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1 Introduction
This is ajoint work with Izumi Takagi, T\^ohoku University.

The shape of human red blood cell is usually axially symmetric with
the biconcave cross section. About 30 years ago several physicists proposed
some models of cell ([1, 3, 4]). They considered that the shape minimizes the
bending energy of the cell membrane.

One of models is the spontaneous curvature model. They regarded the
cell as an oriented closed smooth surface embedded in $\mathrm{R}^{3}$ , denoted by E.
The mean curvature denotes $h$ . The sign of mean curvature is positive if
the surface is strictly convex. $A(\Sigma)$ and $V(\Sigma)$ mean the area and enclosed
volume:

$A( \Sigma)=\int_{\Sigma}dS$, $V( \Sigma)=-\frac{1}{3}\int_{\mathrm{Z}}n\cdot$ $pdS$.

Here $p$ and $n$ are respectively the position vector and the inner unit normal
vector at $p$ on E. Usually the energy is defined the integral of squared
curvature (the Willmore functional). Since the spheres are global minimizers
for this functional, it is impossible to explain the concavity of cell. Then
they modified the energy, and imposed some constraints on the minimizing
problem. By the difference of the structure of cell membrane between the
exterior and interior sides, it is considered that the cell bends spontaneously
with constant curvature, say c&. If so, the energy should minimize when
$h\equiv \mathrm{c}$ . Taking this into account, they introduced the bending energy defined
by

$W( \Sigma)=\int_{\Sigma}(h-c_{0})^{2}d.S$,
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where $c_{0}$ is agiven constant, not necessarily positive, called the spontaneous
curvature.

Let $A_{0}$ and $V_{0}$ be given constant. Then they considered that acritical
surface, in particular aminimizer, of the bending energy under the prescribed
area $A_{\mathrm{O}}$ and volume $V_{0}$ is the shape of the red blood cell. Of course A and
$V_{0}$ must satisfy the isoperimetric inequality. The spontaneous curvature q)

determined by the structure of the cell membrane.
We formulate the problem mathematically. For asmooth function $\phi$ on

asurface Iand $t\in \mathrm{R}$ , we shift $\Sigma$ to the normal direction with length $t\phi$ . If
$|t|$ is sufficiently small, then we get asurface, denoted by $\Sigma_{t}$ . This is called
the normal variation. We denote the first and second variations by $\delta$ and $\delta^{2}$

respectively, that is, for afunctional $F$ on $\Sigma$ , $\delta F(\Sigma)$ and $\delta^{2}F(\Sigma)$ are the first
and second derivatives with respect to $t$ at $t=0$ of $F(\Sigma_{t})$ . Our problem is
avariational one with two constraints. The theory of Lagrange multipliers
gives the Euler-Lagrange equation

(1.1) $\delta W(\Sigma)+\lambda_{1}\delta A(\Sigma)+\lambda_{2}\delta V(\Sigma)=0$.

Here $\lambda_{1}$ and $\lambda_{2}$ are Lagrange multipliers.
There are other models about the red blood cells. One of them is called

the bilayer-coupled model. This is the same variational problem but with
different meaning of physical parameters $\lambda_{1}$ and $\lambda_{2}$ (see [3]).

2Known results
By use of differential geometry, (1.1) is reduced to asecond order elliptic
equation
(2.1) $\Delta_{g}h+2h(h^{2}-k)+2\mathrm{q}_{\}}k-2dh$ $-2\lambda_{1}h-\lambda_{2}=0$

for the mean curvature $h$ . Here $k$ is the Gauss curvature and $\Delta_{g}$ is the
Laplace-Beltrami operator of $\Sigma$ with the induced metric $g$ from $\mathrm{I}\mathrm{R}^{3}$ . The
metric $g$ is determined from the embedding of $\Sigma$ , and therefore unknown.
Hence this equation is quasi-linear, not semi-linear.

Several results are known about this problem. If $c_{0}=\lambda_{1}=\lambda_{2}=0$ ,
then our functional is the Willmore functional, which has along history in
differential geometry, but we do not mention here.

Spheres are critical points for any $c_{0}$ . That is, spheres satisfy the Euler-
Lagrange equation for any $c_{0}$ and suitable $\lambda_{1}$ and $\lambda_{2}$ , since $h$ and $k$ is constant.
This is adirect calculation.

We have alot of discussions of critical points other than spheres. Most
of them are based on formal calculations or experiments, however, we would
like to point out some of them
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Though the normal red blood cell has abiconcave shape when at rest in
the plasma, this is not the only shape of the cell. Adding distilled water to
the plasma, we can observe various shapes. At first cell loses the biconcavity,
gradually shapes an oblate ellipsoid, and finally, spherical. It is considered
that the shape is determined by the excess of osmotic pressure between inte
rior and exterior of cell. The physical constant $\lambda_{2}$ corresponds to the excess
of osmotic pressure. Prom the point of mathematical view, this shape trans-
formation implies the existence of “a bifurcating family” of shapes of cell
from the sphere with the bifurcation parameter of $\lambda_{2}$ .

Jenkins [5] showed numericaly the existence of families of solutions bi-
furcating from spheres when $c_{0}=0$ . The solutions are surfaces of revolution.
Subsequently Peterson [9] and Ou-Yang and Helfrich [8] investigated the sta-
bility and instability of surfaces of mode 2by formal computation. We shall
explain the meaning of “mode” in the next section. Unfortunately these re-
sults seemed to be based on formal calculations, and the rigorous proofs were
expected.

The author jointly with Takagi succeeded in giving arigorous proof of
existence of solutions of mode $n$, $n\geq 2$ . We can also analyze the stability
and instability of solutions of general modes. The solutions are surfaces of
lrevolution, however, it is to be emphasized that we include variations which
are not axisymmetric in the stability question. Our results in this note have
already announced in [6] without precise proofs. The full paper [7] is now in
preparation.

3Critical points bifurcating from spheres
We construct critical surfaces which are axisymmetric. Let $\Sigma$ be asurface of
revolution :

$\Sigma=$ {p $=(r(s)\cos$ es $r(s)\sin\theta,$ $z(s)$ ) $|0\leq\theta<2\pi$ , $0\leq s\leq\overline{s}$}.

Here $r$ and $z$ are unknown functions, and $s$ is the arch-length parameter of
generating curve. The range of $s$ is unknown, that is, the problem is the
free boundary problem. This is one of the difficulties. To avoid this, we
introduce anew coordinate. By scaling we may assume the area is $4\pi$ . A
new coordinate $\langle$ is defined by

$s| arrow\zeta=\int_{0}^{\epsilon}r(s)ds-1\in\{\zeta|-1\leq\zeta\leq 1\}$ .

We may call this “the area wise coordinat\"e’’ in the following sense. The
surface generates the curve parameterized by $s$ . Let consider the segmen
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of curve with the arch-length parameter between 0and $s$ , and the surface
patch generating the segment. The area of the patch varies from 0to $4\pi$ .
Normalizing the range to the interval [-1, 1], we get $\langle$ . Changing an unknown
function $r$ to $\rho$ , where $\rho$ is the square of $r$ . And put $\lambda=-2\lambda_{1}$ and $\mu=\lambda_{2}$ .
Then we reduce our problem (2.1) to

$\{$

$(\rho h’)’+2(h-c_{0})\{(h-z’)^{2}+c_{0}h\}+\lambda h-\mu=0$ ,

$\frac{1}{2}\rho’-(h-z’)^{2}+h^{2}=0$,

$(\rho z’)’-\beta h$ $=0$

for $-1<\zeta<1$ ,

$\sqrt{\rho}h’=\rho=\sqrt{\rho}z’=0$ at $\zeta=\pm 1$ ,

$\rho’=\mp 2$ at $\zeta=\pm 1$ .
The first equation is the Euler-Lagrange equation. The second and third
ones are the relations between $\rho$ , $z$ and $h$ . The boundary conditions except
the last one mean that the surface closes smoothly. The last condition comes
from the normalization of area, or reduction of free boundary condition.

This system, however, is overdetermined as asystem of second order
ordinary differential equations. The normalization of area gives an extra
condition. We would like to construct bifurcation solutions from the unit
sphere $S^{2}$ , but we cannot apply the standard bifurcation theory. Instead we
consider the system of equations

$\{$

$(\rho h’)’+2(h-c_{0})\{(h-z’)^{2}+c_{0}h\}+\lambda h-\mu+\nu_{1}\rho’=0$ ,

$\frac{1}{2}\rho’-(h-z’)^{2}+h^{2}+\frac{\nu_{2}}{4}\rho’=0$ ,

$( \rho z’)’-\rho’h+\frac{\nu_{2}}{2}\rho d=0$

for $-1<\zeta<1$

with the same boundary conditions. The new system contains new parame-
ters $\nu_{1}$ and $\nu_{2}$ , and therefore it is not overdetermined. Furthermore we can
show that if there exists asolution, then $\nu_{1}$ and $\nu_{2}$ are zero. Hence the
solution satisfies the original system. Conversely solutions of the original
system solve the new system putting $\nu_{1}$ and $\nu_{2}$ zero. Consequently two sys-
tems are equivalent. Using translation invariance of functional can show this
fact. Of course we can show that by analytic argument, but we need length
calculations
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The unit sphere $S^{2}$ corresponds to

$h\equiv 1$ , $\rho=1-\zeta^{2}$ , $z=\zeta$ , $\lambda=-2c_{0}+2c_{0}^{2}+\mu$ .

We denote $C^{2}(-1,1)$ , $L^{2}(-1,1)$ , and $H^{k}(-1,1)$ simply by $C^{2}$ , $L^{2}$ , and
$H^{k}$ . Let $P_{n}$ be the Legendre polynomial of order $n$ , and

$D$ $=\mathrm{t}\mathrm{h}\mathrm{e}$ graph closure in $L^{2}$ of

$\{u\in C^{2}\cap L^{2}|\lim_{\zetaarrow\pm 1}\sqrt{1-\zeta^{2}}\frac{du}{\not\subset}=0$ , $\frac{d}{d\zeta}\{(1-\zeta^{2})\frac{du}{d\zeta}\}\in L^{2}\}$ ,

$D_{0}^{1}=\{u\in D$ $| \int_{-1}^{1}ud\zeta=0$ , $\frac{du}{d\zeta}\in D$ $\}$ .

$H_{0}^{2}$ is the completion of the space of smooth functions with compact support
in $H^{2}$ topology. As an application of Crandall-Rabinowitz’ theorem [2] to
the new system, we have the existence theorem.

Theorem 3.1 Let $n$ be an integer greater than 1. Then we have families of
$sol$ utions $\Sigma_{n}(\xi)=(h(\epsilon),\rho(\epsilon),$ $z(\epsilon)$ , $\lambda(\epsilon)$ , $\mu(\epsilon))\in D$ $\mathrm{x}(\{1-\zeta^{2}\}+H_{0}^{2})\cross D_{0}^{1}\cross$

$\mathrm{R}$ $\cross \mathrm{R}$ :

$\{$

$h=1+\epsilon P_{n}+O(\epsilon^{2})$ ,

$\rho=1-\zeta^{2}-\frac{\ (1-\zeta^{2})^{2}P_{n}’}{(n-1)n(n+1)(n+2)}+O( \epsilon^{2})$ ,

$t$ $=1+ \frac{2\epsilon(\zeta P_{n}-P_{n})}{(n-1)(n+2)}+O(\epsilon^{2})$ ,

A $=n(n+1)-4c_{0}+2\mathrm{d}$ $+O(\epsilon)(=-2\mathrm{q}+2c_{0}^{2}+\mu+O(\epsilon))$ ,

$\mu=n(n+1)-2c_{0}+O(\epsilon)$ ,

$(\nu_{1}=\nu_{2}=0)$

$/or$ sufficiently small $|\epsilon|$ , say $|\epsilon|<\epsilon_{1}$ . The mapping ffom $\epsilon$ to the solution
$\Sigma_{n}(\epsilon)$ is analytic $hm\mathrm{R}$ to the above class.

Note that the part of order 1is the unit sphere. Therefore these are fam-
ilies of critical points bifurcating from $S^{2}$ . We call the solution of Theorem
3.1 that of mode $n$ .
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The surfaces obtained in Theorem 3.1 are critical points of $W(\cdot)$ under
the prescribed area $A_{0}=4\pi$ and volume $V_{0}$ . Next we would like to discuss
the result of stability of them. As usual we define the Nullity and the Index
of critical points. That is, Nullity is the multiplicity of zero eigenfunction
of the quadratic form associated with the second variation, and Index is the
number of negative eigenvalues. Then we have the lower bound of Index and
Nullity.

Theorem 3.2 For the solution of mode $n$ it holds that $\mathrm{I}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}(\Sigma_{n}(\epsilon))\geq(n-$

$2)(n+2)$ , and $\mathrm{N}\mathrm{u}11\mathrm{i}\mathrm{t}\mathrm{y}(\Sigma_{n}(\epsilon))\geq 5$ provided $|\epsilon|>0$ is sufficiently small

The lower bound 5of Nullity comes form the rigid motion. Since the
surface is axially symmetric, the rotation around the axis of symmetry gen-
erates the tangential variation but not the normal variation. Therefore the
space of normal variations coming from infinitesimal rigid motions of is a
5-dimensional space, not 6-dimensional. The lower bound of Index shows
that the surfaces of mode $n$ is unstable if $n$ is greater than 2.

The theorem giving below is the more precise bounds in case of even $n$ .
Let $\gamma$ be

$\gamma=\mathrm{c}$
$(3n^{4}+6n^{3}-3n^{2}-6n+8)+3n^{4}+6n^{3}-7n^{2}-1\mathrm{O}\mathrm{n}$,

and let $\sigma$ be the sign of $\epsilon\cross\gamma$ . $P_{n}^{m}$ is the associate Legendre functions of the
first kind. $E_{n,+}$ , $E_{n,-}$ , and $E_{n,0}$ are the spaces defined by

$E_{n,+}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{P_{n}^{m}\cos m\theta, P_{n}^{m}\sin m\theta|2\leq m\leq n, S_{n}^{m}=1\}$ ,

$E_{n,-}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}${ $P_{n}^{m}\cos$ rafl, $P_{n}^{m}\sin m\theta|2\leq m\leq n$ , $S_{n}^{m}=-1$ },
$E_{n,0}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{P_{n}^{m}\cos m\theta, P_{n}^{m}\sin m\theta|2\leq m\leq n, S_{n}^{m}=0\}$ .

Here
$A_{n}^{m}= \int_{-1}^{1}P_{n}(P_{n}^{m})^{2}d\zeta$ ,

and
$S_{n}^{m}= \mathrm{s}\mathrm{g}\mathrm{n}\{\frac{(n+m)}{(n-m)}!.A_{n}^{0}-2A_{n}^{m}\}$ .

Then dimensions of these spaces give the lower and upper bound of Nullity
and Index.

Theorem 3.3 Let $n$ be even. Then there exists $\epsilon_{2}=\epsilon_{2}$ ($n$ , Cg) $>0$ such that
for $0<|\epsilon|<\epsilon_{2}$

$(n-2)(n+2)+\dim E_{n,-\sigma}\leq \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}(\Sigma_{n}(\epsilon))$

$\leq(n-2)(n+2)+\dim E_{n,-\sigma}+\dim E_{n,0}$
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$5\leq \mathrm{N}\mathrm{u}11\mathrm{i}\mathrm{t}\mathrm{y}(\Sigma_{n}(\epsilon))\leq 5+\dim E_{n,0}$ ,
hold provided $\gamma\neq 0$ .

Note that if $E_{n,0}=\emptyset$ , then estimates are optimal (here we interpret
$\dim\emptyset=0)$ . When $n\leq 6$ and even, it can be shown that $E_{n,0}=\emptyset$ by direct
calculation. When $8\leq n\leq 30$ and even, we have $E_{n,0}=\emptyset$ with help of
computer.

Furthermore when $n$ is 2, 4, or 6, we can give $E_{n,\pm}$ explicitly. Conse-
quently we can give the exact value of Index and Nullity. In particular, if
$\epsilon(5c_{0}+3)>0$ , then the solution of mode 2is stable. All other solutions
except $5\mathrm{q}$ $+3=0$ are unstable.

The result on the stability and instability in mode 2coincides with formal
results of Peterson [9] and Ou-Yang-Helfrich [8]. The result for higher modes
is completely new. Note that we include variations which are not rotationally
symmetric in the study of the stability and instability.

To show Theorems 3.2 and 3.3 we must check the sign of the second varia-
tion. In the following we sketch the proof of Theorem 3.3. Since the problem
is the variational one with constraints, we must restrict the variations to
those which satisfies the constraints. We call such variations admissible.
Hence we need the second variation formula for admissible variations, and
the necessary and sufficient condition of admissibility.

The first proposition gives the second variation formula of the bending
energy under constraints.

Proposition 3.1 (The second variation formula) Let $\Sigmaarrow\Sigma(\psi(t))=$

$\{p+\psi(t)n|p\in\Sigma\}$ be a variation preserving the area and volume. Then we
have

$\frac{d^{2}}{dt^{2}}W(\Sigma(\psi(t)))|_{t=0}=\delta^{2}W(\Sigma)[\psi’(0)]+\lambda_{1}\delta^{2}A(\Sigma)[\psi’(0)]+\lambda_{2}\delta^{2}V(\Sigma)[\psi’(0)]$.

This formula is derived in the following way. If the variation is linear, then
it does not satisfy the constraints. Therefore we must consider the nonlinear
variations. If the variation is nonlinear, then the second derivative is

$\frac{d^{2}}{dt^{2}}W(\Sigma(\psi(t)))|_{t=0}=\delta^{2}W(\Sigma)[\psi’(0)]+\delta W(\Sigma)[\psi’(0)]$ .

The second term in the right-hand side does not appear when the variation
is linear. The Euler-Lagrange equation, and the constraints of the area and
volume yiel

$\delta W(\Sigma)[\psi’(0)]=-\lambda_{1}\delta A(\Sigma)[\psi’(0)]-\lambda_{2}\delta V(\Sigma)[\psi’(0)]$ ,
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$-\delta A(\Sigma)[\psi’(0)]=\delta^{2}A(\Sigma)[\psi’(0)]$, $-\delta V(\Sigma)[\psi’(0)]=\delta^{2}V(\Sigma)[\psi’(0)]$

respectively. Combining these, we get our formula.
Next proposition says the admissibility of variations.

Proposition 3.2 (Admissibility of test function) The variation $\Sigmaarrow$

$\Sigma(\psi(t))=\{p+\psi(t)n|p\in\Sigma\}$ preserves the area and volume, if and only if

$\int_{S^{2}}\psi’(0)dS=\int_{S^{2}}h\psi’(0)dS=0$ .

This means that the first variation of area and volume vanish. Therefore
the necessity is clear. The sufficiency is not trivial. We show this by use
of the implicit function theorem. The class of admissible variations is not
linear space, but manifold. The condition of Proposition 3.2 determines the
tangent space of the manifold.

Put $\psi’(0)=\phi$. Now we define the quadratic from II associated with the
second variation by

$\mathrm{I}\mathrm{I}[\phi, \phi]=\delta^{2}W(\Sigma)[\phi]+\lambda_{1}\delta^{2}A(\Sigma)[\phi]+\lambda_{2}\delta^{2}V(\Sigma)[\phi]$

$=2 \int_{S^{2}}([\frac{1}{2}\Delta_{g}(h^{2}-k)+(4h^{2}-k)(h^{2}-k)+\frac{1}{\sqrt{g}}\{\sqrt{g}h^{ij}(h)_{i}\}_{j}]\phi^{2}$

$-hh^{\dot{g}}. \phi:\phi_{j}-\frac{1}{2}(h^{2}-2k)|\nabla_{g}\phi|^{2}+\frac{1}{4}(\Delta_{g}\phi)^{2}-2c0(-\frac{1}{2}h^{ij}\phi_{i}\phi_{j}+h|\nabla_{g}\phi|^{2})$

$+(c_{0}^{2}- \frac{\lambda}{2})(k\phi^{2}+\frac{1}{2}|\nabla_{g}\phi|^{2})+\mu h\phi^{2})dS$.

Here $\Delta_{g}$ and $\nabla_{g}$ are the Laplacian and the gradient on the surface with the
induced metric, $g_{ij}$ and $h_{j}\dot{.}$ are the first and second fundamental forms.

Inserting the expansion of solution $h=1+\epsilon h_{1}+O(\epsilon^{2})$ etc. in the formula
above, we get

$\mathrm{I}\mathrm{I}[\phi, \phi]=\mathrm{I}\mathrm{I}_{0}[\phi, \phi]+\epsilon \mathrm{I}\mathrm{I}_{1}[\phi, \phi]+\cdots$ ,

where

$\mathrm{I}\mathrm{I}_{0}[\phi,\psi]=\int_{S^{2}}\{\frac{1}{2}(\Delta_{0}\phi)(\Delta_{0}\psi)-\frac{n^{2}+n+2}{2}\nabla_{0}\phi\cdot\nabla_{0}\psi+n(n+1)\phi\psi\}dS$,
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$\mathrm{I}\mathrm{I}_{1}[\phi, \psi]=\int_{S^{2}}([\{4c0-2n(n+1)\}h_{1}+\mu_{1}]\varphi\psi$

$-[ \frac{n^{2}+n+2}{2}\rho_{1}+\rho 0\{4h_{1}+(c_{0}-1)$ $\frac{dz_{1}}{d\zeta}+\frac{\mu_{1}}{2}\}]\frac{\partial\varphi}{\partial\zeta}\frac{\partial\psi}{\partial\zeta}$

十 $[ \frac{n^{2}+n+2}{2}\frac{\rho_{1}}{\rho_{0}^{2}}+\frac{1}{n}\{-4c_{0}h_{1}+2(c_{0}-1)\frac{dz_{1}}{d\zeta}-\frac{\mu_{1}}{2}\}]\frac{\partial\varphi}{\partial\theta}\frac{\partial\psi}{\partial\theta}$

$+ \frac{1}{2}(\Delta_{0}\varphi)\{\frac{\partial}{\partial\zeta}(\rho_{1}\frac{\partial\psi}{\partial\zeta})-\frac{\rho_{1}}{d}\frac{\partial^{2}\psi}{\partial\theta^{2}}\}+\frac{1}{2}(\Delta_{0}\psi)\{\frac{\partial}{\partial\zeta}(\rho_{1}\frac{\partial\varphi}{\partial\zeta})-\frac{\rho_{1}}{\rho_{0}^{2}}\frac{\partial^{2}\varphi}{\partial\theta^{2}}\})dS$.

Using the expansion of solution in Theorem 3.1, we compute the sign on $\mathrm{I}\mathrm{I}_{0}$

and $\mathrm{I}\mathrm{I}_{1}$ for admissible function $\phi$ .
Proposition 3.3 Let $A$ and $\prime \mathcal{R}$ be spaces of admissible variations and rigid
motions respectively. $E_{n,+}$ , $E_{n,-}$ , and $E_{n,0}$ are as before. There $e$$\dot{m}t$ linear
spaces $E_{n,1}$ and $E_{n,2}$ such that

$E_{n,1}\simeq \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{P_{\ell}, P_{\ell}^{m}\cos m\theta, P_{\ell}^{m}\sin m\theta|2\leq\ell\leq n, 1\leq m\leq\ell\}$ ,
$\mathrm{E}\mathrm{n},2\simeq \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{P_{\ell}, P_{\ell}^{m}\infty \mathrm{s}m\theta, P_{\ell}^{m}\sin m\theta|\ell\geq n+1,1\leq m\leq\ell\}$ ,

and the direct sum decomposition
$A$ $=E_{n,-\sigma}\oplus E_{n,1}\oplus E_{n,0}\oplus R$ $\oplus E_{n,\sigma}\oplus \mathrm{E}\mathrm{n},2$ .

$h\hslash hemwre$ it holds that
$\mathrm{I}\mathrm{I}_{0}=0$ , $\mathrm{I}\mathrm{I}_{1}<0$ on $E_{n,-\sigma}$ , $\mathrm{I}\mathrm{I}_{0}<0$ on $E_{n,1}$ ,

$\mathrm{I}\mathrm{I}_{0}=\mathrm{I}\mathrm{I}_{1}=0$ on $E_{n,0}$ , $\mathrm{I}\mathrm{I}=0$ on 72,

$\mathrm{I}\mathrm{I}_{0}=0$ , $\mathrm{I}\mathrm{I}_{1}>0$ on $E_{n,\sigma}$ , $\mathrm{I}\mathrm{I}_{0}>0$ on $\mathrm{E}\mathrm{n},2$ .
Here $\mathrm{I}\mathrm{I}_{1}>0$ on $E_{n,-\sigma}$ means that $\mathrm{I}\mathrm{I}_{1}$ is positive definite there. Other notation
should be understood similarly.

Since the decomposition is not orthogonal one with respect to eigenspaces,
we must estimate the cross terms carefully to see the signature of quadratic
forms. After these estimations we finally obtain the lower and upper bounds:

$\dim(E_{n,-\sigma}\oplus E_{n,1})\leq \mathrm{h}\mathrm{d}\mathrm{e}\mathrm{x}(\Sigma_{n}(\epsilon))\leq\infty\dim(R \oplus E_{n,\sigma}\oplus E_{n,2})$

$=\dim(E_{n,-\sigma}\oplus E_{n,1}\oplus E_{n,0})$ ,

$\dim \mathcal{R}\leq \mathrm{N}\mathrm{u}1\mathrm{h}.\mathrm{t}\mathrm{y}(\Sigma_{n}(\epsilon))\leq\dim(E_{n,0}\oplus \mathcal{R})$ .
By direct calculations we have $\dim E_{n,1}=(n-2)(n+2)$ and dim72 $=5$ .
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