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Abstract

This paper is concerned with the antimaximum principle for the quasilinear prob-
lem —Apu = Am(z)|ulP~2u+h(z), under Dirichlet or Neumann boundary conditions.
Here A, is the p-laplacian and m(z) is a weight function which may change sign. We
will in particular investigate the question of the uniformity of this principle and
provide a variational characterization for the interval of uniformity. An identity of
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1 Introduction

This paper is concerned with the study of the antimaximum principle (in brief AMP) for
the problem

—Ayu = dm(z)|uf>u+ h(z) in Q, Bu=0on dQ. (1.1)

Here  is a bounded domain in RY, whose smoothness will be specified later, Apu =
div ((|VulP™?Vu), 1 < p < oo, is the p-laplacian and Bu = 0 represents either the
Dirichlet or the Neumann homogeneous boundary conditions.

The original form of the AMP concerns the case where p = 2 (linear operator) and
m = 1 (no weight). It reads as follows : given h>0 there exists § = §(h) > 0 such that

if A; < A < A; + 4, then any solution u of (1.1) (with p = 2 and m = 1) satisfies u < 0
in Q (cf. [8]). We will refer to such a situation by saying that “the AMP holds at the
right of A;”. Here \; denotes the principal eigenvalue of —A under the corresponding
boundary condition. It is also shown in [8] that § can be taken independently of A for the
Neumann problem in dimension N = 1. In such a situation we will say that “the AMP
holds uniformly at the right of A,”.

The AMP was extended in [17] to the case of a linear operator with weight, i.e. (*)p = 2
and m indefinite in (1.1). The proof in [17] involves as in [8] estimating the projections of
the solution onto the eigenspace associated to the principal eigenvalue and onto one of its
complementary subspaces. The AMP was also extended in [13] to the case of a nonlinear
operator without weight, i.e. (**) 1 < p < oo and m = 1 in (1.1). The argument here
is quite different. It goes by contradiction and involves a preliminary nonexistence result
whose proof uses Diaz-Saa’s inequality. Further investigations in each of the two cases (*)
and (**) were carried out recently in [16] and [5] respectively.

It is our purpose in this paper to study the general situation of a nonlinear operator
with weight, i.e. 1 < p < co and m indefinite in (1.1). We will in particular investigate
the question of the uniformity of the AMP and provide a variational characterlzatlon for
the interval of uniformity.

To give an idea of our results, let us consider in (1.1) the Neumann problem with a
weight m which changes sign in . Suppose first [, m # 0, say [,m < 0. It is then known
that there are two principal eigenvalues : 0 and a positive one which we denote by \* (cf.
[19], [10] as well as section 2 below). We show that the AMP holds at the right of \* and
at the left of 0. Moreover it is non uniform when p < N and uniform when p > N. In the
latter case, the intervals of uniformity are exactly A* < A < A(m) and /\(—m) < A0,
where

A(m) = inf{/ IVulP : uw e Wh(Q), / m|u|’ = 1 and u vanishes somewhere in }.
Q _ Q

(1.2)

We also show in this latter case that the AMP still holds at the right of A(m) and at the
left of —A(—m), of course now non uniformly. Suppose now fQ = 0. In this singular
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case, 0 is the unique principal eigenvalue. We show that the AMP holds at the right and
at the left of 0. Moreover it is non uniform when p < N and uniform when p > N. In the
latter case the intervals of uniformity are exactly 0 < A < A(m) and —A(-m) < X < 0,
with A(m) as in (1.2). In this latter case also the AMP still holds (non uniformly) at the
right of A(m) and at the left of —A(—m). We will also see that the AMP cannot hold far
away to the right of A(m) or to the left of —A(—m). This is true for all p, with a suitable
extension of definition (1.2) for p < N (cf. formula (3.1)).

In each of the two particular cases (*) and (**) considered above, our present results
reduce to those in [16] and [5] respectively. Some our arguments of course are inspired
from [16], [5]. The main difference occurs in the proof of the non uniformity and, in case
of uniformity, in the proof of the sharpness of A. Indeed, in the case (**) considered in [5),
the proof of these facts was based on some properties of the asymptotic behaviour of the
first curve of the corresponding Fucik spectrum. But it was observed recently that these
properties are not valid anymore in the presence of a general weight (cf. [1], [4]). This
difficulty was bypassed in the case (*) considered in [16] through some argument which
involves “completing a square” (cf. formula (2.9) in [16]). This latter argument of course
does not extend to the nonlinear case. But it turns out that one of its consequences can be
suitably adapted and derived for the p-laplacian, which suffices for our purposes. This is
the inequality provided by Lemmas 2.5 and 2.12 (as well as 4.2). Its proof uses an identity
of Picone’s type for the p-laplacian which was established recently in [2]. We observe that
this inequality also enters the proof of the preliminary nonexistence results which are used
to derive the AMP itself (cf. Propositions 2.4 and 2.7, as well as 4.1 and 4.3).

Our results relative to the Neumann problem, as briefly described above, are given in
details in section 3. The case of the Dirichlet problem is considered in section 5. We
show in particular that for the Dirichlet problem, whatever the weight and whatever p, the
AMP is always nonuniform. This should be compared with the recent result of [4] which
says that for the Dirichlet problem, if the weight has compact support in 2 and if p > N,
then the first curves in the corresponding Fuéik spectrum are not asymptotic to the trivial
horizontal and vertical lines of that spectrum (cf. also (1] when p =2 and N = 1).

In sections 2 and 4 we collect some preliminary results on the principal eigenvalues for
the Neumann and Dirichlet problems respectively. Less regularity on the domain is needed
in parts of these two sections.

The authors wish to express their gratitude for the referee’s careful and detailed com-
ments.

2 Principal eigenvalues in the Neumann case

Part of this paper is concerned with the Neumann problem
—Apu = Am(z)|ulP"2u+ h(z) in Q, Ou/Ov =0 on AN. (2.1)

Here Q is a bounded domain in R¥ with Lipschitz boundary and 8/0v represents, at
least formally, the derivative of u in the direction of the unit exterior normal to 2. The
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real-valued functions m and h will always be assumed to belong to L*(£2), with, unless
otherwise stated, the assumption that m changes sign in ©, i.e.

meas{z € Q: m(z) > 0} > 0 and meas{z € Q: m(z) <0} > 0. (2.2)
Also, without loss of generality, we can assume
m(z)] <1 a. e inf. (2.3)

Note that more regularity on Q will be required later.
Solutions of (2.1) (or of (2.6) below) are always understood in the weak sense : u €
WhP(Q) with

/|Vu|”"2VuV<p=)\/m|u|"‘2u<p+/htp Vo € WHP(Q). (2.4)
0 Q Q

Adapting to the Neumann problem the L* estimates of [3] and using the regularity results
of [11], one has that any solution of (2.1) (or (2.6) below) belongs to L=(2) N C*(9).

Our purpose in this preliminary section is to collect some results relative to the principal
eigenvalues of

—~Ayu = dm(z)|uf?uin Q, Ou/dv =0 on ON. | (2.5)

Some of these results can be found in [19], [10], although not with the same approach nor
with the same degree of generality. For the sake of completeness and for later references,
some proofs will be sketched.

The fundamental tool is the following form of the maximum principle.

Proposition 2.1 Let u be a solution of
—Apu+ag(z)|ufPu="hinQ, Ou/dv =0 ondQ, (2.6)

where ag € L*(N), ag > 0, h € L>(9), h%O. Then

u>0in Q (2.7)

Proof. As observed above u € C1(Q2) and so (2.7) makes sense in the usual way. Writing
u = ut — u~ with v* = max{+u,0} and taking —u~ as testing function in (2.6), one
deduces v > 0 in . The maximum principle of [24] then implies u > 0 in 2. Q. E. D.

We are thus interested in the principal eigenvalues of (2.5). Clearly 0 is a principal
eigenvalue, with the nonzero constants as eigenfunctions. We also observe that if u>0is a

solution of (2.1) with A > 0 (for instance an eigenfunction of (2.5) associated to a principal
eigenvalue), then u > 0 in . (This follows from Proposition 2.1 by writing equation (2.1)



158

as —Ayu + AufP~2u = A(m £ 1)|ufP~2u + h and using (2.3); here + is used if A > 0, — if
A <0).
The following expression will play a central role in our approach :

A*(m) = inf{/Q |Vul? : w € WH(Q) and /leu|” =1}. (2.8)

Proposition 2.2 (i) Suppose [, m < 0. Then A*(m) > 0 and X*(m) is the unique nonzero
principal eigenvalue; moreover the interval |0, \*(m)[ does not contain any eigenvalue. (ii)
Suppose [, m > 0. Then X*(m) = 0; moreover, if [, m =0, then 0 is the unique principal
eigenvalue.

Proposition 2.2 of course also applies to the weight —m. In particular, if fnm > 0,
then —\*(—m) is the unique nonzero principal eigenvalue of (2.5).

The statements relative to the unicity of the principal eigenvalues in Proposition 2.2
follow from Proposition 2.4 below. The proof of the remaining parts of Proposition 2.2 can
be easily adapted from that of an analogous result in [16]. It uses the following lemma,
whose proof is also easily adapted from that of a corresponding lemma in [16].

Lemma 2.3 Assume [,m < 0. Then there exists a constant ¢ > 0 such that [, |Vul? >
¢ Jo lulP for all u € WYP(Q) with [, m|ulf > 0.

Proposition 2.4 Suppose [,m < 0. If A & [0, A*(m)], then problem (2.1) with h > 0 has

no solution u>0.

Proof. Assume that there exists a solution u>0 of (2.1) for some A € R and some h > 0.

Applying Proposition 2.1, we get u > 0 in 2. So Lemma 2.5 below can be applied, which

gives
A / mlolP < / Vol?
0 (9]

for all p € W1P(Q) N L>(Q) N C*(NN) with ¢ > 0. By density this inequality still holds for
all ¢ € W'?(Q). This implies A < A*(m) as well as —A < A*(—m). Since [,(—m) > 0,
one has A*(—m) = 0 by Proposition 2.2, and we conclude X € [0, \*(m)]. Q. E. D.

Lemma 2.5 Let u be a solution of (2.1) with h > 0 and u > 0 in Q. Then, for any
© € WP(Q) N L=(2) N CY(Q) with ¢ > 0, one has he? /uP~! € L(Q) and

A /Q me® + /Q h? JuP~! < /Q |Vl (2.9)

Moreover equality holds in (2.9) if and only if ¢ is a multiple of u.
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Proof. It is inspired from [2] (which deals with the Dirichlet problem). For u, € C*(®)
with u > 0 and ¢ > 0 in §2, denote

Rlp,) = Vol - [VuP9uv (@/u™),
L - » P Tl — P VP2V
(p0) = [VoP+ (o~ DEIVuP o2 |ValP*VuTy.

The following version of Picone’s identity is proved in [2] : R(p,u) = L(p,u) = 0in &,
with moreover L(p,u) = 0 in Q if and only if ¢ is a multiple of u. (The equality of R(p,u)
with L(¢, u) follows by direct calculation, and the rest can be deduced from Minkowski’s
inequality). Let now u and ¢ be as in the statement of Lemma 2.5. Applying the above
to u + € with € > 0 and to ¢, we obtain, for y a domain with compact closure in {2,

0 < /QOL(go,unLe) < /ﬂL(cp,u+6) =/QR(<p,u+e)
_ fn Vol — /9 VP2 VuV () (u+ )

- frer o (@) o Lt

where we have used that ? /(u+¢)P~! belongs to W'?(2) and consequently is an admissible
testing function in (2.1). Letting € | 0, one applies first the dominated convergence theo-

rem to / L(g,u+¢€) and to [ m(u/(u+ €))P"'¢”, and then the monotone convergence

! Q
theorem to Jo he?/(u+ €)P~. This yields hgP/uP~ € L(Q?) and

o< [ Lp) < el =x [ me - I (2.10)

So (2.9) follows. Moreover, if equality holds in (2.9), then, by (2.10), L(p,u) = 0 on €,
and so on 2 since € is arbitrary. The conclusion that ¢ is a multiple of u then follows.
Q. E. D.

Remark 2.6 Taking ¢”/uP~! as testing function in the study of the p-laplacian is a well-
known technical device (cf. e.g. [12]). This device is already present for p = 2 in [18],
although in a non explicit way.

Proposition 2.7 Suppose fnm < 0. Then problem (2.1) with h>0 does not admit any

solution if A = 0 or A\ = A*(m). It admits an unique solution, which is > 0 in Q, if
0 < A< X(m).

Proof. Nonexistence when A = 0 immediately follows by taking ¢ = 1 as testing function
in (2.1). Nonexistence in the case A = A*(m) requires more care. Assume by contradiction
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that (2.1) with A = A*(m) has a solution u. We first show that u > 0 in Q. Indeed if
u~ # 0, then taking —u~ as testing function in (2.1) gives

/Q|Vu'|p=/\*(m)/nm|u‘|”—/nhu“

and consequently, since A > 0, u~ is a minimizer in the definition of A\*(m) and Johu™ =0.
But then, by Lagrange multipliers, u~ solves

—Apu” =X (m)mlu” P20 in Q, Ou~/8v =0 on O,

and consequently, by Proposition 2.1 applied to —Ayu™ + A*(m)|u~[P~2u~ = A\*(m)(m +
Du~|P~2u~, u~ is > 0 in Q, which contradicts Johu™ =0. Sou > 0in Q, and applying
once more Proposition 2.1, one gets u > 0 in Q. Lemma 2.5 can thus be applied, which
gives

wm) [ g+ [ b < [ 1o
Q Q Q
for all p € W'P(Q) N L*(Q) U C*(Q) with ¢ > 0. Taking for ¢ a positive eigenfunction

associated to A*(m), we deduce [, ho?/uP~! < 0, which is impossible since ¢ > 0 in Q and
h>0.
#

We now consider (2.1) with 0 < A < A\*(m) and first prove the existence of a solution.
This can be done for instance by minimization of the functional

() = /Q IVulP — A /Q mlul? — p /9 ha.

The existence of a minimum for  (and consequently of a solution to (2.1)) will follow
by standard arguments if we show that ® is coercive. For that purpose first note that
Proposition 2.2 implies [, m < 0 (since A*(m) > 0). We will distinguish two cases : v € A
or u € B, where A (resp. B) denotes the set of those u € W?(Q) such that Jomlulf >0
(resp. <0). For u € A one has, using 0 < A < A* and Lemma 2.3,

S(u) > (l—ﬁ)AIVulp—p/Qhu
> c1/|Vu|”+c2/|u|”—p/hu
Q Q Q

for some constants ¢;,c; > 0. So ® is coercive on A. For u € B one has, using A > 0 and

Lemma 2.8 below,
B(w) > cs / IVulP + ¢4 / lufP — p / hu
Q Q Q

for some constants cs,c4 > 0. So ® is also coercive on B. The existence of at least
one solution to (2.1) is thus proved. Now if u is a solution of (2.1), taking as before
—u” as testing function and applying Proposition 2.1, one gets u > 0 in Q. We will
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now prove unicity. Suppose that v is another solution of (2.1). Applying Lemma 2.5 to
—Apu = Am|ulP~%u + h with ¢ = v gives

A/mvp+/hvp/up"1§/|Vv|p=A/mv”+/hv. (2.11)
Q Q Q Q Q :

Consequently

Interchanging u and v and adding, we get

/ﬂh [’u(l - Z;—) tu (1 _ :j::)] > 0. (2.12)

But the bracket [...] in (2.12) is < 0, which implies that equality holds in (2.12). It
follows that equality also holds in (2.11). Lemma 2.5 then yields that v = cu in 2 for some
constant c. Using in (2.1) the fact that h # 0 finally gives c =1, i.e. v=u. Q. E. D.

Lemma 2.8 Assume [,m # 0 and let A > 0. Then there ezists a constant ¢ > 0 such
that [, |Vul? = X [ mlulP > ¢ [, lul? for allu € B :={u € W(Q) : [,m|ulP < 0}.

Proof. Assume by contradiction that for each k = 1,2, ..., there exists uy € B such that
Jo IVuilP = X f;, muglP < 1/k [, |uklP. Considering vy := ug/||uk||p, one has

OS/IVkaPS/|Vvk|”—/\/m|vk|”—>0.
Q 9] Q -

It follows that for a subsequence, vy converges in W1?(Q2) to a nonzero constant function

v, which satisfies —/\/ m|v|P = 0. This contradicts / m#0. Q. E. D.
Q Q

Proposition 2.9 Suppose [, m < 0. The principal eigenvalues 0 and X*(m) are simple.

Proof. This is clearly true for A = 0. So let us consider A*(m). If u is an eigenfunction
associated to A*(m), then standard arguments as above based on Proposition 2.1 give that
ifu™ =0thenu > 0in Q and ifu~ # 0 then v < 0in . Similarly for another eigenfunction
v associated to A\*(m). So replacing if necessary u or v by —u or —v, we can assume u > 0
and v > 0. Applying Lemma 2.5 to —A,u = A*(m)|u[P~?u with ¢ = v then gives

/\*(m)/nmv” < /Q|Vv|p. (2.13)

In fact equality holds in (2.13) since v is an eigenfunction associated to A*(m). Conse-
quently, by Lemma 2.5, v is a multiple of u. Q. E. D.
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Remark 2.10 The above results can easily be adapted to the simpler case where m does
not change sign in (2, say m>0. In this case 0 is the unique principal eigenvalue. Problem

(2.1) with h>0 has no solution u > 0 if A > 0, and no solution at all if A = 0; its (unique)
solution is > 0 in Q if A < 0.

More regularity on §2 will be required to study the AMP. In the final part of this section,
we assume (2 of class C! and indicate briefly how some of the previous results should be
modified.

Under this stronger assumption on 2, any solution u of (2.4) belongs to C*7(Q2) for
some y = (N, p, M) €]0, 1], where M is a bound for |A|, ||m||ec and ||h||e0; moreover the
following estimate holds :

“u”cl-‘Y(ﬁ) S C= C(Q) N:p; M’ M,) (214)
where M’ is a bound for ||u||s (cf. [20]). One also has that if u solves (2.4), then

0
a—:j = 0 on Of? in the usual pointwise sense. (2.15)
The proof of (2.15) is given in the annex. These above considerations on the regularity
of the solutions and on the meaning of the boundary condition of course also apply to
solutions of (2.6).
The maximum principle of Proposition 2.1 can be strengthened in the following way.

Proposition 2.11 Let u be a solution of (2.6) with ag € L*(2), ap > 0, h € L>(N),
h;O. Then u > 0 in Q.

Proof. Arguing as in the proof of Proposition 2.1, one deduces from [24] that » > 0 in
Q with fu/0v < 0 at the points of 2 where u = 0 (since a C*! domain satisfies the
interior ball condition). But by (2.15) above, du/8v = 0 on 8 in the usual pointwise
sense. Consequently u cannot vanish on 8Q and sou > 0on Q. Q. E. D.

It follows as before from Proposition 2.11 that any solution u:%O of (2.1) with h > 0

satisfies u > 0 in Q. :
The inequality of Lemma 2.5 remains valid without any restriction on the sign of A,
which will be useful later in the proof of Theorem 3.5. More precisely we have

Lemma 2.12 Let u be a solution of (2.1) with u > 0 in Q. Then

A / mlpl? + / Rl /u! < / VP (2.16)
Q Q Q

for any ¢ € W'2(Q).
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Proof. One first derives (2.16) for ¢ € WhP(Q2) N L*() N C}(Q2) with ¢ > 0. The
argument here can in fact be slightly simplified with respect to that in the proof of Lemma
2.5 since ¢?/uP~! € W'P?(Q) and so there is no need to introduce u + € nor 5. One then
deduces (2.16) for ¢ € W?(2) by a standard density argument. Q. E. D.

Finally, in Proposition 2.7, the solution u is > 0 in  when 0 < A < A*(m).

3 Antimaximum Principle in the Neumann case

We consider in this section problem (2.1) with §2 of class C*! and m, h as before, i.e. in
L>(§2) with (2.2), (2.3). The following expression will play an important role in our study
of the AMP :

A(m) := inf{/ |VulP : u € WHP(Q), / ml|u[P = 1 and u vanishes on some ball in Q}.
Q Q
’ (3.1)

It is easily seen that when p > N, this definition coincides with that given in (1.2). (This
follows from the easily verified fact that if p > N and v € W'?(Q) is > 0 and vanishes at
o € €, then (u — €)* vanishes on some ball in  and converges to u in W1?()). Clearly
A*(m) < A(m). Whether these two numbers differ or are equal depends on p and N, as is
seen from the following

Lemma 3.1 Ifp < N, then X*(m) = A(m). If p > N, then A*(m) < A(m). Moreover, in
the latter case, there is no eigenvalue in |X*(m), A(m)].

As in section 2 we can limit ourselves without loss of generality in the study of (2.1) to

the case where
/ m <0 (32)
[¢) .

We recall that if f;m < 0and 0 < A < A*(m), then the solution u of (2.1) with h;O

is > 0in Q. If fm = 0, then no result of the type “»>0 implies u > 0” holds. The

following four theorems concern the AMP. Theorem 3.2 states its validity in general and
its non uniformity when p < N. Theorem 3.3 characterizes the interval of uniformity when
p > N. Theorem 3.4 shows that some form of the AMP still holds outside this interval of
uniformity. Finally Theorem 3.5 makes precise the statement in the introduction that the
AMP cannot hold far away to the right of A(m) or to the left of —X(—m).

Theorem 3.2 Assume (3.2). (i) Given héO, there ezists § = §(h) > 0 such that if

X(m) <A< A (m)+9d or =8 < A <0, then any solution u of (2.1) satisfies u < 0 in Q.
(i) If p < N, then no such & independent of h ezists (either at the right of \*(m) or at
the left of 0).
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Theorem 3.3 Assume (8.2) andp > N. (i) If X*(m) < A < )\(m) or /\(—m) <A<,
then any solution u of (2.1) with h>0 satisfies u < 0 in Q. (i) A(m) and —A(—m) are

respectively the largest and the smallest numbers such that the preceding implications hold.
Theorem 3.4 Assume (8.2) andp > N. (i) Given h;O, there exists 6 = 6(h) > 0 such

that if A(m) < A < A(m) 46 or —=A(—m) — 8 < A < —A(—m), then any solution u of (2.1)
satisfies u < 0 in Q. (ii) No such & independent of h ezists (either at the right of A(m) or
at the left of —A(—m)).

Theorem 3.5 Assume (3.2). (i) Given € > 0, there ezxists h>0 such that for any A >
A(m) + €, (2.1) has no solution u satisfying u < 0 in Q. (i) Given € > 0, there exists h;O

such that for any A < —X\(—m) — ¢, (2.1) has no solution u satisfying u < 0 in Q.
We thus see that if (3.2) holds, then the following four numbers
~X(—m) £ =X*(=m) =0 < X*(m) < A(m)

control the domain of validity of the maximum principle and of the antimaximum principle.
We now turn to the proof of the preceding results.

Proof of Lemma 3.1. The proof that A*(m) = A(m) in the case p < N can be easily
adapted from that of a similar result in [16]. We thus turn to the proof that if p > N, then

X (m) < A(m). (3.3)

As observed at the beginning of this section, when p > N, A(m) is equivalently defined
by (1.2). Since p > N, W'?(R) is compactly imbedded into C(2), and consequently the
infimum in (1.2) is achieved. Replacing u by |u| if necessary, we can assume that this
infimum is achieved at some u with u > 0.

Claim. u vanishes at ezactly one point zo in Q.

The proof of this claim can easily be adapted from that of a similar result in [5], [16].
The idea of the proof of (3.3) is now the following. Define, for € > 0, u.(z) :=
maz{u(z),e}. Clearly ue — u in W'?(Q) as ¢ — 0. We will show that for ¢ > 0 suf-

ficiently small
/ Vg / / mluc? < / Vulp / / mlul?. (3.4)
Q Q Q Q

This will imply (3.3) since the left-hand side is > X*(m) (because [, m|uc|? > 0 for € small)
and the right-hand side is equal to A(m).
To prove (3.4) we write the difference between the two sides of (3.4) as

JalVulr _ Jo|VuP __ Jo, VUl Jom? + [o [VulP([5, mv? — € [, m)
Jamlude Jomur (fn muP — [ muP + € [p m) (Jo mw)

(3.5)
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where B, := {u < €}. Since u vanishes only at zo, B, decreases to {zo} as € | 0, and
consequently the measure of B, — 0. The denominator in (3.5) thus goes to ([, mu?)? =1,
while the second and third terms of the numerator are o(e?). We will show that the first
term in the numerator of (3.5) satisfies

1/ |Vu|”/mup—) some 7 < 0 (3.6)
e Q

€

as € — 0. Combining these informations, one deduces that (3.5) is < 0 for € > 0 sufficiently
small, and consequently (3.4) holds.
To prove (3.6), we first observe that the minimizer u of (1.2) is also a minimizer for

inf{/ |Vol? : ¢ € Wy, and /m|go|” =1}
Q Q

where W, := {p € W?(Q) : p(z0) = 0}. Applying Lagrange multipliers rule in the space
W, we thus have '

/ |VulP2VuVp = X(m)/m|u|”_2u<p Vo € Wy,. (3.7)
Q _ Q
This allows us to write

IVuI”z/quI”’ZVuV'ue:5\(m)/m|u|”‘2uv€
Q Q

Be

(3.8)
= X(m)/ m|ulP + X(m)e/ m|ulP~u
B. Q-B.
where v, := min{u, €} € W,,. The first term in (3.8) is o(e?) and we will show that
/ mlufP~?u > 0. (3.9)
Q

Relation (3.6) then clearly follows.

To prove (3.9), we first show that [, m|u[?~?u = 0is impossible. Indeed if [, m|u[r~2u =
0, then (3.7) holds not only for ¢ € Wy, but also for ¢ = 1. Since any ¢ in W'?(Q) can be
written as the sum of ¢ — ¢(zg) € W, and of the constant ¢(zg), we conclude that (3.7)
holds for all ¢ € WP(Q2). But this means that >0 is a solution of the Neumann problem

—Ayu = A(m)m|uff"*uin Q, Ou/dv =0 on 09,

and consequently, by Proposition 2.11, v > 0 in , which contradicts the fact that
u vanishes at zo. We now show that [, m[u[P?u < 0 is also impossible. Indeed if
JomlulP~?u < 0, then the last integral in (3.8) converges to [, m|u[P~%u < 0 and conse-
quently, by (3.8), [ 5. |VulP <0 for € > 0 sufficiently small, which is clearly a contradiction.

To conclude the proof of Lemma 3.1, it remains to see that when p > N, there is no
eigenvalue in ]A*(m), A(m)]. The argument here can be easily adapted from the proof of a
similar result in [16]. Q. E. D.
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Remark 3.6 Lemma 3.1 still holds, with the same proof, if m does not change sign, with
m>0. In this case of course A*(m) = 0.

Proof of Theorem 3.2. We first prove part (i) at the right of A*(m) (the argument at
the left of 0 is similar). Assume by contradiction the existence for some h>0 of sequences

Ak > A*(m) and uy such that Ay — A*(m),
—Apur = Mgm|ugP~2u, + h in Q, Ouk/0v = 0 on 09N (3.10)
and
u, > 0 somewhere in Q. (3.11)

We distinguish two cases : either ||u||o remains bounded, or, for a subsequence, ||ux||oo —
+o00. In the first case one derives from (3.10) and (2.14) that u, remains bounded in
C'(2). Consequently, for a subsequence, u; converges to some u in C*({). Going to the
limit in (3.10), one sees that u solves

—Ayu = X*(m)m|ulP2u + h in Q, u/0v = 0 on 89,

which contradicts Proposition 2.7. In the second case, one considers vy := ux/||uk||00, and
arguing in a way similar as above from

—Apvk = Mem|ve P20, + h/||uk]|oo in Q, Ovi/Bv = 0 on 09,
one gets that, for a subsequence, vy, converges to some v in C*(£2) where ||v|| = 1 and
—Apv = A*(m) m|v[P~v in Q, Hv/0v = 0 on AN.

Consequently v is an eigenfunction associated to A\*(m) and so either v > 0 in Q or v < 0
in Q. Ifv>0inQ we deduce v, > 0 in Q for k sufficiently large, which leads to a
contradiction with Proposition 2.4. If v < 0 in Q we deduce v, < 0 in  for k sufficiently
large, which leads to a contradiction with (3.11). (This argument to derive the AMP is
adapted from [13]).

Part (ii) of Theorem 3.2 is a consequence of Theorem 3.5 since (3.2) and p < N imply
A(m) = X*(m) and-A(—m) = X*(—m) = 0. Q. E. D.

Proof of Theorem 3.3. Part (i) is easily adapted from the proof of a similar result in
(5] or [16]. Part (ii) is a consequence of Theorem 3.5. Q. E. D.

Proof of Theorem 3.4. The proof is easily adapted from that of a similar result in [5]
or [16]. Q. E. D.

Proof of Theorem 3.5. We prove part (i) (part (ii) is proved similarly). Assume by
contradiction that there exists ¢ > 0 such that for any A>0 there exists A with A >
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A(m) + € such that (2.1) has a solution u < 0 in Q. We start with ¢ € W'P(Q2) satisfying
fom|elP > 0 and vanishing on some ball in €, as in the definition (3.1) of A(m). Then
we choose h>0 with supp hN supp ¢ = 0, and finally we consider A = A, and u = u,, as

provided by the above contradictory hypothesis. So v := —u > 0 in Q solves
~Av =X myP2v—hinQ, Ou/dv =0 on 0.

Applying to this equation Lemma 2.12 with the function ¢ above as testing function, we

get
A / mlpl? — / Rl /o7~ / VP,

But the integral involving h vanishes since h and ¢ have disjoint supports. Consequently
Xm) +e < < [ (Vo) [ migp
Q Q

for all o as above. Taking the infimum with respect to ¢ yields A(m) + ¢ < A(m), a
contradiction. Q. E. D.

Remark 3.7 The above argliments can easily be adapted to the case where m does not
change sign in , say m>0, as in Remark 2.10. In this case the AMP holds at the right of

0. It is non uniform when p < N and uniform when p > N. In this latter case the interval
of uniformity is exactly 0 < A < A(m) with A(m) given by (1.2); moreover the AMP still
holds at the right of A(m), in a non uniform way. Finally, as.in Theorem 3.5, the AMP
cannot hold far away to the right of A(m).

4 Principal eigenvalues in the Dirichlet case

In this section, which as section 2 has a preliminary character, we briefly collect some
results relative to the principal eigenvalues associated to the Dirichlet problem

~Ayu = dm(z)|ulP*u+ h(z) in Q, u =0 on 9Q. (4;1)

Here m and h lies as before in L>(2), with (2.2) and (2.3), and at the beginning we do
not assume any regularity on the bounded domain 2.

The basic spectral theory for (4.1) has been extensively studied in the last twenty years
(cf. e.g. [22], [3], [21], [2],---)- Solutions of (4.1) belong to L=(Q2) N C*(£2). There are two
principal eigenvalues : A\;(m) > 0 and A_;(m) := —A;(—m), where

Ai(m) = inf{/Q |VulP : u € WyP(Q) and /Qm|u|” =1}. |

These eigenvalues are simple and the corresponding eigenfunctions can be taken > 0 in §2.



168

Proposition 4.1 If A &€ [A_;(m), A\;(m)], then problem (4.1) with h > 0 has no solution
u>0.

The proof of this proposition follows the same lines as that of Proposition 2.4. It uses
the following lemma whose proof is analogous to that of Lemmas 2.5 and 2.12.

Lemma 4.2 Let u be a solution of (4.1) with h > 0 and u > 0 in Q. Then for any
@ € WoP(Q) N L>(Q) N CY(Q) with ¢ > 0 in Q, one has that hg? /uP~! € LY(Q) and (2.9)
holds. Moreover equality holds in (2.9) if and only if ¢ is a multiple of u. Finally the
restriction that h is > 0 is not needed to get (2.16) for all p € C}(Q).

Proposition 4.3 Problem (4.1) with h>0 does not have any solution if A\ = A_;(m) or
A= XAi(m). It admits an unique solution, which is > 0 in Q, if A\_;(m) < A < A\ (m).

The proof of this proposition follows the same lines as that of Proposition 2.7. In fact
it is simpler since for instance, in the functional @, [, |VulP is a norm on W,?(Q2). We
observe that the nonexistence part in Proposition 4.3 was already derived in [2] (see also
[13] when m = 1 and Q is regular). The unicity part was already derived in [15] when
m > 0 and 2 is regular.

Let us now assume in the final part of this section that € is of class C*!. The solutions
then belong to C7(f2) and one has an estimate analogous to (2.14). Moreover, by a
standard property of Sobolev spaces (cf. e.g. [7]), the boundary condition © = 0 is
satisfied in the usual pointwise sense. Consequently the maximum principle of [24] implies
that a solution u§0 of (4.1) with h > 0 satisfies « > 0 in 2 and du/8v < 0 on HQ.

5 Antimaximum Principle in the Dirichlet Case
We assume in this section Q2 of class C*!, and m and h as before.

Theorem 5.1 (i) Given hgo, there ezists § = 6(h) > 0 such that if \;(m) < A < A (m)+6

or Ai(m) =8 < A < A_y(m), then any solution u of (4.1) satisfies u < 0 in Q and
Ou/Ov > 0 on 0. (i) No such & independent of h exists (either at the right of A1(m) or
at the left of A_1(m)). :

Theorem 5.2 (i) Given € > 0 there exists h>0 such that for any A > \(m) + ¢, (4.1)
has no solution u satisfying u < 0 in Q. (ii) Similar statement at the left of A_1(m).

The proof of part (i) of Theorem 5.1 can be carried out by contradiction in a way
similar to the proof of Theorem 3.2. Part (ii) of Theorem 5.1 follows from Theorem 5.2.
Let us sketch the proof of the latter.
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Proof of Theorem 5.2. We only consider part (i). Assume by contradiction that there
exists € > 0 such that for any h;O there exists A with A > A;(m) + € such that (4.1) has a

solution u satisfying u < 0 in . We start with ¢ € C2°(9) satisfying [, m|p|P > 0. Then
we choose h>0 with supp AN supp ¢ = @, and finally we consider A = A, and u = u,, as

provided by the above contradictory hypothesis. So v := —u > 0 in {2 solves
—Ayy=Am[vfP v —hinQ, wu=0ondN.

Applying to v the last part of Lemma 4.2, with the function ¢ as testing function, and
using the fact that h and ¢ have disjoint supports, we get

/\1(m)+eS/\¢S/IV¢I”//meI”
Q Q

for all © as above. Since the infimum of the right-hand side with respect to ¢ is equal to
A1(m), we reach a contradiction. Q. E. D.

Remark 5.3 The result of Theorem 5.2 holds (with the same proof) without assuming
any regularity on 2.

Remark 5.4 A result analogous to that of part (i) of Theorem 5.1 is stated in [2] for a
general, even unbounded, domain 2. This however cannot hold true as stated there since
it is known that the AMP does not hold for p = 2, m = 1 and 2 = a square in R? (cf. [6]).
We also observe that new difficulties arise in the unbounded case (cf. [23], [14]).

Remark 5.5 Results similar to those in sections 4 and 5 of course also hold when the
weight does not change sign in §2.
6 Annex

It is our purpose in this annex to prove (2.15). This equality will clearly follow by applying
the local result of Proposition 6.1 below to the vector field a := |Vu[f~?Vu.

Proposition 6.1 Let D be an open subset of RN which is of class C* near zo € OD. Let
a be a continuous vector field on D. Assume that for some f € L1(D),

/D<a,Vgo>=/Df<p (6.1)

for all ¢ € CYD) with bounded support, where <,> denotes the scalar product in RN .
Then < a(zo), v(xo) >= 0, where v(xy) denotes the unit exterior normal to D at xy.
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Proof. We start by representing an open neighbourhood U of zo in RN as ¥(W x| — 6, §[),
with ¢(s,t) = Z(s) —tv(zo) given by Lemma 6.2 below. We will write ¥~1(z) as (5(z), #(x))
where z € U, 3(z) € W and t(z) €] — §,0[. Let us fix two functions g and h with
g € C2(RN-1),0< g <1, g=1on the ball B;(0), g = 0 outside B,(0), h € C*(R),
0<h<1l,h=1lon]-1,1[, h=0 outside | — 2,2[. For € > 0, n > 0, we then define

=2 (22) 1(%)

where z € U. Clearly ¢, is a C! functionon U, 0 < pe, < 1, ey = 1 on 9(B,(0)x]—¢,€)
and @, = 0 outside 1(B;,(0) x] — 2¢, 2¢[). So, for €, n sufficiently small, ¢, has compact
support in U. Consequently its restriction to D is an admissible testing function in (6.1) :

/ < a(z), Ve q(z) > dz =/ f(Z) en(z) dz. (6.2)
D D

Let us start by fixing » > 0 and go to the limit in (6.2) as ¢ — 0. Since the measure
of the support of ., goes to zero as e — 0, the right hand side of (6.2) goes to zero.
Computing Vi, ,, one sees that the left hand side of (6.2) is a sum I+II, where

I = /D <($)><a(m) Vilz) > h’ (t(z))
II = /D<a(:c) -Vyg ((T’))Vs( )>h<(m))

Since the measure of the support of the integrand in II goes to zero as € — 0, we see that II
goes to zero. To study I, we go from the z-coordinates to the (s,t) coordinates and apply
Fubini’s theorem to get

I= / - [ /B » ( )<a(¢(s ), VEW(s,1)) > | (s, t)|ds] v ‘et

where J denotes the Jacobian determinant of 1. Since the bracket [ ... ] in the above
integrand is a continuous function of t, call it G(t), the definition of h implies that
02€ G(t)W(t/e)/edt - —G(0) as ¢ — 0. Consequently, for any > 0, we have

. oloim < a(a(s), Va(s) > 1965, 0)ds =0

Dividing by n¥~1, letting n — 0, and using |J(0,0)| # 0, one gets
< a(z(0)), Vi(Z(0)) >= 0.

This yields the conclusion of Proposition 6.1 since it is easily verified that Vi(z,) = —v(zo).

A~ w— e
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Lemma 6.2 Let D be an open subset of RN which is of class C' near to € 8D. Then
there exists a C* chart of D near zo : T : W — 8D with W an open neighbourhood of 0 in
RN~1, 7(0) = zo, and there exists § > 0 such that o : Wx| —§,8[ : (s,t) = Z(s) — tv(zo)
is a C* diffeomorphism onto a neighbourhood U of zo in RN, with moreover ¢(s,t) € D
(resp. € 8D, ¢ D) whenever s€ W and 0 <t < ¢ (resp. t=0, —6 <t <0).

Proof. Since D is of class C' near o, there exists an open neighbourhood V of z; in RY
of the form V = X(W x] — 6, §[), where W is an open neighbourhood of 0 in RN-1, § > 0,
X is a C' diffeomorphism from W x] — §, [ onto V, with the property that X (0,0) = z,,
X(o,7) € D (resp. € 8D, & D) whenever € W and 0 < 7 < § (resp. 7 =0, -6 < 7 < 0).
Clearly we can assume 0X/07(0,0) = —v(zo). Let us define ¢(s,t) := X(s,0) — tv(zo)
for s € W and t € R. Since the Jacobian matrix of % at (0,0) is invertible, ¢ is a C!
diffeomorphism from W;x] — 6,6 onto an open neighbourhood V; C V of zy in RV,
where W, C W is an open neighbourhood of 0 in R¥~! and §; > 0. Clearly Z(s) := X(s,0)
is a C? chart of 8D near xg, ¥(0,0) = o and 9(s,0) € 8D if s € W;. We have to show
that, by diminishing W; and 6; if necessary, 9(s,t) € D (resp. € D) whenever s € W; and
0 <t<d (resp. —4; <t <0).

To prove this property of 1, we first observe that for any (s,t) € Wy x]—4d1, §;[, there ex-
ists an unique (o, 7) := (6(s,t),7(s,t)) € Wx]| =4, §[ such that ¢(s,t) = X(o,7).Applying
the implicit function theorem to F(s,t,0,7) := ¥¢(s,t) — X(0,7) and diminishing W;
and 6; if necessary, one sees that &(s,t) and 7(s,t) are C! functions. Moreover, com-
puting the derivative of X(s,0) — tv(z¢) = X(a(s,t),7(s,t)) with respect to t and using
0X/07(0,0) = —v(xy), one easily gets that 07/0t(0,0) = 1. It follows that 97/dt(s,t) > 0
for (s,t) in some convex open neighbourhood Wy x| — 45, d5[ of (0,0). Since 7(s,0) = 0,
we thus have 7(s,t) > 0 (resp. < 0) for s € W, and 0 < t < §, (resp. —d <t < 0), and
consequently the desired property of ¢ follows from the corresponding property of X. Q.
E. D. :

Remark 6.3 If the bounded domain Q is of class C?, then (2.15) can be derived by

applying a version of the divergence theorem given in [9]. Indeed first observe that (2.4)

implies that —Apu = dm(z)|ulP~2u+ h(z) in D'(Q). It follows that, for a given ¢ € C*(Q),

the vector field b:= ¢|Vu[P~2Vu belongs to C(2) and has a distributional derivative which

belongs to L=(Q2) C L'(R2). Applying to b the divergence theorem of [9] and using (2.4),

one gets / |VulP~? < Vu,v > ¢ = 0. Since ¢ is arbitrary in C*(Q), the conclusion (2.15)
Q

follows.

References

(1] M. ALIF and J.-P. GOSSEZ, On the Futik spectrum with indefinite weights, Diff. Int.
Equat., to appear.



172

[2) W. ALLEGRETTO and Y. HUANG, A Picone’s identity for the p-laplacian and
applications, Nonlinear Analysis T.M.A., 32 (1998), 819-830.

[3] A. ANANE, Etude des valeurs propres et de la résonance pour I'opérateur p-laplacien,
Theése de Doctorat, Université Libre de Bruxelles,1987. See also C. R. Ac. Sc. Paris,
305 (1987), 725-728.

[4] M. ARIAS, J. CAMPOS, M. CUESTA and J.-P. GOSSEZ, Asymmetric elliptic prob-
lems with indefinite weights, to appear. See also C. R. Ac. Sc. Paris, 332 (2000),
215-218.

[5) M. ARIAS, J. CAMPOS and J.-P. GOSSEZ, On the antimaximum principle and the
Fugik spectrum for the Neumann p-laplacian, Diff. Int. Equat., 13(2000), 217-226.

[6] I. BIRINDELLI, Hopf’s lemma and antimaximum principle in general domains, J.
Diff. Equat., 119 (1995), 450-472.

[7) H. BREZIS, Analyse Fonctionnelle, Théorie et Application, Masson, 1983.

(8] P. CLEMENT and L. PELETIER, An antimaximum principle for second order elliptic
operators, J. Diff. Equat., 34 (1979), 218-229.

[9] M. CUESTA and P. TAKAC, A strong comparison principle for positive solutions of
degenerate elliptic equations, Diff. Int. Equat., 13 (2000), 721-746.

[10] A. DAKKAK, Etude sur le spectre et la résonance pour des problémes elliptiques de
Neumann, These 3eme cycle, Univ. Oujda, 1995.

[11] E. DIBENEDETTO, C*** local regularity of weak solutions of degenerate elliptic
equations, Nonlinear Analysis T.M.A., 7(1983), 827-850.

[12] J. DIAZ and J. SAA, Existence et unicité de solutions positives pour certaines
équations elliptiques quasilinéaires, C. R. Ac. Sc. Paris, 305 (1987), 521-524.

[13] J. FLECKINGER, J.-P. GOSSEZ, P. TAKAC and F. DE THELIN, Existence, non
existence et principe de I’antimaximum pour le p-laplacien, C. R. Ac. Sc. Paris, 321
(1995), 731-734.

[14] J. FLECKINGER, J.-P. GOSSEZ and F. DE THELIN, Antimaximum principle in
R¥ : local versus global, to appear.

[15] J. FLECKINGER, J. HERNANDEZ, P. TAKAC and F. DE THELIN, Uniqueness
and positivity of solutions of equations with the p-laplacian, in “Reaction Diffusion
Systems”, Ed. G. Caristi and E. Mitidieri, Lect. Notes P. Appl. Math., M. Dekker,
194 (1998), 141-155.

[16] T. GODOY, J.-P. GOSSEZ and S. PACZKA, Antimaximum principle for elliptic
problems with weight, Electr. J. Diff. Equat., 1999 (1999), 1-15.



173

[17] P. HESS, An antimaximum principle for linear elliptic equations with an indefinite
weight function, J. Diff. Equat., 41 (1981), 369-374.

[18] C. HOLLAND, A minimum principle for the principal eigenvalue for second order
linear elliptic equation with natural boundary condition, Comm. Pure Appl. Math.,
31 (1978), 509-519. '

[19] Y. HUANG, On eigenvalue problems for the p-laplacian with Neumann boundary
conditions, Proc. Amer. Math. Soc., 109 (1990), 177-184.

[20] G. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations,
Nonlinear Analysis T. M. A., 12 (1988), 1203-1219.

[21] P. LINDQVIST, On the equation div (|Vul[P~2Vu) + AJu|P~2u = 0, Proc. Amer. Math.
Soc., 109 (1990), 157-166. Addendum, Proc. Amer. Math. Soc., 116 (1992), 583-584.

[22] M. OTANI and T. TESHIMA, On the first eigenvalue of some quasilinear elliptic
equations, Proc. Japan Ac., 64 (1988), 8-10.

[23] N. STAVRAKAKIS and F. DE THELIN, Principal eigenvalues and antimaximum
principle for some quasilinear elliptic equations on RY, Math. Nachr., 212 (2000),
155-171.

[24] J. L. VAZQUEZ, A strong maximum principle for some quasilinear elliptic equations,
Appl. Math. Optim., 12(1984), 191-202.



