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Abstract. A new class of s-dimensional uniformly distributed sequences called
the generalized van der Corput sequence is defined. The sequence is constructed
by using the generalized number system based on an integer matrix whose all
eigenvalues reside out of the unit circle. In this talk, we show that by using the
generalized van der Corput sequence we can calculate numerical integrations with
the convergence speed O(1/N) when integrands satisfy some regularity conditions.
We also apply the sequence to a numerical integration problem and test effectiveness
of the sequence.

1 Introduction

We can consider the van der Corput seqeunce to be an orbit of the origin
under the adding machine transformation that is accompanied by an expand-
ing one dimensional linear transformation [2,6-8]. Following this principle of
regarding the van der Corput sequence as an orbit of the adding machine
transformation, we can generalize the van der Corput sequence in various
directions [1,4,6,7]. In this paper, replacing expanding one dimensional lin-
ear transformation with expanding s-dimensional linear transformation, we
obtain another generalization of the van der Corput sequence. We call this
sequence the generalized van der Corput sequence. We also give a theorem.
According to the theorem, the required time for numerical integration of a
function over s-dimensional unit cube is reduced to O(1/e) where ¢ denotes
the accuracy, if the integrand is smooth enough. In the last of the paper, we
give a numerical example.

* This research was partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Scientific Research (C), 12650061, 2000.
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2 The generalized van der Corput sequence

First, we introduce the generalized number system based on an expanding
integer matrix.

N, Z, R, and C are sets of all natural numbers, all integers, all real num-
bers, and all complex numbers, respectively. We define T° = Rs /Z3. For a
real valued function f defined on T?, f(k) denotes the Fourier coefficients of
f, that is to say -

fey= | fla)e "V HeRdg
'l[a

for k € Z°. M(s;Z) denotes the set of all (s, s) integer matrices and so on.
Let A € M(s;Z) whose all eigenvalues reside outside of the unit circle
and N = | det A|. Then there exist P,Q € GL(s;Z) and uy,...,Us € N which

satisfy

Ui
QAP “
(1) -
Us
and wu;lujyy fori=1,...,s-1
(uy,...,us) are elementary divisors of A. We define sets D and D’ as follows:
@) D:=Q‘1{t(:r:1,...,:cs)€Zs|xiE{O,...,u,:—l-}}

D' =P {!z1,...,75) €Z°| zi € {0,...,ui - 1}}.

Following relations:
Z°/AZ° = P Z/wl
i=1
(3) Z°|AZ* =D, Z°['AZ* =D’

4D =4D' = JJui=N
i=1
hold immediately from above definitions. We also define

00
y:ZA—ndin, dinED}.
n=1

Definition 1. The quadruplet (4, D, D', K) is called the A-digit expansion,
D is called the digit set of the A-digit expansion and D’ its dual.

(4) K := {y
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For these A, D, and N we define the generalized van der Corput sequence as
follows.

Definition 2. We define z,, € R* by

l(n)
Tn=)» A*d,, di, €D
k=1

{(n)

where n = ZN"_lik, i €{0,1,...,N-1}.
k=1

The sequence {z,}32, C R° is called the generalized van der Corput sequence
with respect to A.

When s = 1, this sequence becomes the van der Corput sequence [5].
We introduce two lemmas.

Lemma 1. For any d' € D'\ {0},
) exp (2rv/=1(d', A~d)) = 0.
deD

Proof. There exists (z,...,T,) # 0 which satisfy

8
d =tp-1! E Tie;
i=1

and z; € {0,...,u; — 1} for 1 < i < s, where e; denotes the i-th unit vector
in Z°. Then from (1) and (2),

Z exp (27r\/——1 (d', A_ld))

deD

= Z exp (2rvV-1(*P~'(z1e; + - - + z,e,), AT'Q Y (yrey + -+ + Yses)))

y;G{O,...,u.-—l}
1<i<s

= Z "~ exp(2nvV-1(z1e1+ - + zse )PP ATIQ Y (y1ey + -+ - + Ys€s))

= Z exp(27r\/—l (%+---+x;ys))
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Let {z,}°%, be the s-dimensional generalized van der Corput sequence
with respect to A. We define L = !A'Z* for non-negative integer i. We have
the following decomposition of Z*:

00
z° = l_l (Lf‘ - L) -
=0

It is easy to see the following lemma holds.

Lemma 2. Let k € L_’i‘l - L;-“H, M € N, and j be an integer which satisfies
NI < M < N3*!. Then, :

M
1
i Z exp (2nvV=1(k, z))
n=1

)1 ifi>17,
TINYM ifi<].
The following theorem holds. |

Theorem 1. Following statements 1.-5. hold. Here ps denotes the Lebesgue
measure of R®. ‘

K is compact in R®.

R = U,ez. (K + 2).

For any z,2' € Z°, if z # 2', then p, (K +2) 0 (K + 2')) =0.
AK = UN (K +ds).

ps(K) > 0.

Proof. 1.
From the condition of eigenvalues of A, there exists a real number A > 1
which satisfies

SAR- IR

|47 2] < 5 lal

for any ¢ € R®. Let (di,)nen be sequence of elements of D and B =
maXqep |d], then

< B
—A-1

o0

> AN,
n=1

and K is bounded. Define

Km = {y eR

y’:iA—ndi,u d‘inGD}a
n=1

and we have the following inequality:

drr (Km, K)) = dpg (Km, Km + A""K) < |[AT"K]| < A-"‘X@—l,
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where dy denotes the Hausdorff distance. We define K(B/(\—1)) as follows:

({2 frex

K is compact, K C U (0, :\3—) } )

where U (p, r) denote the ball in R® with center p and radius r. For K (B/(A—
1)) is compact with respect to dy and du(Km,k) = 0as m = oo, K is
compact.

4.:

This is trivial from the following decomposition:

AK

VS

do +AiA‘"d,~n) L (dl +A§:A‘"din) L] (dN+ AiA‘"d,-n)

n=2 n=2 n=2

(K +d;).

-
1]
—

1
=

5.
We define u(™ as follows:

1 ifyeA,
0 otherwise.

pm = 3" Nia.y, where 6,,(A)={
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For z € ZS\{O} let m and m' be integers and d’' € Z* that satisfy 0 < m' <m,
ze€ LA \LA ., and z = tAm' ¢’ The following equation:

ﬁ)(z) =/ 621r\/—_1(z,:c) du(m)(IL')

1
= = Z e27r\/--—1(z:y)

Tl )
= ]—\}1;1- ﬁ (Z exp (2#\/—_1 <z,A‘"‘d>)>

n=1 \yeD

Nm H Z exp (27r\/_<tAm d,A d>)

n=1yeD
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- S ew v, ama) [T e (arvI( a7m0))

yeD n=1 -
v n#Em' +1
=0

holds from Lemma 1. Then,

— 1 if z=0
5 li (m) =
(5) mglclao pim(2) {O otherwise.

Let 7 be a canonical projection R® — T* and p(™) be a measure of T® defined
as follows:

um () = 3w (A+2).

2€Z°*

Let p be the s-dimensional Lebesgue measure of T¢, then

. 1, ifz=0
u(z)={ .

0, otherwise.

From this and (5), we see that

lim p™(z) = A(z)

m—00
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for any z € T*, that is to say, u{™) weakly converges to u. For any m,

pm (m(K)) = Y w™ (n(K) + 2)

z€Z*

2 E “(m)(W(Km) + 2)
z€Z*

= u™(Km) = 1.

From this inequality and the fact that 7(K) is compact, the following in-
equality:

1 < limsup ™ (m(K)) < p(n(K)) < 1

m-—00

holds. Then u,(K) > 0.
9 .

r/res

(o] o
From the preceding result and the “Interior Theorem” [3], K # 0, where K
denotes the interior of K. Then,

o0
R =| | A"K
n=0

= || (& + Adi; + AV, 4+ dy)
0<;

= I_'(K—i—z).

€2

3.
From the following inequality:

|det Al py(K) = ps(AK)

N
= g (|_| (K + d,-))
i=1

S s (K +do) + -+ ps (K +dn)
= Nps(K)

and the preceding result,
ps (K +di) N (K +dj)) =0

foranyi#3. O

3 Application to numerical integration problems

In this section, we show that when we use the generalized van der Corput
sequence to calculate numerical integrations of functions which satisfy some
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regularity conditions, the elapsed time for calculation is proportional to 1/e
where ¢ denotes the approximation error. Let f be a real valued function
defined on T®. The inversion formula: :

(6) f@) =Y fkyerV =R

keZ-

holds.

Theorem 2. Let \;,i =1,...,s be eigenvalues of A. Define

A=min {|\;] |i = 1,...,s},
_logN
" log A’

If f satisfies the following regularity condition:

(7) LK |f(k)| < o0

keZs

then there exists a positive constant C which satisfies

<_

f(z)dx — Z f(zy,)

Ts

for any M € N.

Proof. From the inversion formula (6),

@)z - Z f(@n)

n=1

= (0)__2 (Z f(k -wﬁ(k,afn>> |

keZ-s
(8)

=3 f(k)—-Ze’"f" (k)
kez’
k#0

1 M ST

< £ _ 27 —l(k,.'B“)

keZ?® n=1

k0
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Let j(M) be an integer which satisfies N/(M) < M < NI(M+L then from
Lemma 2

: M

3 |f)] |57 3o ek

keZ' Mn=1

k#0

=5 S ]|y e
v=0kcLA-LA

v+l

) 1 M
f(k), HZGZN\/TI'(I:,:I:")

® =3 >

J(M)<vkeLA-L2

+ ¥ 70| |+

0<v<j(M)—1 keLA—~ L:}+1

35D SENV CIEID SIS SR | i

J(M)<vkELA LA 0<v<j(M)-1keLA- LA

Z e”'rr\/—-(k ZTn)

v+41 v41
From the definition of a and the assumption that |A;] > 1 (i € {1,. 81,
for any k € L — L2, | there exists h € {1,...,s} and
(10 |kl = ['A"K'| > [An]" > N*/e.
Then, from the regularity condition (7) and (10),
(M) (M)

lim su kIN”+1<l *k‘ k|®

map 3 [/ v <umeSS S ||
(11) v=0 keLA-LA,,

<y ,f(k ,|k|“<oo
keZe

The following inequality:

(12) || flo)ds -4 Z fen)|< 3 ||+ - Z HOILE

J(M)

holds from inequalities (8), (9), and (11). The regularity condition (7) means
that the second term of the right hand side of (12) is O(1/M). For the first
term, we have the following estimation (13) again by virtue of (7).

S liwl< Y |iw)|

"GL,(M) k] > NI (M)

< X I fm[aitne = 0 (%>

[k| > A3Ca)

(13)
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Inequalities (12) and (13) complete the proof. O

4 Numerical example

We apply the generalized van der Corput sequence for calculating the numer-
ical integration of the following function f which is defined on T!0:

1
f(z) = 1+ Z}Zl a;(z; — 22)2
()12, = (3.51540,1.92331,1.83665, 2.58459, 2.55934,
1.99071,2.93146, 3.83957, 0.964710, 2.50068),
(29)12, = (0.397903,0.262837,0.472738, 0.292722, 0.478440, |
0.274949, 0.149833, 0.272246, 0.491894, 0.328846) € T'°

(14)

We take A to be a 10-dim companion matrix, that is,

000.... 11
100.... 10
A= 0,10""_9;‘
000...1 2

This is an expanding matrix. We calculate the numerical integration by using
925 random number sequences and the generalized van der Corput seqgeunce
with respect to A. The result is displayed in Figure 1. In the figure, approx-
imation errors resulted by using these sequences are plotted. For random
number sequences, we calculate the o of 25 sequences and plot o, 20, and
30. Figure 1 shows that:

1. the approximation error of the generalized van der Corput sequence with
respect to A converges at the speed of O(1/M) where M is the number
of sample points;

2. those of random number sequences at the speed of O(1/v M);

3. the generalized van der Corput sequence with respect to A achieves about
10 times worse when sample number is 105.

From the practical point of view, how to find a “good A” is important and
this problem still remains. '
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