounded domains, we have

|IU0”L00(Q0) S C“Ua”L2n/(n—2)(Qa) S CC,”VUa“Lz(Qa) S CC,IID,

where C' and C' are positive constants independent of . Here, we used the result
in step 2 in the last inequality. For the case n = 2, we take a function € Cg°(R)
such that 0 < n < 1,|Vn(t)] < 1, n(t) = 1 for |t| < 46/c and n(t) = 0 for
|t| > (46/0)+ 2. Then we can see nv° € Hy(S1/2), since Q7N {|z1| < 88/} C Si/2

by the definition of §. Hence, by Trudinger’s inequality, we have for every ¢ > 2

there exists a constant C, such that

||77”U||%a(sl,2) < Cq”’?”””%[l(s,,,)

< C+ CC[v° || 2@ongjari<as/oy) + COV | 1200 nias/o<tzr|<(46/0)+2})-
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On the other hand, by Poincaré’s inequality on S;/3, we have

Imllz2s,,) < CUIVIM)Lacs, 0 < €+ Cllv? || z2onas/o<izi1<a6/0+2})
< C+CH{Y N {46/0 <|z:| < 46/0 +2}°|Iv°|| 5% 00y < C,

where 0 < § = 6(p) < 1. Combining these estimates, we obtain that for every
g > 2 there exists a constant C which is independent of ¢ € (0, 0p) such that

Imv7 || Legs, ) < C

holds. This implies the desired result for the case n = 2. By the elliptic estimate in
Theorem 8.25 in [12] (the same estimate also holds if we have a uniform estimate
in L? norm of the potential term with ¢ > n/2, see, e.g., [18]), we have

1

¥ @) < (B Lo @O )

for every z € Q7 N {|z;| < 46/0}, where C is a constant independent of . Now

we note that, by the estimate in step 3, we may assume that for a fixed e > 0

/ v )P dr <€
07 0{(8/0)—1<]e1]<(36/0)+1) '

holds for every o € (0,0). Now, let p(z) and A; be the first eigenfunction and the
first eigenvalue of ~A on n — 1 dimensional ball B’ = {z' € R*1;|z/| < 1}. We
may assume p(0) = 1 and p(z') > 0. Note also that p(z') > 0if z = (z;,2') € R;,.
Then, by using the estimates above, we may also assume that

a(o)(v?(z))P! < 3X; /4 for o € (0, 0)

on the region
R ,=0°Nn{6/o <|z:1| £36/0}.

Consider the comparison function

3,(2) = (exp(- Y0 (@1 + 2)) 1 exp( L2 1 + 2) o).

Then we obtain

A(®, —v°) + a(0)(v7)P (@, ~1°) <0 z€ R, B —v">0 z€0R,.
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Now, we can see that the maximum principle can be applied for

®,(z) — v7(z)
p(z)

zo(z) =

to conclude

vy(z) < ®,(z) = € Ry,
This yields
A b

VA1
v (z) <210

for z € Q7 N {% < |z| < 2}, Next, we show the estimate on
Reo =Q° N {|z1] > 56/20}.

Consider the domain Q® = {z € R";|z| < R} U {z = (z1,2') e R x R*};|2'| <
d/2} for large R > d/2. Clearly, Q, C Q®. Then it is known ( see [8] for related
results) that there exists the first eigenfunction ¢® and the first eigenvalue R such
that

—ApR =", ¢7(z) < ™(0) ze P,

o*(z) =0 z€00B,  ¢F(z) < Dyexp(—Dslzi])

for some positive constants D; and D,. Take € so that 36 < € < R. By the Harnack
inequality (see, e.g., [12, Corollary 9.25]), we have

$™(z) < $™(0) < sup ¢%(z) < C min ¢%(z), z € QR
B(O.€) B(0s¢)

We may take ¢F so that ming(o. ¢™(z) = 1. Let QP = QB /5 and consider
(056

\/)‘—lé)qSR(a:r), z € Q)

Uo(z) = 2exp(———

Noting that minpg ) ¢%(z) = 1 implies ¢#(x) > 1 on IRy, N Q7, we have
U, (z) > v(z), z € ORs,.

On the other hand, we have

(va)pH dr< [ eeoa|a:|(,ua)p+l dz < g3t/ (p-1)
Q7 {Jer |2 2} = Jaen(jel>2) = '

o (-4
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By applying Theorem 8.25 in [12] again for € R;, and noting B(z,1) N Q° C
Q7 N {|z1| > 2}, we obtain

vo(z) < Cad/PD),

Here, in the case n = 2, we use the boundedness of ||(v”)*~|| s+1)/-1)(q-y to control
the uniform boundedness of the constant appeared in the generalized version of
Theorem 8.25 of [12] (see [18]). Let 5 and X; be the first eigenfunction and the
first eigenvalue of the Laplacian on {2’ € R*™!;|z/| < d} and let

U,(z) —v7(x)
ple)
Then we can see that the maximum principle can be applid to z° on R, to obtain

22 2 0in Ry,. This yields the desired estimate on R;,. By the estimates (10),
(11), (13) and Proposition 3.5 in [4], now we have the uniform boundedness of v”

2’(z) =

on {}° even in the case n = 2.

(Step 5) First, note that there exists a constant D3 which is independent of o that
|z| < Ds|z1]| on Q7 N {|z1| > 26/0}. Take €p > 0 so that D3eg < Da(p + 1), where
D, is the constant appeared in the estimate of step 4. Then, dividing 2° into two
parts and using estimates in step 4, we can easily see

) / e‘O”'””lXU(x)(Ua(-T))pH dr < Co.—(n+3(:_+ll))e_(p+14);/ﬁs .

as ¢ — 0. Thus there exists a constant gg > 0 such that
/m ey, (2)(v7(z))P* dz < 1
holds for o € (0, 0y). Therefore, difining u%(x) = (I°)Y/®P-Dy?(z), we obtain
A = (7,

Note that we can see from the the estimate in Step 4 liminf,_qI? > I. Then the
uniform lower bounds for «? follow from estimates in Step 2, Step 3 and Step 4. O
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