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Stable Pattern of FitzHugh-Nagumo Equation for Higher Dimensions and
its Limiting Problem
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FitzHugh Nagumo equation has been studied extensively in the field of mathe-
matical biology. It has the mechanism of “lateral inhibition” which seems to play
a big role in the pattern formation of plancton distribution. We consider FitzHugh
Nagumo equation in high dimension and show the existence of stable nonconstant
stationary solutions which have fine structures in a mesoscopic scale. We construct
the spatially periodic stationary stable solution. Moreover we consider the singular
limit energy.

1 Introduction and Results

In this paper, we consider the activator-inhibitor system called FitzHugh Nagumo equa-
tion in higher dimension. We are particularly interested in the problem with a small pos-
itive parameter and the related singular limit problem. FitzHugh Nagumo equation was
first introduced as the simplified equation of Hodgkin-Huxley system which is a model
of conduction and excitation of nerve impulses in physiology. High dimensional problem
appears in neural net models for short term memory or in nerve cells of heart muscle. Af-
terward Extended FitzHugh Nagumo equation was proposed as a mathematical model of
biological pattern formation. It has been suggested that lateral inhibition may contribute
to pattern formation in plancton distribution [6]. It is a system of reaction-diffusion equa-
tions with two independent variables, v and v. Here u denotes an activator and v acts
as its inhibitor. Such an activator-inhibitor sysytem has also been studied in the field of
chemical reaction.

One of our main results concerns the Neumann problem:

uy = D1Au+ f(u) — kv z € Q,t >0,

(1.1) T = DoAv+u—yv z€Q,t>0,
=% =0, T €00,t >0,

where 2 C R” is a smooth domain, v(z) is the outer normal at z € 99Q; the functions
u,v are real-valued and denotes an activator and an inhibitor, respectively, K, T, Dy are
positive constants; v, D; = €? are positive small parameters; A = 21—1 o7 is Laplacian;
f(u) is a cubic nonlinearity like f(u) = u(1 — u)(u — a), (0 < a < 1/2). More generally
we assume that

(F1) fe C'(R).
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(F2)  There exist constants 0 < ap < a; < az < 1 such that

>0 foru<0,ai<u<1, , <0 for u < ag,u > as,
f(u) f'(u)
<0 for0<u<ap,u>1, >0 forag <u<as

(F3)  lim infjyjse0 L2 > 0.

(F4) [y f(v)dv > 0.

Note that (F1) and (F2) imply that f(0) = f(a1) = f(1) = 0 and f'(ao) = f'(a2) = 0.
There exists a unique number b > 0 such that the equation f(s) = b has three different
solutions so < §1 < s2 which satisfy fs‘? (f(v) — b) dv = 0. We assume that

kK _ b

In case v small, the problem (1.1) has no constant stationary solution except for (u,v) =
(0,0). We call this case monostable. In case v large, there are three constant stationary
solutions, two of which are stable and one unstable. We call this case bistable. Assumption
(H) does not completely exclude bistable parameter region. Note that (u,v) =(0,0) is
always a stable stationary solution. The positive stable constant solution in bistable case
is called an excited state. The space independent system of (1.1) exhibits excitability.
Our system of equations has both excitability and lateral inhibition.

Our existence and stability result of Neumann Boundary Problem (1.1) is the following:

Theorem 1.1 Let Q be a bounded domain and assume (H). Then for D, sufficiently
small, the problem (1.1) has a nonconstant stationary solution (ue,ve) such that the total
variation of u. goes to oo as D1 — 0. If, in addition, Tk < 72, then there ezists a stable
nonconstant stationary solution.

In case § is a bounded open interval of one dimensional space, it is known that there
are stable stationary solutions which have multi internal layers for D; small. Moreover
solutions with finite number of layers remain stable as D; — 0 (see [8]). Unlike one
dimensional case, in higher dimensions, any stable stationary internal layered solutions to
a class of reaction-diffusion systems cannot have a smooth limiting interfacial configura-
tions when the thickness of the interface tends to zero [9]. Our solutions in high dimension
oscillate in a mesoscopic scale and the interfacial energy of u. tends to infinity. Hence the
interface of our solutions does not converge to any smooth (n — 1) dimensional surface.
Moreover the pattern of u. does not exhibit point condensation. We express the richness
of spatial patterns of u. in terms of Young measure (see Theorem 2.1). We also estimate
the amount of interface. k
A periodically undulating cylindrical domain 2 is the set of the form

U{s} x Qg

seR
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where Q;, C R""!, s € R is a family of bounded domains which is periodic in s € R, that
is, there exists a number T > 0 such that Q,,7 = Q, for all s € R.
Our result in a periodically undulating cylindrical domain is the following:

Theorem 1.2 Let Q2 be a periodically undulating cylindrical domain and assume (H).
Then for Dy sufficiently small, the problem (1.1) has a nonconstant periodic stationary

solution.

In particular, when 2 is a cylindrical domain, we construct the spacially periodic sta-
tionary solutions. In a cylindrical domain, our construction might give a standing wave
which is not a trivial extension of one dimensional solutions, which is suggested by the
comparison of energy of patterns in the limiting case D; — 0. Another main result of the
present paper concerns the singular limit problem which may characterize internal layers
of our solutions (see section 4).

In one dimensional space, it is known that there exists a travelling wave with a front (or
interface). Moreover when f(u) is cubic, there exists a nonconstant stationary solution
which is decaying at infinity or spatially periodic [2], [5]. We have the following:

Corollary 1.1 Assume (H). Then for D, sufficiently small, the problem

12) {ut=D1Au+f(u)—m), z€R,t>0,

TV = Do Av + u — v, zeR,t>0.

has an infinite number of nonconstant periodic stationary solutions modulo translation
equivalence.

We remark that in {2], Ermentrout, Hastings and Troy considered the case

(1.3) flu)=u(l-u)(u—a), 0<a<1/2
with
(1.4) g > - ' _ max(1 - u)(u - a).

It is easy to see that (1.4) implies assumption (H), which is explicitly written

5 (@a+1)(1 —2a)(2 - a)
Y 9a+1++/3@—-a+1))

We also remark that any stable stationary solutions of the single equation

u = dAu+ f(u), d>0,ue L°(R")

are translation and rotation invariant, hence constant. See [10).
This paper is organized as follows: In section 2 and 3, we show the existence of non-
constant stationary solution in bounded domains and periodically undulating cylindrical
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domains, respectively. Our approach is the following: We define some functional (which
we call energy) on H'(R2), and find a critical point with Morse index 0 which is typically
a local minimizer. Our functional has a nonlocal term, which plays a big role in exis-
tence of nonconstant local minimizer. In section 4, we define the limiting problem for the
constrained class of functions with periodic structures. We estimate the energy for both
one dimensional lamellar pattern and two dimensional square structure. These estimates
suggests that minimizers in two space dimension can have actually two dimensional pe-
riodic structures in some parameter region. In section 5, we give a stability result to the
solution obtained in section 2 and 3. We consider the spectrum of linearized problem
and study carefully the relation between the original linearized operator and the operator
corresponding to the second derivative of energy functional. Note that our equation is not
a gradient system. Theorems 1.1 and 1.2 follow from a series of propositions in sections
2-5.

Remark 1-1. Hereafter, for the sake of notational simplicity, we will use the same
letters C' to denote some positive constants whose values may vary from line to line. This

notational convention does not apply to such letters C;,C,, .. ..
Remark 1-2. We will express any sequence a;y — 0, K — oo as the same notation
ar = 0o(1), k — oo.

2 Neumann Problem on Bounded Domain

In sections 2-4, for simplicity, we assume that Dy = k = 1. In this section, we are concerned
with the existence of stationary solutions for Neumann problem on bounded domain. Denote
by (-,-) L?-inner product. By linear transformathion of u,v (and still using the same notation
u,v), we reformulate the problem into

(2.1) u = e2Au—W'(u) —v,
’ T = Av+u—my— v,

where my is a constant and W (u) is a double-well potential with equal depth which satisfies the
following.

(W1) W € C?(R).
(W2)  W(u) =0 if u = =1, and W(u) > 0, otherwise.
(W3)  W"(x1) > .

) liminfjye %3;2 > 0.

We realize that mg € (—1,1) by the assumption (H). Introduce an inverse operator K of —A +7
with Neumann boundary condition:

(2.2) K=(-A+y)™.

(W4

The stationary solution (u,v) of (2.1) solves the system of equations

v = 2Au-—W'(u)

(2:3) v = K(u-myg)
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and hence
(2.4) K(u —mp) = e2Au— W'(u).

Suppose u is a solution of (2.4) with Neumann boundary condition, then we get the stationary
solution © and v = Ku of equation (1.1). Problem (2.4) corresponds to the Euler-Lagrange
equation of the functional

2
1
(2.5) I(u) =L (u) = / (%Wulz + W(u)) dz + E(K(u - myp),u — mg),
Q
on the space H'(£2). We note that in case n > 5, I may take the value +oo for some u € H'(f).
(It does not matter for the existence of global minimizers.)
Lemma 2.1 Let u. = c be constant. Then mingegr I(uc) > 0.

Proof. Noting that Ku, = %c,
1.1
I(ue) = | W(c)dz + =(=(c — myp),c — my).
Q 2%y
Lemma 2.1 follows from the fact mg # *1. O

Since K is a positive operator and there exist positive constants ¢,C’ such that W(u) >
—C' + Su? for all u € R, we have

2
3 c
(26) I(w) 2 5 [|Vullzz + 3llullzs - C,

uniformly in v € H'(Q). Hence I is coercive on H'(Q2). Moreover I is weakly lower semi-
continuous on H'(Q). Indeed, If uy, — u weakly in H'(f2), by Rellich’s theorem uyp, — u
strongly in L2(Q) and hence
(Ku,u) = lim (Kupm,um).
m—0o0

Since the function G : R x R® — R defined by

2
G(u,p) = SIpl* + W (u)

is convex in p, and bounded from below, the first term of I is weakly lower semi-continuous with
respect to H!'-norm. (See for example Struwe [13, Theorem 1.6].) Thus we see

I(u) < liminf I(um)

as we desired. By the standard variational method, I is bounded from below on H'(Q) and
there exists a global minimizer u, € H(Q) of I solving (2.4). Generally, the global minimizer
ue may be constant. However we have the following:

Proposition 2.1 The minimum of I goes to 0 as € — 0 and hence u. is not constant.
Proof. For a positive integer m € N, we consider the parameter such that D; = e = ng
Since ming1(q) I is non-decreasing with respect to ¢, it suffices to show that the minimum of

I converges to 0 as m — oo. To see this, let § = m—°2,+—1 € (0,1). Let uy,, € C® N L*(R")
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be the function which depends only on z; and satisfies up(—2Z1, "« ,Zn) = Um(Z1, - ,Un),
um(z1 + %, o Tp) = Uy (Z1, -+ ,up) for all z € R?, and
—"17 A 0 S T S am,
um(z) = x(m*(z1 - am)), am < 21 < b,
17 bm S 1 S #

where y € C®(R,[-1,1]) is a function with

-1, <0
X(8)=13 1" §31

am = (1 — 0)(% = 25), bm = (1 - 0);~ + 0-15. Since the wave length of uy, is Z and Q is
bounded, we estimate H'-seminorm of u,, as follows:

/IVum|2da:<Cm (m3)2/ x'(m3s)? ds

=Cm! / '(t)? dt.

Now let us consider the second and the third tirm of I(um,). The sequence (ur,) is bounded in
L?(9) but does not have the convergent subsequence since u, oscillates rapidly in z; as m — oo.
We show that

Um — Mg, W(um) -0,

weakly in L%(€). Although this can be proved directly, we use the notion of Young measure
for understanding the behavior of sequence (up,). Young measure p = (fz)zeq is a family of
probability measures on R.

Lemma 2.2 The sequence (um)_; C L%(2) generates Young measure p = (Uz)zeq with pg =
(1 —0)5_1+ 661 a.e. z €, where é5 denotes Dirac measure centered at s € R.

We note that for large m, the functions u,, can be approximated by periodic (with periodicity
%) step function in L2-topology.

Proof. Since (un) is a bounded sequence in L?(2), by the fundamental existence theorem
(See [12], Theorem 6.2), there exists a parametrized measure (called Young measure) associated
to sequence (uy) (if necessary passing to the subsequence, not relabeled). Let Q@ C 2 be
n-dimensional cube. For simplicity, put

Qs = (0,0)" = (0,8) x Q5, Q5= (0,0)""
Finally let ¢, be the characteristic function of (-1 — 7, —1 + 7), which is defined by

— 1, 1fs€( 1_77’_1+"])
onls) = { 0, otherwise.

Then we have for 7 € (0,1) and (z1,z') € R x R*71,

. )
/ gpnoumda:z/ d:c'/ Pn © Up dTy
Qs Q5 0

= 51Q5|(man + o(1))
= S1Q41((1 ~ 0)(1 ~ —3) +0(1)
= (1-0)IQs] +0(1)
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where o(1) = 0o as m — co. Since

li O Um aT = ” z .
im, [ onoumds /Q 5 | en@ duseras

m—00

by the property of Young measure, it follows that

IQ1_6| o pr(-1-n,-1+4+n)dz = (1-0).
Letting 6 — 0, we obtain
pz(-1-n,-14+n9)=1-0, ae inz €.
Since 0 < n < 1 is arbitrary, we have
pz({-1}) =1-6, ae. inz €.
Similarly we have u;({1}) = @ a.e. The proof is complete. O

Completion of Proof of Proposition 2.1. By Lemma 2.2, we have u,, — mg weakly in
L%(Q), and

W(um) = [ : W () dua(€)
— oW (1) + (1 — O)W(~1)
=0

weakly in L2(Q). Since K is compact on L?(Q), Kupy, — 72 strongly in L?(Q). Hence for large
m (by D; = m—lg),

€2 1
Iupy) = /n (?|Vum|2 + W(um)) dz + E(K(um —mg), Um — Mo)
-0
as m — 0o. We have proved Proposition 2.1. ]

Our next goal is the behavior of our solutions as ¢ tends to zero. We get some information of
global minimizers from the associated Young measure.

Theorem 2.1 As € — 0, any sequence of global minimizers (u.;) generates Young measure
b = (Uz)zen with

1+mg
2

_l—mo

Pz = 5 01+ 61 a.e. .

Proof. From I (u.) — 0, we have
li
E—

m/ W(us)dr =0, and lim(K(ue —mo),us —mg) =0.
0 N e—0 )

In particular u, is bounded in L2(2) and generates some Young measure  (if necessary, passing
to the subsequence). Hence we have

(2.7) /,, /_ : W) dps(N)dz = 0.
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(2.8) (K(u — mp),u — mg) =0,

o0
u:i= / Adpg(A)
—00
is the first moment of u. Since W > 0, (2.7) implies that
(0. 0]
(2.9) / W(A)duz(A) =0 ae. z.
—0Q0

Letting U, = {} € R; (A2 — 1)? > n} for n > 0, there holds infy, W > 0. By (2.9), pz(U;) =0
for any n > 0. Hence there exists a measurable function @ such that 0 <6 <1 and

pe = (1 —6(z))é-1 + 0(x)é;.

On the other hand, (2.8) implies that u(z) = my. Hence

mo = /°° Aps()) = 20(z) — 1.

—00
Therefore 6(z) = ﬂ°2+—1 The proof is complete. O
Remark 2-1. From this result we see that
(1) u, are internal layered solutions.
(2) The interface of solutions u, does not converge to any smooth (n —1) dimensional surface.

(3) The interfacial energy (proportional to the area of interface) tends to oco.

3 Existence of Periodic Solutions

In this section, we prove the existence of periodic stationary solutions of (1.1) when

Q=|J{s} x 2

seR

is a periodically undulating cylindrical domain. First we define the function space with periodic
structures. Denote by e;, ¢ = 1,2,...,n be a i-th unit vector and

QA ={0<z,<T}NQ,
where T > 0 is a number such that
Qs =8s, forallseR.
We consider the energy functional I, defined below on the space

H: (Q) = {u€ H..(Q); u(z + Te1) = u(z), ae. z €N}

per
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The functional I is defined by

2
(3.1) I.(u) = %/Q’ |Vul? d:z:-}-/QIW(u) dz + %/Q'(u—-mo)d)dx,

where W is the double-well potential and mg is the constant as defined in seciton 2, and ¥ is
the solution of

(—-A+Y)Y=u-mp inQ,
(32) ¥ € Hly(Q),
Neumann boundary condition on 9f2.

Let d. be the infimum of I,:

d.:= inf I.
*TElL@
By applying the direct method of the calculus of variations, d. is attained at a point u® €
ngr(Q). As in section 2, the global minimizer is not constant in case D; = ¢? is sufficiently
small. Moreover, letting 1° be the solution of (3.2) corresponding to u, we obtain the stationary
solution of (1.1) after the change of variables. Hence we have

Proposition 3.1 For sufficiently small ¢, the problem (1.1) has a nonconstant periodic station-
ary solutions (uc,ve) with ue € Hp ().

In particular, when 2 = R, we can choose T arbitrarily. Using algebraically independent numbers
T > 0, we obtain infinitely many solutions which do not become identically equal by translation.

Next we consider the lattice periodicity in higher dimendions. First we define the function
space with periodic structures. For each L € GL(n,R), let

;1
<< 3 fori=1,2,...,n}

N =

Q ={>_¢(Lei); -

i=1
be a unit lattice corresponding to L € GL(n,R). Defin the function space
H](R") = {u € HL (R™); u(z + Le;) = u(z), ae.,1 <i< n}.

and the functional E,

2

(3.3) E.(u) = E5—/ |Vu|? dz +/ W(u)dz + -1-/ (u — mo)y dz,
2 QL Qp 2 Q

where W and my is the same as in the definition of I, and v is the solution of

{ (-A+y)Y=u—mg inQy,

(3.4) periodic boundary condition on 89,

Let u° minimize E, on H}(R™). Moreover, letting v¢ be the solution of (3.4) corresponding to
uf, we obtain the spatially periodic stationary solution of

u = e*Au—W'(u)—v inR",
Tvp = Av+u—mo—vyv inR™
Remark 3-1. The solutions for n > 2 may be a trivial extension of the solution in one

dimensional space. However the results of the next section imply that various periodic solutions
can appear in higher dimension when parameters change.
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4 Limiting Problem

In this section, we consider the limiting problem, namely the problem obtained by letting
e — 0 in (2.5) or (3.3). The energy functional consists of three competing terms. The double-
well energy W (u) prefers the segregated states {u = 1} and {u = —1} to intermediate states.
The term €2|Vu|? is the interfacial energy which penalizes interfaces between such two states
and thus prefers large domains of a single state. The third term of I, is non local and represents
long range energy which does not become small if a single state cover all the domain. In order
to make the third term small, the ratio of domains of two states approaches (mg + 1)/2 and
oscillates rapidly around (mg + 1)/2. The effect of all three is to determine the optimal domain
size compromising these opposite tendencies. We are interested in the characterization of the
periodic structure of the global minimizer of the energy. We consider the geometrical pattern of
such two states in case phase separation is very strong. The singular limit of the energy consists
of two competeing terms: one is interfacial energy and the other non local long range energy.

Denote by M the space of the pairs of a function u and a matrix L € GL(n,R), ||L|| <1
which satisfy |u(z)| =1, u(z + Le;) = u(z), 1 <i < n, a.e. £ € R and ulg, € BV ().

Remark 4-1. This lattice periodicity includes the hexagonal structure in two space dimension.

Define the functional I} on M as follows: Let I'(u, L) be the average total variation per unit
volume:

I'(u,L) := lim

— Du
R—o0 IQRL| QgL | l’

and J(u, L) be the long-distance energy dencity:

J(u, L) := 1 (u — mo)y dz,
QL] Ja,

where 1 is the solution of (3.4). Let I(u) be the sum of $I'(u, L) and %J(u, L):

x _ O 1
I'=rI, = EF + —2-J,

where « is a small positive parameter.

Remark 4-2. This limiting problem has two interpretations as follows:
(i) One is that when || =1 and & = ape where o = \/if_ll v W (u) du is the interfacial energy
per unit area, I}, approximates (2.5).
(ii) The other is that using the rescaling function uz(y) := 4(z + Eéy)', for 4 € H'(Q) and some
z € 2, the quantity 8_%Ig(ﬂ)/|ﬂ| in (2.5) or (3.3) is approximated by I (uz).
In any cases, we do not consider low frequncy periodicity but confine ourselves to mesoscopic
scale. See also the observation in the last part of this section.

Fix L € GL(n,R). Then it is easy to show that the infimum of I} on

Mp ={u:R" > {+1,-1}; u(z + Le;) = u(z), a.e. 1 <i <,
ule, € BV ()}

is positive and attained at a pdint u; € Mjy. Indeed note that the embedding BV — L!is

compact and the function u — [, |Du| is lower semi-continuous with respect to L! convergence.

In fact, I* has a positive minimum not only on My, but also on M. (See Lemma 4.1 below.)
Note that for | det L| is very small, the functional J(u, L) is approximated by

1 LS |
Ju, L)  —— / u—m d:c) + — upp dx
( ) ,YIQLIQ ( QL( 0) |QL| 0, 1/)0
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where 1 is defined by

~Ay =u-— lﬁf fQL udz, in Qy,
(41) fQL 11’0 =0,
Periodic B.C.

Here for convenience, we define for (u,L) € M,

- 2
F(u) = Ba(w) == ST(w L) + 2’Y|1TL|2 ( /Q (u— mg)dx) + %Jo(u,L),

where

Jo(u,L) :== —

and g is the solution of (4.1). Then

Theorem 4.1 I* has a positive minimum on M and
n};nf; > min I > 0.

Proof. It suffices to show that infoq I > 0. Assume by contradiction that infa, ff = 0.
Let (ug,Li) be a minimizing sequence. Since ||Li|loo is bounded, there exists a convergent
subsequence (not relabelled). Let Ly := limg_,oo Lx. We claim that det Ly # 0. In fact,
limg 00 J(uk, Lx) = O implies that

1
IQLkl QLk

On the other hand, by limj_, I'(u, L) = 0, we have

1
IQLI:I QL,‘

ugdr — mg| — 0.

| Dug| — 0.

‘By the isoperimetric inequality, limg_,o |21, | = 0 deduces
1
12,0 Ja,,
which is the desired contradiction. Thus Ly € GL(n, R).
Since ui is bounded in BVj,c, we may assume that up — wup strongly in Llloc, and hence

pointwise almost everywhere. Hence we get (ug,Lo) € M. Moreover since I' is lower semi-
continuous and J is continuous with respect to L! convergence, we obtain

|Dug| — oo.

n}inI; = I (ug) > 0.
The proof is complete. O

Now we proceed to the comparison of minimal energy of one dimensional pattern and two
dimensional one. We will show that in some parameter region, the minimal energy is not attained
at the configuration of one dimension.

Definition. For each n, a, myg, let d;, = d},(a, mp) = minp I*. a

We can regard n; dimensional pattern as a subset of n, dimensional pattern by the natural
inclusion for n; < nga. Our goal is to show the following:
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Theorem 4.2 For mq sufficiently close to —1, there holds the strict inequality di > d5. That
is, two dimensional global minimizer does not have the lamellar structure.

This theorem follows from Propositions 4.1 and 4.2 below. The proofs of Proposition 4.1 and
4.2 suggests that for mg ~ —1, there exists a two dimensional configuration of droplets whose
energy is less than one dimensional pattern.

Proposition 4.1 Let L = diag[l,1,...,1],l > 0 be an diagonal matriz and (u, L) € M. Assume
that u depends only on x, (that is, u has one dimensional structure). Then ‘

I5(u) > min {%(qs_ 9)? + %ag (%)% (3¢)%}’

0<¢<1/2
where 0 := (mg +1)/2 and ¢, = (42:—;?42_—7

Proof. In order to prove Proposition 4.1, it is sufficient to consider the case n = 1. Let
u: R — {£1} be one dimensional periodic function with u(z +1) = u(z),0 <l <1lae. z €R
Put } fé uwdz := 2¢ — 1. Without loss of generality, we may assume that ¢ € [0,1/2]. Since the

second eigenvalue of —gg acting on H}(0,1) is (¥£)? > (2m)2, we have

4¢-0)?  _ (2m)°

T, 1) 2 (2m)2 +

+ Jo(u,l).
,yo( )

Thus we estimate

[\

Iiw) > 2(¢ - 02 + ST, 1) + FJo(w,)

l2
(6= 6)° + 2. (ur, 1) + -Jo(ur, 1)

RSN TR

> 2(6-0)"+ 322a%(cv)%F(uz,1)%-70(111,1)%,

where u(z) := u(lz). Let 0 < z; < 2 < --- < zy < 1 be the discontinuity points of in the
interval (0,1). Then I'(u;,1) > N. Letting 9 be the solution of

- =u — (26 - 1),
{ $(0) = p(1),¥(0) = (1),
Jo (@) dz =0,

we have
1 1
Jo(ur, 1) = /0 $u — (26 — 1)) dz = /O W (2))? da.

To establish the lower bound for Jo(uy, 1), we show the following:

Lemma 4.1 Letw: [0,1] = R be a piecewise linear function such that u'(x) is constant on each
interval (z;,2;4) and takes either ¢1 or ¢2, where 0 = 29 < 21 < --- < zy < zZy41 =1 and
¢1,02 € R. Then '

1
1
/0 u?dz > o min{g}, 63H(V + 1) 7%
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Proof. Assume that u'(z) = ¢, for z; < z < z;41. Then

[ 2y - e ¥ ) &

4 ($i+1 - mi) + 1—;(13141 - xi)3-

Summing over i, we get

1 1 . N
/ u’dz > ﬁmm{ﬁ,fﬁ%} Y (@ivr — z:)°

0 i=0
1 (a2 42
> — .
= 12(N + 1)2 mln{¢1a ¢2}
Here in the second inequality we used the Jensen’s inequality. a

Applying Lemma, 4.1 to 9, we have
¢2
Jo('ll[,l) 2> ?(N+ 1)—2’
hence
2 1/ N \} 3¢\ 3
* o _ 2 - 2 1 il
rw>2e-0r+ 3 () ot (B2),

which proves Proposition 4.1. O
Next we consider the two dimensional pattern.

Proposition 4.2 There erists a positive constant Cy such that for any ¢ € [0,1/2), there exist
L € GL(2,R) and a function @, € H} (R?) such that (u,L) € M and

- 2 1 1
Iiis) < S(9- 8)? + 303 (Co)3 ¢| log ¢|3

for 8'03 < ¢%| log ¢|. Here 0 is the constant defined in Proposition 4.1.

Proof. For ¢ € [0,1/2], let ug : R2 - {£1} be the function such that

— )1, (z1,z2) €(N+ l—ﬂ,N + 1+3/$)2f0r some integer N,
up(@1,72) = —1, otherwise
b

It is easily seen that (ug,id) € M (id is unit matrix), I"(ug,id) = 44/¢. There holds
/ updr =2¢6—-1, Q=(0,1)2
Q

If ¢ =0, then ug = const. and f;(uo) = $(¢ — 0)%. Hence we assume ¢ > 0 and give an upper
bound for Jo(ug,%d). The function ug4 has the following Fourier expansion:

n'n37r2 sin(nm(1 + /) sin(mn(1 + v/¢))

X €cOs 2nmI] - COS 2Mmmzs.

ug(e1,22) = (26— 1) + )

Here the summation means summing over

A:={(n,m) € Z%;n,m =0,1,..., (n,m) # (0,0)}.
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Hence we calculate

1 4sin?nw(1 + /@) sin> mn(1 + V@)

Jolug, id) = 42 (n? + m?) n2mint
_ Z 1 4sin®(nm+/@) sin? m7r\/_)
T 4~ 472(n? + m?) n2m2x4

Let

1 1
= M 2<——— 2<——
A ={(n,m)eA;n _¢ ,m _¢7r2}’

Ay = {(n,m) € A; n? >¢—2—,m _;S%},
Az ={(n,m) € A; n® <F,m >¢:r2}’
A4={(nm)€A n? >$—2,m > :;_2}

Then we estimate

Zsm 2(nmy/¢) sin? m7r\/_) Z (nmv/ )2 (mm/@)

(n? + m?)n2m? < (n2 + m2)n2m?
1

< Z —+ 3 < C¢lloggl,

and

sin?(nm/@) sin?(mm/9) (mm\/)?
> <27

n (n? + m2)n2m? n2 + m?2)n2m?2
2

w2¢
<
<D 3 <
Az
Since there hold the same estimates for summing over Az, Ay, there exists a positive constant
Co such that
Jo(ug,id) < Cog?*|log ¢|.
Finally putting @4(z) = ug(g), R = (C—OI{"Og—q,[)%qS_%, we have
R 2 2 1 1
I5(ig) < ;(‘ﬁ — 0)? + 305 (Co) 39| log 3.
The proof is complete. X a

Finally we consider the limit case ||L||oo is small. Namely, neglecting low frequency mode, we
get scaling law of the energy. A universal constant appearing in the limiting problem characterize
the principal part of the asymptotic expansion of minimal energy as ¢ — 0 and hence the
geometrical pattern of the global minimizer of (2.5).
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Lemma 4.2 There erists a positive constant d > 0 depending only on n such that

inf (o' + Jo) = 2aid,
Ameg

where Amy = {u € My ; L € GL(n,R), ;1 Jo, udz = me}.

Proof.  We note that if (u, L) € Am,, then we have (ug, RL) € Am,, where ug(z) = u(
R > 0 and there holds

s

al(ug, RL) + Jo(ug, RL) = %F(u, L)+ R%Jy(u, L).

In particular, for R = a%,

al'(ug, RL) + Jo(ug, RL) = o I?(u, L),
hence we obtain
inf (ol + Jo) = a3 inf (I + J).
Amg Amg

It remains to show that inf4,, (I"+ Jo) > 0. Assume by contradiction that inf Amo (I + Jo) = 0.
Let (ux,Lk) be a minimizing sequence. Then

3
0< 22/3F(ukaLk)3J0(“kaLk)3 < I'u, Li) + Jo(uk, L) =
We claim that there exists a sequence (vg, Lo) such that

(4.2) vk, Lo)3 Jo(vk, Lo)§ — 0

Indeed, noting that the quantity FgJo% is invariant under the scaling transformation u
ugr(z) := u(%), we may assume that Ly is convergent. Moreover as in the proof of Lemma
4.1, we have Lg := limy_,o, Ly € GL(n,R).

Let 0 = Ao < A; < ... be the eigenvalues of —A on L?(;,,) with periodic boundary condition.
Now we apply the following lemma:

Lemma 4.3 ([1], Lemma 2.3) Let u € BV (1,), |u| < 1. Then there ezists a constant ¢; > 0
such that for all positive integers N,

N_/ |Du|+me{ }lu,|2>c1
i=1
where i; denotes the it Fourier coefficient of u.

The proof of the above lemma is very similar to that of [1]. We omit the details. Let Nj be a
positive integer such that 2 o (vk, Lo) < Ng < —-I'(vk, Ly) + 1. Then we have

1

—/ | Dvg| < —I-F(vk,Lo) < c—l
Nk Jay,

me {1 N—} l'vk ,|2 < NkJO('Uk,LO) -0

=1
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as k — oco. In the second inequality, we used (4.2). This is a desired contradiction. The proof
is complete. O
Observation. Our ansatz of the global minimizer of (3.3) is as follows: global minimizers have

the mesoscopic scale fine strlzlcture such that the average wave length is of order e3 and the
minimial energy is of order £3. More presicely,

2
d; =e3(afd+0(1))|Q], ase—0,

where ag = V2 f_ll /W (u) du is the interfacial energy per unit area.
Remark 4-3. Theabove estimate may also holds in case Neumann Boundary Problem (2.5).

5 Stability of Local Minimizers

Throughout this section, © is a bounded domain in R™ or Qf, in section 3. Consider the
linearized equation about the stationary solution (u,v):

() DiAp+ f'(u)p - = X,
DoAY+ ¢ — vy = TAYP.

In this section, we denote by u, v the solution of the original equation (1.1) or (1.2), by I the
associated functional

I(u) := %/ﬂWuFdx—/QF(u) d$+g(Ku,u),

where F(u) := [’ f(v) dv is a primitive of f and K = (—-D2A +v)~! with Neumann or periodic
boundary condition. Note that by the linear transformation of u, the set of minimizers of I
maps one to one and onto those of I (with the trivial change of parameters). The goal of this
section is to show the following stability result:

Proposition 5.1 Assume that u is a local minimizer of I and 76 < 7%. Then the spectrum of
(P) lies in the stable region.

In order to consider the spectrum of the linear operator, we denote by the notation (-, -) the
complex inner product on the complex extended Hilbert space L?, that is,

(u,v) = / u(z)v(z) dz.
Q
Let T denote the linear operator on (L?(2))? defined by

T(®) = (D1A¢ + f'(u)¢ ~ K1, 7 (D2A% + ¢ — 19))

for ® = (¢,1). Denote by Xp, X, X, the point spectrum, the continuous spectrum, and the
residual spectrum of T respectively. Let ¥ := ¥, U X, U X, be the spectrum of (P). Let

Suppose A € N is an eigenvalue of (P) with eigenfunction (¢,%). Since ¢ = (—D2A + (v +
7)) "1, we have Lr¢ = A¢, where

Ly =DiA+ f'(u) — k(=D2A + (v +TA)) L.
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Lemma 5.1 (1) If A € NN, then there holds either

(a) A is an eigenvalue of Ly or

(b) X is an eigenvalue of L.
(2) Assume 76 < 4%. Then TN {¢ € C; Re(¢) > max{—bTE,f’(O)}} consists of real
numbers.

Proof. (1) First, if A € £, U £, then we have sequences ¢, ¥k, fk,gx € L?(Q) such that

D1A¢k + f'(u)dr — K9k = A + [
DAy + . — Y = TAYk + gk
lpkllze + Ikl =1
| fkllz2, llgkllLz = 0, & — oo

Since ¥k = (—A + v + TA) "} (dk — gk), it follows that ||¢|| .2 is bounded away from 0, that is,
liminf ||¢g||L2 > 0
k—o00
Indeed,

1 <|lgkliz + Clidk — gkll L2
< CligkllLz + o(1),

where o(1) — 0 as £k = 0. On the other hand, we have

(5.1) Ladk — Ak = fr = K(~=Dal + v+ 72)7'gx 0
as k — oo. Since
D1A¢k + f'(0)
is bounded in L?(f2), we may assume that ¢y — ¢ € H'(Q), weakly in H!(R), ¢x — ¢ strongly
in L% (Q), and

9'(u)k = 20 :=g'(u)¢
where g(u) := f(u) — f'(0)u. From (5.1), it follows that B¢ — A — —2zp, where

By := D1A+ f'(0) — k(—=D2A + v+ 7A) "L
Since A € o(B)) by Re A > f/(0), we see that ¢y — —(Bx — A) ~12. Therefore
Brg — A = —2 = —g'(u)¢

Hence ) is an eigenvalue of £, with an eigenfunction ¢.
Next if A € X,, then we have

(D1A¢ + f'(u)¢ — K9 — A, ) + (D2AY + ¢ — v¢p — 7Y, 9) = 0
lgllz2 + llblle =1
(¢, D1A¢ + f'(u)é — X +9) + (4, D2AP — rp — v — 7AF) =0
This implies that ¢, € H 2(Q2) and @, ¥ solves the system of linear equations:
Di1AG + f'(u) - Xé+9 =0,
DoAY — k¢ — v — AP = 0.
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Using the inverse operator, we summarize the equation into Exqﬁ = X¢. Since ||@|l 2 # 0, this
means that X is an eigenvalue of Ly, with an eigenfunction é.
(2) It suffices to show that if A € C is an eigenvalue of £, with Re X > max{—'b,rﬁ, f(0)},

then ) is real. Let A = z + iy be an eigenvalue of £, such that z > ma.x{—:’%@, f(0)}, y €R,
and let ¢ be an eigenfunction corresponding to A satisfying ||¢||z2 = 1. Then there holds

lyl = [Im (Lx6, $)|

= & |Im | md(E@W,@

_. [ Tlyl

= [ Gt e AEO69
® Tyl

<n [F S dEE 9
TK

< miyl

As (v + 7z)? > 7K, we have y = 0. The proof is complete. 0

Now we consider Ly for A € I := (—1,00). In this case, we see that £, is a self-adjoint
operator. Moreover, for any A € I, there holds

(Lr¢, ) < sup f'(u(z)) :=d
€N

for all ¢ € H'(Q) with ||@|| 2 = 1. It follows that the spectrum of L lies in
{CeR; (< d}

with a uniform constant d. By applying the perturbation theory of linear operators, we can
easily deduce that o(£y) N N consists of eigenvalues with finite muliplicities. (See [4, Theorem
5.35].) Denote by h(A) the maximum value of o(L£,) which is characterized as

(5.2) h(A) = max (Li$,¢) <d

li¢ll,2=1
Lemma 5.2 (1) If X €I is an eigenvalue of Ly, then A < h(\) and X is an eigenvalue of (P).
(2) If X €I, A= h(A), then X is an eigenvalue of (P).

Proof. The first statement of (1) is an easy consequence of the definition of h()A). The second
statement of (1) is trivial. (2) follows from the variational characterization of eigenvalues. We
omit the details. o

Let E(€) be spectral resolution associated to —A with Neumann boundary condition. Then
there holds

1

(5-3) (DA +y+70)7'¢,¢) = Do Ty 1A

d(E(£)¢, 8)-
Lemma 5.3 (1) h(0) <0.
(2) The function h : I — R is non-decreasing and locally szshztz contmuous Furthermore the

local Lipshitz constant of h at X € I is less than or equal to — 55 BT +TA) .
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Proof. (1) Since u is a local minimizer of I,

(Lod, ) = —D1/ IV¢|? do +/ f'(w)¢* dz — K((=D2A +7) "' ¢, )
Q Q
= -I"(u)(¢,¢4) <0

for any ¢ € H!(Q2). Hence we have h(0) <0.
(2) For Ay < Ag, there holds

— 2 ! 2 _ *° 1
end. ) =-D1 [ [VoPdo+ | f6 - [ g d(B0.0)

<-D1 [[[VePdo+ [ F)st—r [ e d(E 0,0
< h(X2)

for any ¢ with ||¢||;2 = 1. Hence we have h(\;) < h(A2). Now if ¢2 is an eigenfunction with
ll#2]l12 = 1 corresponding to h(A2), we have

— _ 2 ! 2 _ *° 1
h0w) = =Ds [ [Vl da+ [ 18— [~ G dB(E )

l 2 ! 2 * 1
hon) 2 =Dy [ IVaaldo+ [ P —r [ G d(B(O02, 00

Hence for some A € (A1, A2),

oo 1 1
-h < - d(E
w00 -h0n) <5 [ (o - Do o) AE©6 60

o0 T()\z - )\1)

= d(E ,

“ | oy B2 )

KT

< eme——=(A2-A

< (’Y+T)\)2( 2 — A1)

Therefore, h is locally Lipshitz continuous. ‘ a

Lemma 5.4 Assume 7k < y2. Then there holds h()\) < X for all A > 0.
Proof. From Lemma 5.3, we have for A > 0,

h(A) < h(0)+';—;/\ < ’;—Z,\ <A

as desired. . 0

Lemma 5.5 There holds £ C {0} U {¢; Re{ < a} for some a < 0. If, in addition, h(0) < 0,
then © C {¢; Re¢ < a}.

Proof. Let 8 = max{-—l_%rﬂ,f’(())} <0. If X € TN {Re( > B}, then from Lemma 5.1, A
is real and hence an eigenvalue of £5. By Lemma 5.2 (1) and 5.4, we have A < 0. Moreover,
from Lemma 5.2 (1), A is an eigenvalue of (P) with finite multiplicity. Since T — { is semi-
Fredholm operator for Re (¢) > 3, The number X € (3,0] is not in the essential spectrum of T
and hence is isolated in . Therefore noting that{{; Re{ > B}\(8,0] C p(T'), there exist finite
numbers 0 > \; > ... A\,; > B which are eigenvalues of T with finite algebraic multiplicity and
T c {¢;Re¢ < BYU{A1,...,Am}. If, in addition, h(0) < O, then we have \; < 0. The proof is
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