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This article proposes anew scheme for MEG data analysis. For readers who
are not familiar with MEG, we have provided preliminary descriptions on MEG
analysis and discrete inverse problems. If MEG is familiar, they can skip over to
section 1directly.

MEG Analysis

Magnetic fields are measured from several parts of the human body; heart,
lever, and langs. But the brain also radiates them because of the neuron cur-
rents inside as aresult of its activities. They are rather weak, but the recent
progess of device, called SQUID (superconducting quantum interference de-
vice) following its mechanism, makes it possible to measure them. It is based
on the quantization of magnetic flux densities and Josephson tunneling, both
of which occur in the range of low temperatures. Now they are being applied
to cerebral physiology, psychology, linguistics, clinical medicine, and so forth.
(See Ilmoniemi [11].)

More than 100 SQUID sensors, called channels, are arranged in ahelmet-
shape array to cover the human head. At each channel, one component of the
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magnetic field is measured. As aresult of the activities of neurons, magnetic
fields arise outside the brain and are taken inpulsively as data. On the other
hand, detailed shape of the brain of the testee is investigated in advance in
use of MRI (magnetic resonance image). Then, the data analysis is made to
decide locations and moments of neuron currents inside. Such aresearch is
called the magnetoencephalography, or $MEG$ in short. Theoretical foundation
was given by Sarvas [13] based on the integral equation due to Geselowitz [5]
and Geselowitz and Grynszpan [6].

Direct problem is formulated as follows. First, Maxwell’s equation con-
trols the total current density $J$ and the magnetic field $B$ in such away
as

$\nabla\cdot B=0$ and $\nabla\cross B=\mu_{0}J$. (1)

Here, the state is supposed to be quasi-statistic and permeability inside the
brain is put to be equal to that in the vaccume. We have $\mu_{0}=4\pi/c$ with
the velocity $c$ of light. The operation $\nabla$ denotes the gradient and the inner
and the outer products in $\mathrm{R}^{3}$ are written as . and $\cross$ , respectively.

Total current density has the form

$J=J^{p}-\sigma(x)\nabla V$

with $J^{p}(x)$ and $E=-\nabla V(x)$ standing for the neuron current mentioned
above and the electric field caused by it, respectively. Sometimes $J^{p}$ is called
the primary current, md $-\sigma(x)\nabla V$ the secondary one. The brain in consid-
eration is denoted by abounded domain $\Omega\subset \mathrm{R}^{3}$ with smooth boundary $\partial\Omega$ .
We suppose that $J^{p}(x)$ is asmooth vector field on $\prod$, with null normal com-
ponent on $\partial\Omega$ and put $J^{p}(x)=0$ outside $\overline{\Omega}$. The conductivity is supposed
to have the form

$\sigma(x)=\{$
$\sigma_{I}$ $(x\in\Omega)$

$\sigma_{O}$ $(x \in\prod^{\mathrm{c}})$ ,

where $ajo$ are non-negative constants, and $V(x)$ is apiecewise smooth con-
tinuous function in $\mathrm{R}^{3}$ .

In 1970, Geselowitz [5] asserted that then

$B(x)= \frac{\mu_{0}}{4\pi}\int_{\Omega}J^{p}(y)\cross\frac{x-y}{|x-y|^{3}}dy-\frac{\mu_{0}}{4\pi}(\sigma_{I}-\sigma_{O})\int_{\partial\Omega}V(y)n_{y}\cross\frac{x-y}{|x-y|^{3}}dS_{y}$

(2)
follows for $x\in$. $\overline{\Omega}^{\mathrm{c}}$, where the unit normal vector $n=n_{y}$ is taken to be
outer from O. Also Geselowitz and Grynszpan [6] said that if $\Omega$ is aball and
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$\sigma_{O}=0$ , then it holds that

$B(x)$ $=\mu_{0}\nabla U(x)$

$U(x)$ $=$ $\frac{1}{4\pi}\int_{\Omega}\frac{J^{p}(y)\cross y}{|x-y|(|x||x-y|+x\cdot(x-y))}dy\cdot x$ (3)

for $x\in\overline{\Omega}^{c}$ . Equality (2) is called the Geselowitz equation, and system (3)
the spherical model.

The MEG analysis of [13] assumes the spherical model and also the pri-
mary current $J^{p}(x)$ to be acombination of dipoles such as

$J^{p}(x)= \sum_{i=1}^{m}Q:\delta(x-a:)$ , (4)

where $a_{i}\in\Omega$ and $Q_{i}\in \mathrm{R}^{3}$ denote the position and the moment of adipole,
respectively. Then (3) is written as

$U(x)= \frac{1}{4\pi}\sum_{i=1}^{m}\frac{Q_{i}\mathrm{x}a_{i}\cdot x}{|x-a_{i}|(|x||x-a_{i}|+x\cdot(x-a_{i}))}$ . (5)

Unknown parameters $\{a_{i}, Q_{i}\}$ are so determined as to adjust with discretely
measured values of $\{n\cdot B\}$ on ac in way of the method of least square
approximation denoted by $LSA$ .

Relation (4) is called the dipole hypothesis. Examining its validity is
beyond mathematics, but is widely accepted as areaction of the brain to a
limited number of stimulations. Actually, asingle dipole fits the real data of
magnetic fields taken under one stimulation quite well. More precisely, if one
takes asphere close to the brain based on MRI analysis and gives periodic
stimulations to one point of the testee’s body, then the observed data are
traced very precisely by the assumed magnetic field $B(x)=\mu_{0}\nabla U(x)$ , where
$U(x)$ has the form (5) with $N=1$ . (See [11].) It fits also the functional brain
mapping by Penfield and others. Since the system is supposed to be linear,
super-position of dipoles as in (4) will be realistic for more general situations.
It is of course arough model of the functional brain. For example, with
latencies of roughly lOOms after median nerve stimulation, several distinct
brain areas can be simultaneously active.

However, relation between the numbers of assumed dipoles and that of
channels leads LSA to be under- or over- determined exclusively, of which
difficulties are essentially different. Furthermore, the sphere may not be a

31



good approximation of the shape of head. In this connection, Fokas and
Kurylev [4] and Fokas, GeFfand, and Kurylev [3] made use of the method
of regularization instead of assuming dipole hypothesis. See also H\"am\"ainen
and Ilmoniemi [7] and Dale and Sereno [2]. On the other hand, it has been
reported that the global least-square solutions of multi-dipole models are
obtained with suitable methods. See, for example, [17] and [10].

Discrete Inverse Problems

One can summarize that the discrete inverse problem takes regards to
the finiteness and the error in the observing process, while the unknown are
restricted to afinite number of parameters. In the context of MEG, if the
number of prescribed dipoles and that of observed data are balanced, then it
becomes generically well-posed. However, even under the dipole hypothesis,
the number of dipoles is preferably to be left unknown. The data observed
at many channels are also to be used efficiently. Here, we develop ageneral
theory of the discrete inverse problem from those points of view.

Let $\varphi:\mathrm{R}^{n}arrow \mathrm{R}^{m}$ be anonlinear $C^{2,1}$ mapping, representing

physical law $\cross \mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$

and $z\in \mathcal{R}^{m}$ the measured value with errors permitted. Then the discrete
inverse problem is so formulated as to find $x\in \mathrm{R}^{n}$ satisfying $\varphi(x)=z$ , of
which solution is called the strict solution. Note that it is over-determined
and under-determined according to $n<m$ and $n>m$ , respectively.

In the over-determined case, the strict solution is hard to obtain; the
discrete inverse problem is reformulated as the least square problem to find
$x\in \mathrm{R}^{n}$ satisfying $J(x)=j$ , where $J(x)= \frac{1}{2}(\mathrm{p}(\mathrm{x})-z||^{2}$ and $j= \inf_{\mathrm{R}^{n}}J$.
Its solution is called the least square solution, but practicaUy one can examine
its local minimality only. Any local minimum is regarded as aleast square
solution and sometimes is not unique. If $J(x)$ is satisfactorily small, one
says that $x$ has ahigh accuracy. Aparticular least square solution has to
be selected, regarded with apriori informations and accuracies. We say that
the least square problem is quasi-identifiable if any local minumum of $J$ is
isolated. This allows one to compute and select one of them as adesirable
solution.

Acriterion for quasi-identifiability is high-accuracy and rank condition.
The latter means that $\varphi’(x_{0})^{*}\varphi’(x_{0})$ : $\mathrm{R}^{n}arrow \mathrm{R}^{n}$ is non-singular, where $*$

denotes the transpose of the matrix. More precisely, the existence of $x_{0}\in \mathrm{R}^{n}$
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provided with the properties of high-accuracy and rank condition assures
the quasi-identifiability in its neighbourhood. Because the rank condition
is generically holds by $n<m$ , only high-accuracy is to be examined in the
over-determined case. If high-accuracy is achieved in MEG data analysis for
many channels and very few prescribed dipoles, then it assures the valdity
of dipole hypothesis mathematically.

We have the following theorem, where $B_{r}(x_{0})=\{x\in \mathrm{R}^{n}||x-x_{0}|<r\}$ ,
$||G||_{L^{\infty}(B_{r}(x_{0}))}= \sup_{x\in B_{r}(x_{0})}|G(x)|$ , and

$[G]_{L\dot{\iota}p(B_{r}(x_{0}))}= \sup_{x\neq y,x,y\in B_{r}(x\mathrm{o})}\frac{|G(x)-G(y)|}{|x-y|}$.

Theorem 1Given $C_{0}$ , $C_{1}>0$ , we have $r>0$ and $\delta>0$ such that if there
is $x_{0}\in \mathrm{R}^{n}$ satisfying $\sup_{x\in B_{3r}(x_{\mathrm{O}})}||[\varphi’(x)^{*}\varphi’(x)]^{-1}||\leq C_{0}$ ,

$||\varphi’||_{L^{\infty}(B_{2r}(x\mathrm{o}))}+||\varphi’||_{L^{\infty}(B_{3r}(x\mathrm{o}))}+[\varphi’]_{Lp(B_{2r}(x_{0}))}.\cdot\leq C_{1}$,

and $\sup_{x\in B_{3r}(x\mathrm{o})}||\varphi(x)-z||<\delta$ , then $\inf_{B_{r}(x_{0})}J$ is attained by a unique
element of $B_{r}(x_{0})$ .

Proof: We have

$\frac{d}{dt}J(x+ty)|_{t=0}=\langle\varphi’(x)y, \varphi(x)-z\rangle$

and hence $x\in \mathrm{R}^{n}$ is acritical point of $J$ if and only if

$\varphi’(x)^{*}\varphi(x)=\varphi’(x)^{*}z$ (6)

holds. We also have

$\frac{d^{2}}{dt^{2}}J(x+ty)|_{t=0}$ $=$ $\langle[\varphi’(x)y]y, \varphi(x)-z\rangle+\langle\varphi’(x)y, \varphi’(x)y\rangle$ (7)

$\geq$ $(C_{0}^{-1}-\delta C_{1})|y|^{2}$

for $x\in B_{3r}(x_{0})$ and hence any critical point of $J$ in $B_{3r}(x_{0})$ is anon-
degenerate local minimum in the case of $\delta$ $\in(0, C_{0}^{-1}C_{1}^{-1})$ . We show that
$x\in\overline{B_{2r}(x_{0})}$ satisfying (6) exists uniquely and is contained in $B_{r}(x_{0})$ if 6, $r>0$
are sufficiently small. Then the conclusion follows
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For this purpose, we note that the mean value theorem implies

$\varphi(x)=\varphi(x_{0})+\varphi’(x_{0})(x-x_{0})+R(x)$

with
$R(x)= \frac{1}{2}[\varphi’’(x_{1})(x-x_{0})](x-x_{0})$ ,

where $x_{1}\in[x,x_{0}]$ . This gives

$||R||_{L(B_{2r}(x_{0}))}\infty\leq 2||\varphi’||_{L^{\infty}(B_{2r}(x_{0}))}r^{2}$

and
$[R]_{L}|.p(B_{2r}(x_{0}))\leq 2[\varphi’]_{L}|.p(B_{2r}(x_{0})r^{2}+2||\varphi’||_{L}\infty(B_{2r}(x_{0}))r$

by asimple calculation. Similarly, we have

$\varphi’(x)^{*}=\varphi’(x_{0})^{*}+E$

with
$||E||_{\iota\infty(B_{2r}(x_{0}))}\leq 2||\varphi’||_{L(B_{2r}(x_{0})}\infty r$

and
$[E]_{Lp(B_{2r}(x_{0}))}|.\leq 2[\varphi’]_{L_{\dot{1}}p(B_{2r}(x_{0})}r+||\varphi’||_{L(B_{2r}(x_{0}))}\infty$ .

We see that (6) is equivalent to $x=x_{0}+\Phi(x)$ , where

$\Phi(x)=[\varphi’(x_{0})^{*}\varphi’(x_{0})]^{-1}$

. $(\varphi’(x)^{*}(z-\varphi(x_{0}))-\varphi’(x)^{*}R-E\varphi’(x_{0})(x-x_{0}))$ .

Here we have

$||\Phi||_{L^{\infty}(B_{2r}(x_{0}))}\leq C_{0}C_{1}(\delta+||R||_{L^{\infty}(B_{2r}(x\mathrm{o}))}+||E||_{L(B_{2r}(x_{0}))}\infty 2r)$

and

$[\Phi]_{L_{1}p(B_{2r}(x_{0}))}\cdot\leq C_{0}[\varphi’]_{L_{\dot{1}}p(B_{2r}(x_{0}))}(\delta+||R||_{L^{\infty}(B_{2r}(x_{0}))})$

$+C_{0}||\varphi’||_{L^{\infty}(B_{2r}(x_{0}))}[R]_{L_{\dot{l}}p(B_{2r}(x_{0}))}$

$+C_{0}C_{1}([E]_{Lp(B_{2r}(x_{0}))}|.2r+||E||_{L^{\infty}(B_{2r}(x_{\mathrm{O}}))})$ .

Therefore, if 6, r $>0$ are small, $\Phi$ is acontraction mapping on $\overline{B_{2r}(x_{0})}$ .
Furthermore, $\Phi(\overline{B_{2r}(x_{0})})\subset B_{r}(x_{0})$ is achieved, and the proof is complet
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1Introduction
Usual MEG data analysis in use of SQUID is based on Sarvas [13]. It adopts
the spherical model of Geselowitz and Grynszpan [6]. If the state is quasi-
static and the permeability inside the brain is equal to that in vaccume, then
Maxwell’s equation controls the total current density $J$ and the magnetic
field $B$ in such away as

$\nabla$ . B $=0$ and $\nabla\cross B=\mu_{0}J$, (8)

where $\mu_{0}=4\pi/c$ with the velocity $c$ of light. Here, $J$ has the form

$J=J^{p}-\sigma(x)\nabla V$

with $J^{p}(x)$ and $E=-\nabla V(x)$ standing for the neuron current and the electric
field caused by it, respectively. Conductivity is supposed to be

$\sigma(x)=\{$
$\sigma_{I}$ $(x\in\Omega)$

$\sigma_{O}$
$(x\in\overline{\Omega}^{\mathrm{c}})$ ,

where $\sigma_{IO}$ are non-negative constants. Then, in way of the Geselowitz equa-
tion [5], it follows that

$B(x)$ $=\mu_{0}\nabla U(x)$

$U(x)$ $=$ $\frac{1}{4\pi}\int_{\Omega}\frac{J^{p}(y)\cross y}{|x-y|(|x||x-y|+x\cdot(x-y))}dy\cdot x$

for $x\in\overline{\Omega}^{c}$ , if $\Omega$ is aball and $\sigma_{O}=0$ . Sarvas [13] assumes also the dipole
hypothesis so that the primary current $J^{p}(x)$ is put to be

$J^{p}(x)= \sum_{i=1}^{m}Q_{i}\delta(x-a_{i})$ , (9)

where $a_{i}\in\Omega$ and $Q_{i}\in \mathrm{R}^{3}$ denote the position and the moment of adipole,
respectively. This implies

$U(x)= \frac{1}{4\pi}\dot{.}\sum_{=1}^{m}\frac{Q_{i}\mathrm{x}a_{i}\cdot x}{|x-a_{i}|(|x||x-a_{i}|+x\cdot(x-a_{i}))}$

and unknown parameters $\{a_{i}, Q_{i}\}$ are so determined as to adjust with dis-
cretely measured values of $\{n\cdot B\}$ on $\partial\Omega$ through the method of least squar
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approximation, where $n$ denotes the outer unit normal vector. Usually, the
number of observed data is much more than that of prescribed dipoles and
the problem formulated in this way is over-determined. If high-accuracy is
achieved by aset of dipoles, then generically there is aunique local minimum
near by it.

Our motivation lies in the following questions. First, ball may not be a
good approximation of the shape of brain. In that case, how is the secondary
$\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{t}-\sigma(x)\nabla V$ to be picked up ? Second, what is to be done if the primary
current can not be suspected to be one or two dipoles ? This case occurs
when the primary current is distributed in awide area, or when the number
of dipoles is not prescribed although it is assumed to be finite.

2Current Element Distribution
To treat those problems, we observe that if $J(x)$ is single dipole $Q_{k}\delta(x-a_{k})$ ,
then it produces the magnetic field

$\frac{\mu Q_{k}\cross(x-a_{k})}{4\pi|x-a_{k}|^{3}}$ .

Actualy, we have

$\nabla\cross(\frac{Q\cross(x-a)}{4\pi|x-a|^{3}})=Q\delta(x-a)$ and $\nabla\cdot(\frac{Q\cross(x-a)}{4\pi|x-a|^{3}})=0$

and hence $\mathrm{R}_{4\pi|x-a|}^{Q\mathrm{x}x-a}$ is afundamental solution. We regard $Q_{k}\delta(x-a_{k})$ as a
current element Alot of elements distributed in $\Omega$ may be able to $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

the total current density $J(x)$ . On the other hand, if one takes the spherical
model and $\nu_{j}$ is normal to $\partial\Omega$ , then the data $B(x_{j})\cdot$ $\nu_{j}’ \mathrm{s}$ produced by $J^{p}(x)$

and $J(x)$ are the same, because

$[ \nabla(\frac{Q\mathrm{x}a\cdot x}{|x-a|(|x||x-a|+x\cdot(x-a))})]\cdot n=\frac{Q\cross(x-a)}{|x-a|^{3}}\cdot n$

holds if $\Omega$ $=\{x\in \mathrm{R}^{3}||x|<1\}$ . Therefore, if $\Omega$ is close to aball and almost
normal components of the magnetic field are observed, then one can also

$\mathrm{r}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{r}\mathrm{e}\wedge\backslash$ for those elements to recover the primary current $J^{p}(x)$ in the form
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Based on those observations, we propose the method of current element
distribution in the following way. Let the number of channels, their positions,
and the directions be $M$ (around 100), $w_{j}\in\partial\Omega$ , and $\nu_{j}\in \mathrm{S}^{2}$ , respectively,
where $1\leq j\leq M$ . Taking $N$ sufficiently large (say, 200), one introduces the
mappuig

$\varphi:(Q, a)\in \mathrm{R}^{6N}\vdash*(\sum_{k=1}^{N}\frac{\mu_{0}Q_{k}\cross(w_{j}-a_{k})}{4\pi|w_{j}-a_{k}|^{3}}\cdot\nu_{j})_{1\leq j\leq M}\in \mathrm{R}^{M}$

and the functional
$J(x)= \frac{1}{2}||\varphi(x)-z||_{\mathrm{R}^{M}}^{2}$ ,

where $x=(Q, a)$ , $Q=(Q_{1}, Q_{2}, \cdots, Q_{N})\in \mathrm{R}^{3N}$ , $a=(a_{1}, a_{2}, \cdots, a_{N})\in \mathrm{R}^{3N}$ ,
and $z=(z_{1}, z_{2}, \cdots, z_{M})\in \mathrm{R}^{M}$ . The value $Zj\in \mathrm{R}$ stands for the observed
datum of the $\nu_{j}$ component of the magnetic field $B(x)$ measured at j-th
channel. First, $N$ random current elements are distributed in Q. One element
is selected randomly and perturbed so that $J$ decreases. Then the next one
is chosen also randomly to continue the process. If $J$ does not decrease,
that element is left un-perturbed. If the directions of two adjacent elements
happen to be opposite, then randomly selected one of them is moved away.
This procedure is continued until alocal minimun of $J$ is achieved.

Contrarily to the classical one, method of current element distribution
is set to be under-determined. High accuracy is easy to achieve, but the
solution is not unique. In fact, generically the set

$\mathcal{M}$ $=\{x=(Q, a)\in \mathrm{R}^{6N}|\varphi(x)=z\}$

forms amanifold of $6N-M$ dimension. Thus, we have to re-formulate
the problem as to find $x\in \mathcal{M}$ provided with the most desirable properties.
Usually, this is done by another variational structure. One introduces avalue
function $d$ on $\mathcal{M}$ and tries to find an element in $\mathcal{M}$ which attains $\sup_{\mathcal{M}}d$.
However, introducing such $d$ is not trivial, and the standard formulation
does not seem to be definite in the data analysis of MEG. We propose a
different method in this paper. The procedure is different according to the
cases where the current element distibution is regarded as the total current
density and where it is regarded as the neuron current composed of finite
number of dipoles, respectively
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3Parallel Optimization
Our scheme to solve under-determined problems is divided into three steps,
approaching, freezing, and melting.

In approaching, the iterative sequence ( $x_{\ell}\}\subset \mathrm{R}^{6N}$ is so taken as to im-
prove accuracies. For this procedure, one can apply (quasi-) Newton method.
In this case, it is worth noting that the linearized operator is degenerate and
the regularization process is efficient. In fact, we have

$\frac{d}{dt}J(x+ty)|_{t=0}=\langle\varphi’(x)y, \varphi(x)-z\rangle$

and hence $x\in \mathrm{R}^{6N}$ is acritical point of $J$ if and only if

$\varphi’(x)^{*}\varphi(x)=\varphi’(x)^{*}z$ (10)

holds. We also have

$\frac{d^{2}}{dt^{2}}J(x+ty)|_{t=0}=\langle\varphi’’(x)[y,y], \varphi(x)-z\rangle+\langle\varphi’(x)y, \varphi’(x)y\rangle$

and hence the linearized operator is given by $(\varphi(x)-z)\cdot$ $\varphi’(x)+\varphi’(x)^{*}\varphi’(x)$ .
Because $\varphi:\mathrm{R}^{6N}arrow \mathrm{R}^{M}$ , its rank is less than or equal to $M<6N$ .

On the other hand, we have

$J(x_{\ell+1})$ $=$ $J(x_{\ell})+J’(x_{\ell})[\Delta x_{\ell+1}]+O(||\Delta x_{\ell+1}||^{2})$

$=$ $J(x_{\ell})+(\varphi’(x_{\ell})\Delta x_{\ell+1}, \varphi(x_{\ell})-z)+O(||\Delta x_{\ell+1}||^{2})$ (11)

with $\dim \mathrm{K}\mathrm{e}\mathrm{r}\varphi’(x_{\ell})=6N-M$ genericaly, where $\Delta x_{\ell+1}=x_{\ell+1}-x\ell$ . where
fore, if one makes use of the gradient method, the perturbation is so taken
as $\Delta x_{\ell+1}=s\cdot\emptyset(x_{\ell})^{*}(z-\varphi(x_{\ell}))$ with

$0<s=o(||\varphi’(x_{\ell})^{*}(\varphi(x_{\ell})-z)||)=o(||\varphi’(x_{\ell})||\cdot J(x_{\ell})^{1/2})$ .

Finaly, if one adopts the method of the random perturbation in this
process, then it is efficient to take $\Delta x\ell+1$ in $\mathrm{K}\mathrm{e}\mathrm{r}\varphi’(x\ell)^{[perp]}=\mathrm{R}\mathrm{m}$ $\varphi’(x\ell)^{*}$ in
view of (11). Actually, if one makes use of the singular decomposition of the
matrix $\varphi’(x)^{*}$ , this selection $\Delta x_{\ell+1}\in \mathrm{K}\mathrm{e}\mathrm{r}\varphi’(x_{\ell})^{[perp]}=\mathrm{R}\mathrm{a}\mathrm{n}$ $\varphi’(x_{\ell})^{*}$ is easy to
realze. See Stoer and Bulrsch [15]
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The next process is freezing. Prom (8) again, it is seen that the iterative
sequence is hard to improve the accuracy in the region where

$||\varphi’(x_{\ell})[\varphi(x_{\ell})-z]||\sim||\Delta x_{\ell+1}||$ .

This condition may be replaced by $||\Delta x_{\ell+1}||\sim||\varphi’(x\ell)||\cdot J(x\ell)^{1/2}$ , and we call
this area the freezing zone. There, the iterative sequence looks like to have
converged. As we shall describe later, such aphenomenon can happen in the
area even far from $\mathcal{M}$ , but this criterion can be used to examine whether the
sequence is actually freezing or not. Another application of the freezing zone
is to get higher accuracies. That is, even when $x_{\ell}$ comes into the freezing
zone, one can still improve the accuracy by reducing $||\Delta x_{\ell+1}||$ . However, this
process cannot come into the region where SQUID recognizes the object, that
is, over the spatial resolution.

That situation of freezing can be broken more efficiently by making use
of the tangent space $\mathcal{T}_{x_{\ell}}\mathcal{M}$ . This process is indicated as melting. In fact, one
can remove the freezed sequence without losing accuracy so much by taking
$\Delta x_{\ell+1}\in \mathcal{T}_{x_{\ell}}\mathcal{M}$ . Here, we have $J(x_{\ell})<<1$ and hence $\mathcal{T}_{x_{\ell}}\mathcal{M}\approx \mathrm{K}\mathrm{e}\mathrm{r}\varphi’(x_{\ell})$ .
Therefore, we are able to replace the above selection by $\Delta_{x\ell+1}\in \mathrm{K}\mathrm{e}\mathrm{r}\varphi’(x_{\ell})$ .
Then, the singular value decomposition of the matrix $\varphi’(x_{\ell})$ is made use of
again.

Taking account of the freezing zone, one can perform approaching and
melting in aunified way. Namely, $\Delta x_{\ell+1}$ is taken randomely in Ran $\varphi’(x_{\ell})^{*}$

and $\mathrm{K}\mathrm{e}\mathrm{r}\varphi’(x_{\ell})$ according to $||\Delta x_{\ell+1}||>||\varphi’(x_{\ell})||\cdot$ $J(x_{\ell})^{1/2}$ and $||\Delta x_{\ell+1}||<$

$||\varphi’(x_{\ell})||\cdot$ $J(x_{\ell})^{1/2}$ , respectively. Here, the singular value decompositions of
the matrices $\varphi’(x_{\ell})^{*}$ and $\varphi’(x_{\ell})$ are made use of. We call this method the
parallel optimization by random perturbations.

4Binding and Streaming
How to lead the melting sequence is mostly important. It should be based
on apriori considerations on the expected status. We propose two ways of
melting in MEG analysis, that is, binding and streaming.

In binding, the current elements are supposed to $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ the primary current
in the form of (9). Therefore, the clustered elements are more desirable,
although the number of clustered areas is not prescribed. For this purpose,
we adopt the idea of counting measure, which is stated as follows. Namely,
given as family of points, we wish to count them. For this purpose, first, we
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fix $\epsilon>0$ and take the coverings of the set of points by $\epsilon$ balls. Then, the
minimal number of those balls is non-decreasing in $\epsilon$ , and converges to the
number of points as $\epsilon$ $\downarrow 0$ . In our method, clustered elements in the area
$\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{u}\mathrm{s}\epsilon \mathrm{a}\mathrm{r}\mathrm{e}\mathrm{r}\mathrm{e}_{\ell 5^{\mathrm{a}_{\mathrm{b}\mathrm{e}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e}\mathrm{z}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{z}\mathrm{o}\mathrm{n}\mathrm{e}.\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{e}}}\alpha=(Q_{1}^{\ell},\cdots,Q_{N}^{\ell})}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{a}\mathrm{s}\mathrm{a}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}.\mathrm{A}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{a}\mathrm{l}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{s}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}\mathrm{a}\mathrm{e}\mathrm{f}\mathrm{o}11\mathrm{o}\mathrm{w}\mathrm{s}\mathrm{L}\mathrm{e}\mathrm{t}x_{\ell}=(Q^{\ell},a,\cdot\in$

$\mathrm{R}^{3N}$ and $a^{\ell}=(a_{1}^{\ell}$ , $\cdots$ , $a_{N}^{\ell})\in \mathrm{R}^{3N}$ denote the multiples of moments and
positions of the current elements $\{$ ($Q_{k}^{\ell}$ , $a_{k}^{\ell}$) $|1\leq k$ $\leq N\}$ , respectively. Let
$S_{\ell}=\{a_{k}^{\ell}|1\leq k\leq N\}$ . First, we take small $\epsilon$ $>0$ and provide an $\epsilon$ covering
of $S\ell$ randomly as $S_{\ell} \subset\bigcup_{j}B(y_{j},\epsilon)$ . This process is repeated until aminimal
number of covering baUs is achieved. We $\mathrm{c}\mathrm{a}\mathrm{U}$ it covering. Next, we reduce
each ball as small as possible in such away as $S_{\ell} \subset\bigcup_{j}B(y_{j},\epsilon_{j})$ , where $\epsilon_{j}\in$

$(0,\epsilon]$ and $S_{\ell}^{c}\cap B(y_{j},\delta)\neq\emptyset$ for $\delta\in(0,\epsilon_{j})$ . This process is caUed biting. Then,
melting for $x_{\ell}=(\alpha,a^{\ell})$ is done to get the next status $x_{\ell+1}=(Q^{\ell+1},a^{\ell+1})$

under the constraint $S_{\ell+1} \subset\bigcup_{j}B(y_{j},\epsilon_{j})$ , where $S_{\ell+1}=\{a_{k}^{\ell\dagger 1}|1\leq k$ $\leq N\}$

for $a^{\ell+1}=$ $(a_{1}^{\ell+1}, \cdots,a_{N}^{\ell+1})$ . Then, we come back to covering by making $\epsilon$ $>0$

smaller. In this method, evaluation of the status of iterative sequences is
made by the number of covering balls.

In streaming, one wishes for the distribute current elements to $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ the
total current density. In this case, it is desirable for the set of current elements
to realize asmooth vector field on O. Again, we take the covering process to
make each current element to recognize the ones near by it.

Namely, taking $\epsilon$ $>0$ , first we perform the covering process and obtain
$S_{\ell}\subset\cup jB(yj,\epsilon)$ . Let $S_{\ell}^{j}$ be the set of positions of elements in $B(y_{\mathrm{j}},\epsilon)$ ,
that is, $S_{\ell}^{j}=\{a_{k}^{\ell}\in S_{\ell}|a_{k}^{\ell}\in B(y_{j},\epsilon)\}$. Furthermore, $T_{\ell}^{j}$ and $\tilde{T}_{\ell}^{j}$ denote the
sets of moments of the elements in $B(y_{\mathrm{j}}, \epsilon)$ and those coming into $B(y_{j},\epsilon)$ ,
repsectively: $T_{\ell}^{j}=\{Q_{k}^{\ell}|a_{k}^{\ell}\in S_{\ell}^{j}\},\tilde{T}_{\ell}^{j}=\{a_{k}^{\ell}+\alpha_{k}\in B(y_{j},\epsilon)\}$ . Put $\hat{T}_{\ell}^{j}=$

$T_{\ell}^{j}\cup\tilde{T}_{\ell}^{j}$ and

$d_{j}= \sum_{kQ_{k}^{\ell},Q_{\mathrm{k}’}^{\ell}\in\hat{T}_{k}^{j},\neq k’}\frac{y_{k}.y_{k’}}{|\alpha_{k}||Q_{k}^{\ell},|}$ and d $= \sum_{j}d_{j}$
.

Then melting for $x_{\ell}=(\phi,a^{\ell})$ is done to increase $d$. Now, we get the next
step and come back to covering, making $\epsilon$ $>0$ smaler. In this method,
evaluation of the status of iterative sequences is made by the value $d$ .

Thus, binding and streaming are the processes of resetting the variational
structure at each step of iteration. In this sense, they are comparable to the
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method of regularization, but the evaluation of the status is more flexible and
their ultimately expected forms of e $\ovalbox{\tt\small REJECT}$ 0 are hard to express in variational
problems.

5Further Discussions
In this section, we describe two items. First, the roles of moments and posi-
tions are different in approaching, because $E=Q \cross\frac{x-a}{|x-a|^{3}}$ has asingularity

at $x=a$ . In fact, for $E_{j}^{k}(Q, a)=Q_{k} \cross\frac{w_{\mathrm{j}}-a_{k}}{|w_{j}-a_{k}|^{3}}$ we have

$E_{j}^{k}(Q+ \Delta Q, a)=E_{j}^{k}(Q, a)+\Delta Q_{k}\cross\frac{w_{j}-a_{k}}{|w_{j}-a_{k}|^{3}}$ (12)

and
$E_{j}^{k}(Q, a+ \Delta a)=E_{j}^{k}(Q, a)-2Q_{k}\cross\frac{\Delta a_{k}}{|w_{j}-a_{k}|^{4}}+o(|\Delta a|)$ . (13)

This means that the perturbations

$(w_{j}-a_{k})\cross\Delta Q_{k}$ and $2Q_{k}\cross\Delta a_{k}/|w_{j}-a_{k}|$

are comparable in the contribution of $\Delta_{x}E_{j}^{k}$ for $\Delta J(x)=J(x+\Delta x)-J(x)$ .
In particular, it happens that

$| \Delta a_{k}|\approx\frac{|\Delta Q_{k}|}{|Q_{k}|}\cdot|w_{j}-a_{k}|^{2}$

in $\Delta_{x}E_{j}^{k}$ . The contribution of $\Delta_{x}E_{j}^{k}$ to $\Delta J$ is most important when $a_{k}$ is
very close to $w_{j}$ by (12) and (13). Therefore,

$|\Delta a_{k}|$ $\approx$ $\frac{|\Delta Q_{k}|}{|Q_{k}|}$ .dist $(a_{k}, O)^{2}$

follows to AJ7 where $\mathcal{O}=\{w_{j}|1\leq j\leq \mathrm{A}\#\}$ denotes the set of channels
on an. If $|\Delta Q_{k}|\sim|Q_{k}|$ , then $|\Delta a_{k}|\sim \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(a_{k}, \mathcal{O})^{2}$ and current elements
near $\mathcal{O}$ are hard to move. One way to avoid this difficulty is the use of
weighted random perturbations. Thus, random perturbations of moments
and positions are taken by 1:dist $(a_{k}, \mathrm{C}7)^{-2}$ . Another method is to take
$|\Delta Q_{k}|\sim|Q_{k}|$ . dist $(a_{k}, \mathcal{O})^{-2}$ . In both cases, one may take dist $(a_{k}, \partial\Omega_{+})^{-2}$

for dist $(a_{k}, \mathcal{O})^{-2}$ if $w_{j}’ \mathrm{s}$ are distributed uniformly on the chemi-sphere $\partial\Omega_{+}$ .

41



The third way is base on the theory of Hooke and Jeeves [9]. Given
$k=1,2$ , $\cdots$ , $N$ , we regard $\varphi$ as afunction of $Q_{k}\in \mathrm{R}^{3}$ . Let $\varphi_{k}$ : $\mathrm{R}^{3}arrow \mathrm{R}^{\mathrm{A}I}$

for this mapping. If $Q_{k}\in \mathrm{R}^{3}$ attains $\inf_{Q_{k}\in \mathrm{R}^{3}}\frac{1}{2}||\varphi_{k}(Q_{k})-z||^{2}$ , then it holds
that

$\frac{\partial\varphi_{k}}{\partial Q_{k}}(Q_{k})[\varphi_{k}(Q_{k})-z]=0*$

similarly to (10). Regarding this, we eliminate $Q\in \mathrm{R}^{3N}$ by

$\frac{\partial\varphi}{\partial Q_{k}}(Q,a)[\varphi(Q,a)-z]=0*$ .

Because $\varphi_{k}$ is affine in $Q_{k}$ , we can replace $\varphi(Q,a)$ and $\frac{\theta\varphi}{\partial Q_{k}}(Q, a)*$ by

$\varphi(Q_{0}, a)+\frac{\partial\varphi}{\partial Q_{k}}(Q_{0}, a)[Q_{k}-Q_{k}^{0}]$ md $\frac{\partial\varphi}{\partial Q_{k}}(Q_{0}, a)*$ ,

respectively, where $Q=$ $(Q_{1}, \cdots,Q_{N})$ and $Q_{0}=(Q_{1}^{0}, \cdots, Q_{N}^{0})$ with $Q_{\ell}=Q_{\ell}^{0}$

for $\ell\neq k$ . This implies

$\frac{\partial\varphi}{\partial Q_{k}}\cdot\frac{\partial\varphi}{\partial Q_{k}}(Q_{0},a)[Q_{k}]=\frac{\partial\varphi}{\partial Q_{k}}(Q_{0}, a)[z-\varphi(Q_{0},a_{0})]**$

$+ \frac{\partial\varphi}{\partial Q_{k}}(Q_{0},a)[Q_{k}^{0}]*$ .

Regarding this, we take the following scheme. Namely, given $x_{\ell}=(Q^{\ell},a^{\ell})$ ,
we determine the $\ell+1$-th moment $\alpha+1=(\phi_{1}^{+1}$ , $\cdots$ , $y_{N}+1$ as afunction of
$a^{\ell+1}\in \mathrm{R}^{N}$ by

$\frac{\partial\varphi}{\partial Q_{k}}\cdot\frac{\partial\varphi}{\partial Q_{k}}(\alpha*, a^{\ell})[\emptyset_{k}^{+1}]=\frac{\partial\varphi}{\partial Q_{k}}(Q^{\ell}, a^{\ell})*[z-\varphi(\alpha, a^{\ell})]$

$+ \frac{\partial\varphi}{\partial Q_{k}}(Q^{\ell}, a^{\ell})[Q_{k}^{\ell}]*$

for $k=1,2$, $\cdots$ , $N$ . Then, one of the optimization processes described in the
previous section is applied for $J$ with $Q$ eliminated in this way. The linear
part in $Q_{k}$ of $\varphi_{k}(Q_{k})$ is given by atriple product and $3\cross 3$ matrix $\frac{\partial\varphi}{\partial Q_{k}}\frac{\partial\varphi}{n_{k}}*$

is easy to calculate. This method is applicable also to the over-determined
case.

Turning to the next item, we see that $\Delta_{Q}E_{j}^{k}\cdot\nu_{j}=0$ and $\Delta_{a}E_{j}^{k}\cdot\nu_{j}=o(1)$

if $Q_{k}$ and $w_{j}-a_{k}$ are parallel to $\nu_{j}$ , respectively. We say that an elemen
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$(Q_{k}, a_{k})$ is in the degenerate hole if both conditions are satisfied for very close
$w_{j}\in \mathcal{O}$ . It is easy to see that such an element is hard to move in approaching.
On the other hand, $|\Delta_{Q}E_{j}^{k}\cdot\nu_{j}|$ and $|\Delta_{a}E_{j}^{k}\cdot$ $\nu_{j}|$ become maximum if $\Delta Q_{k}$ and
$\Delta a_{k}$ are perpenticular to $\nu_{j}$ , respectively. We say that an element $(Q_{k}, a_{k})$

is in the looping hole if $\nu_{j}$ , $a_{k}-w_{j}$ , and $Q_{k}$ are perpendicular to very close
$w_{j}\in \mathcal{O}$ . In this case the contribution from $\Delta E_{j}^{k}$ to reduce $J$ becomes
maximum when those conditions are preserved. This situation can keep to
hold. Roughly speaking, those holes make $J$ to be flat outside the ffeezing
zone. Pattern formation is observed sometimes in the transient states of the
method of current element distribution, and holes can be its reason.

6Numerical Results
Numerical experiments for the current element distribution method (without
melting) have been tried for several years. In [12], [14], [1], it is reported that
circular like total current densities are well traced by this method.

The melting was first proposed in [16]. There, amore rough method was
adopted, and only one ball is taken to cover $S_{\ell}$ . Based on this covering,
biting and melting are done similarly. It was seen that current elements are
clustering near the originally clustered dipoles.

Figure 1of the present paper illustrates the efficiency of employing such
astep size control for $\Delta a_{k}$ and $\Delta Q_{k}$ as $|\Delta Q_{k}|\sim|Q_{k}|$ . dist $(a_{k}, \mathcal{O})^{-2}$ . It is
seen that the accuracy is improved rapidly.

Figures 2, 3, and 4show the effect of binding. There, it is seen that the
current elements are clustering to three areas where the original dipoles are
set.

Further programs are the following.

1. Examining [12], [14], [1]. Are they freezing ?

2. The uses of parallel optimization, binding, and streaming.

3. Trying several treatments for moments.

Part of this study is funded by the Research for the Future (RFTF) Program of Japan
Society for the Promotion of Science, Integrated Fields Area: Research on Biomedical Ob
servation and Control, “Application of Heuristic Solution of Inverse Problem to Medica

43



Diagnoses and Biological Research”. The second author thanks Dr. M. Higuchi for point-
ing out several references and Professor G. Uehara for some comments on the descriptions
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ITERATION
Figure 1: Approaching process with astep size control

$|\Delta Q_{k}|\sim|Q_{k}|\cdot$ $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(a_{k}, \mathcal{O})^{-2}(\mathrm{O})$ and without it $(+)$ . The control reduces
the number of iterations by quarter
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